| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psgnunilem1.t | ⊢ 𝑇  =  ran  ( pmTrsp ‘ 𝐷 ) | 
						
							| 2 |  | psgnunilem1.d | ⊢ ( 𝜑  →  𝐷  ∈  𝑉 ) | 
						
							| 3 |  | psgnunilem1.p | ⊢ ( 𝜑  →  𝑃  ∈  𝑇 ) | 
						
							| 4 |  | psgnunilem1.q | ⊢ ( 𝜑  →  𝑄  ∈  𝑇 ) | 
						
							| 5 |  | psgnunilem1.a | ⊢ ( 𝜑  →  𝐴  ∈  dom  ( 𝑃  ∖   I  ) ) | 
						
							| 6 |  | eqid | ⊢ ( pmTrsp ‘ 𝐷 )  =  ( pmTrsp ‘ 𝐷 ) | 
						
							| 7 | 6 1 | pmtrfinv | ⊢ ( 𝑄  ∈  𝑇  →  ( 𝑄  ∘  𝑄 )  =  (  I   ↾  𝐷 ) ) | 
						
							| 8 | 4 7 | syl | ⊢ ( 𝜑  →  ( 𝑄  ∘  𝑄 )  =  (  I   ↾  𝐷 ) ) | 
						
							| 9 |  | coeq1 | ⊢ ( 𝑃  =  𝑄  →  ( 𝑃  ∘  𝑄 )  =  ( 𝑄  ∘  𝑄 ) ) | 
						
							| 10 | 9 | eqeq1d | ⊢ ( 𝑃  =  𝑄  →  ( ( 𝑃  ∘  𝑄 )  =  (  I   ↾  𝐷 )  ↔  ( 𝑄  ∘  𝑄 )  =  (  I   ↾  𝐷 ) ) ) | 
						
							| 11 | 8 10 | syl5ibrcom | ⊢ ( 𝜑  →  ( 𝑃  =  𝑄  →  ( 𝑃  ∘  𝑄 )  =  (  I   ↾  𝐷 ) ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  dom  ( 𝑄  ∖   I  ) )  →  ( 𝑃  =  𝑄  →  ( 𝑃  ∘  𝑄 )  =  (  I   ↾  𝐷 ) ) ) | 
						
							| 13 | 12 | imp | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  dom  ( 𝑄  ∖   I  ) )  ∧  𝑃  =  𝑄 )  →  ( 𝑃  ∘  𝑄 )  =  (  I   ↾  𝐷 ) ) | 
						
							| 14 | 13 | orcd | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  dom  ( 𝑄  ∖   I  ) )  ∧  𝑃  =  𝑄 )  →  ( ( 𝑃  ∘  𝑄 )  =  (  I   ↾  𝐷 )  ∨  ∃ 𝑟  ∈  𝑇 ∃ 𝑠  ∈  𝑇 ( ( 𝑃  ∘  𝑄 )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) ) | 
						
							| 15 | 6 1 | pmtrfcnv | ⊢ ( 𝑃  ∈  𝑇  →  ◡ 𝑃  =  𝑃 ) | 
						
							| 16 | 3 15 | syl | ⊢ ( 𝜑  →  ◡ 𝑃  =  𝑃 ) | 
						
							| 17 | 16 | eqcomd | ⊢ ( 𝜑  →  𝑃  =  ◡ 𝑃 ) | 
						
							| 18 | 17 | coeq2d | ⊢ ( 𝜑  →  ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  =  ( ( 𝑃  ∘  𝑄 )  ∘  ◡ 𝑃 ) ) | 
						
							| 19 | 6 1 | pmtrff1o | ⊢ ( 𝑃  ∈  𝑇  →  𝑃 : 𝐷 –1-1-onto→ 𝐷 ) | 
						
							| 20 | 3 19 | syl | ⊢ ( 𝜑  →  𝑃 : 𝐷 –1-1-onto→ 𝐷 ) | 
						
							| 21 | 6 1 | pmtrfconj | ⊢ ( ( 𝑄  ∈  𝑇  ∧  𝑃 : 𝐷 –1-1-onto→ 𝐷 )  →  ( ( 𝑃  ∘  𝑄 )  ∘  ◡ 𝑃 )  ∈  𝑇 ) | 
						
							| 22 | 4 20 21 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑃  ∘  𝑄 )  ∘  ◡ 𝑃 )  ∈  𝑇 ) | 
						
							| 23 | 18 22 | eqeltrd | ⊢ ( 𝜑  →  ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  ∈  𝑇 ) | 
						
							| 24 | 23 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  dom  ( 𝑄  ∖   I  ) )  ∧  𝑃  ≠  𝑄 )  →  ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  ∈  𝑇 ) | 
						
							| 25 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  dom  ( 𝑄  ∖   I  ) )  ∧  𝑃  ≠  𝑄 )  →  𝑃  ∈  𝑇 ) | 
						
							| 26 |  | coass | ⊢ ( ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  ∘  𝑃 )  =  ( ( 𝑃  ∘  𝑄 )  ∘  ( 𝑃  ∘  𝑃 ) ) | 
						
							| 27 | 6 1 | pmtrfinv | ⊢ ( 𝑃  ∈  𝑇  →  ( 𝑃  ∘  𝑃 )  =  (  I   ↾  𝐷 ) ) | 
						
							| 28 | 3 27 | syl | ⊢ ( 𝜑  →  ( 𝑃  ∘  𝑃 )  =  (  I   ↾  𝐷 ) ) | 
						
							| 29 | 28 | coeq2d | ⊢ ( 𝜑  →  ( ( 𝑃  ∘  𝑄 )  ∘  ( 𝑃  ∘  𝑃 ) )  =  ( ( 𝑃  ∘  𝑄 )  ∘  (  I   ↾  𝐷 ) ) ) | 
						
							| 30 |  | f1of | ⊢ ( 𝑃 : 𝐷 –1-1-onto→ 𝐷  →  𝑃 : 𝐷 ⟶ 𝐷 ) | 
						
							| 31 | 20 30 | syl | ⊢ ( 𝜑  →  𝑃 : 𝐷 ⟶ 𝐷 ) | 
						
							| 32 | 6 1 | pmtrff1o | ⊢ ( 𝑄  ∈  𝑇  →  𝑄 : 𝐷 –1-1-onto→ 𝐷 ) | 
						
							| 33 | 4 32 | syl | ⊢ ( 𝜑  →  𝑄 : 𝐷 –1-1-onto→ 𝐷 ) | 
						
							| 34 |  | f1of | ⊢ ( 𝑄 : 𝐷 –1-1-onto→ 𝐷  →  𝑄 : 𝐷 ⟶ 𝐷 ) | 
						
							| 35 | 33 34 | syl | ⊢ ( 𝜑  →  𝑄 : 𝐷 ⟶ 𝐷 ) | 
						
							| 36 |  | fco | ⊢ ( ( 𝑃 : 𝐷 ⟶ 𝐷  ∧  𝑄 : 𝐷 ⟶ 𝐷 )  →  ( 𝑃  ∘  𝑄 ) : 𝐷 ⟶ 𝐷 ) | 
						
							| 37 | 31 35 36 | syl2anc | ⊢ ( 𝜑  →  ( 𝑃  ∘  𝑄 ) : 𝐷 ⟶ 𝐷 ) | 
						
							| 38 |  | fcoi1 | ⊢ ( ( 𝑃  ∘  𝑄 ) : 𝐷 ⟶ 𝐷  →  ( ( 𝑃  ∘  𝑄 )  ∘  (  I   ↾  𝐷 ) )  =  ( 𝑃  ∘  𝑄 ) ) | 
						
							| 39 | 37 38 | syl | ⊢ ( 𝜑  →  ( ( 𝑃  ∘  𝑄 )  ∘  (  I   ↾  𝐷 ) )  =  ( 𝑃  ∘  𝑄 ) ) | 
						
							| 40 | 29 39 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑃  ∘  𝑄 )  ∘  ( 𝑃  ∘  𝑃 ) )  =  ( 𝑃  ∘  𝑄 ) ) | 
						
							| 41 | 26 40 | eqtr2id | ⊢ ( 𝜑  →  ( 𝑃  ∘  𝑄 )  =  ( ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  ∘  𝑃 ) ) | 
						
							| 42 | 41 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  dom  ( 𝑄  ∖   I  ) )  ∧  𝑃  ≠  𝑄 )  →  ( 𝑃  ∘  𝑄 )  =  ( ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  ∘  𝑃 ) ) | 
						
							| 43 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  dom  ( 𝑄  ∖   I  ) )  ∧  𝑃  ≠  𝑄 )  →  𝐴  ∈  dom  ( 𝑃  ∖   I  ) ) | 
						
							| 44 | 20 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  dom  ( 𝑄  ∖   I  )  ∧  𝐴  ∈  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) )  →  𝑃 : 𝐷 –1-1-onto→ 𝐷 ) | 
						
							| 45 | 33 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  dom  ( 𝑄  ∖   I  )  ∧  𝐴  ∈  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) )  →  𝑄 : 𝐷 –1-1-onto→ 𝐷 ) | 
						
							| 46 | 6 1 | pmtrfb | ⊢ ( 𝑃  ∈  𝑇  ↔  ( 𝐷  ∈  V  ∧  𝑃 : 𝐷 –1-1-onto→ 𝐷  ∧  dom  ( 𝑃  ∖   I  )  ≈  2o ) ) | 
						
							| 47 | 46 | simp3bi | ⊢ ( 𝑃  ∈  𝑇  →  dom  ( 𝑃  ∖   I  )  ≈  2o ) | 
						
							| 48 | 3 47 | syl | ⊢ ( 𝜑  →  dom  ( 𝑃  ∖   I  )  ≈  2o ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  dom  ( 𝑄  ∖   I  )  ∧  𝐴  ∈  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) )  →  dom  ( 𝑃  ∖   I  )  ≈  2o ) | 
						
							| 50 |  | 2onn | ⊢ 2o  ∈  ω | 
						
							| 51 |  | nnfi | ⊢ ( 2o  ∈  ω  →  2o  ∈  Fin ) | 
						
							| 52 | 50 51 | ax-mp | ⊢ 2o  ∈  Fin | 
						
							| 53 | 6 1 | pmtrfb | ⊢ ( 𝑄  ∈  𝑇  ↔  ( 𝐷  ∈  V  ∧  𝑄 : 𝐷 –1-1-onto→ 𝐷  ∧  dom  ( 𝑄  ∖   I  )  ≈  2o ) ) | 
						
							| 54 | 53 | simp3bi | ⊢ ( 𝑄  ∈  𝑇  →  dom  ( 𝑄  ∖   I  )  ≈  2o ) | 
						
							| 55 | 4 54 | syl | ⊢ ( 𝜑  →  dom  ( 𝑄  ∖   I  )  ≈  2o ) | 
						
							| 56 |  | enfi | ⊢ ( dom  ( 𝑄  ∖   I  )  ≈  2o  →  ( dom  ( 𝑄  ∖   I  )  ∈  Fin  ↔  2o  ∈  Fin ) ) | 
						
							| 57 | 55 56 | syl | ⊢ ( 𝜑  →  ( dom  ( 𝑄  ∖   I  )  ∈  Fin  ↔  2o  ∈  Fin ) ) | 
						
							| 58 | 52 57 | mpbiri | ⊢ ( 𝜑  →  dom  ( 𝑄  ∖   I  )  ∈  Fin ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  dom  ( 𝑄  ∖   I  )  ∧  𝐴  ∈  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) )  →  dom  ( 𝑄  ∖   I  )  ∈  Fin ) | 
						
							| 60 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  dom  ( 𝑄  ∖   I  )  ∧  𝐴  ∈  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) )  →  𝐴  ∈  dom  ( 𝑃  ∖   I  ) ) | 
						
							| 61 |  | en2eleq | ⊢ ( ( 𝐴  ∈  dom  ( 𝑃  ∖   I  )  ∧  dom  ( 𝑃  ∖   I  )  ≈  2o )  →  dom  ( 𝑃  ∖   I  )  =  { 𝐴 ,  ∪  ( dom  ( 𝑃  ∖   I  )  ∖  { 𝐴 } ) } ) | 
						
							| 62 | 60 49 61 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  dom  ( 𝑄  ∖   I  )  ∧  𝐴  ∈  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) )  →  dom  ( 𝑃  ∖   I  )  =  { 𝐴 ,  ∪  ( dom  ( 𝑃  ∖   I  )  ∖  { 𝐴 } ) } ) | 
						
							| 63 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  dom  ( 𝑄  ∖   I  )  ∧  𝐴  ∈  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) )  →  𝐴  ∈  dom  ( 𝑄  ∖   I  ) ) | 
						
							| 64 |  | f1ofn | ⊢ ( 𝑃 : 𝐷 –1-1-onto→ 𝐷  →  𝑃  Fn  𝐷 ) | 
						
							| 65 | 20 64 | syl | ⊢ ( 𝜑  →  𝑃  Fn  𝐷 ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  dom  ( 𝑄  ∖   I  )  ∧  𝐴  ∈  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) )  →  𝑃  Fn  𝐷 ) | 
						
							| 67 |  | fimass | ⊢ ( 𝑃 : 𝐷 ⟶ 𝐷  →  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) )  ⊆  𝐷 ) | 
						
							| 68 | 31 67 | syl | ⊢ ( 𝜑  →  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) )  ⊆  𝐷 ) | 
						
							| 69 | 68 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  dom  ( 𝑄  ∖   I  )  ∧  𝐴  ∈  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) )  →  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) )  ⊆  𝐷 ) | 
						
							| 70 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  dom  ( 𝑄  ∖   I  )  ∧  𝐴  ∈  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) )  →  𝐴  ∈  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) | 
						
							| 71 |  | fnfvima | ⊢ ( ( 𝑃  Fn  𝐷  ∧  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) )  ⊆  𝐷  ∧  𝐴  ∈  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) )  →  ( 𝑃 ‘ 𝐴 )  ∈  ( 𝑃  “  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) ) | 
						
							| 72 | 66 69 70 71 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  dom  ( 𝑄  ∖   I  )  ∧  𝐴  ∈  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) )  →  ( 𝑃 ‘ 𝐴 )  ∈  ( 𝑃  “  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) ) | 
						
							| 73 |  | difss | ⊢ ( 𝑃  ∖   I  )  ⊆  𝑃 | 
						
							| 74 |  | dmss | ⊢ ( ( 𝑃  ∖   I  )  ⊆  𝑃  →  dom  ( 𝑃  ∖   I  )  ⊆  dom  𝑃 ) | 
						
							| 75 | 73 74 | ax-mp | ⊢ dom  ( 𝑃  ∖   I  )  ⊆  dom  𝑃 | 
						
							| 76 |  | f1odm | ⊢ ( 𝑃 : 𝐷 –1-1-onto→ 𝐷  →  dom  𝑃  =  𝐷 ) | 
						
							| 77 | 20 76 | syl | ⊢ ( 𝜑  →  dom  𝑃  =  𝐷 ) | 
						
							| 78 | 75 77 | sseqtrid | ⊢ ( 𝜑  →  dom  ( 𝑃  ∖   I  )  ⊆  𝐷 ) | 
						
							| 79 | 78 5 | sseldd | ⊢ ( 𝜑  →  𝐴  ∈  𝐷 ) | 
						
							| 80 |  | eqid | ⊢ dom  ( 𝑃  ∖   I  )  =  dom  ( 𝑃  ∖   I  ) | 
						
							| 81 | 6 1 80 | pmtrffv | ⊢ ( ( 𝑃  ∈  𝑇  ∧  𝐴  ∈  𝐷 )  →  ( 𝑃 ‘ 𝐴 )  =  if ( 𝐴  ∈  dom  ( 𝑃  ∖   I  ) ,  ∪  ( dom  ( 𝑃  ∖   I  )  ∖  { 𝐴 } ) ,  𝐴 ) ) | 
						
							| 82 | 3 79 81 | syl2anc | ⊢ ( 𝜑  →  ( 𝑃 ‘ 𝐴 )  =  if ( 𝐴  ∈  dom  ( 𝑃  ∖   I  ) ,  ∪  ( dom  ( 𝑃  ∖   I  )  ∖  { 𝐴 } ) ,  𝐴 ) ) | 
						
							| 83 | 5 | iftrued | ⊢ ( 𝜑  →  if ( 𝐴  ∈  dom  ( 𝑃  ∖   I  ) ,  ∪  ( dom  ( 𝑃  ∖   I  )  ∖  { 𝐴 } ) ,  𝐴 )  =  ∪  ( dom  ( 𝑃  ∖   I  )  ∖  { 𝐴 } ) ) | 
						
							| 84 | 82 83 | eqtrd | ⊢ ( 𝜑  →  ( 𝑃 ‘ 𝐴 )  =  ∪  ( dom  ( 𝑃  ∖   I  )  ∖  { 𝐴 } ) ) | 
						
							| 85 | 84 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  dom  ( 𝑄  ∖   I  )  ∧  𝐴  ∈  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) )  →  ( 𝑃 ‘ 𝐴 )  =  ∪  ( dom  ( 𝑃  ∖   I  )  ∖  { 𝐴 } ) ) | 
						
							| 86 |  | imaco | ⊢ ( ( 𝑃  ∘  𝑃 )  “  dom  ( 𝑄  ∖   I  ) )  =  ( 𝑃  “  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) | 
						
							| 87 | 28 | imaeq1d | ⊢ ( 𝜑  →  ( ( 𝑃  ∘  𝑃 )  “  dom  ( 𝑄  ∖   I  ) )  =  ( (  I   ↾  𝐷 )  “  dom  ( 𝑄  ∖   I  ) ) ) | 
						
							| 88 |  | difss | ⊢ ( 𝑄  ∖   I  )  ⊆  𝑄 | 
						
							| 89 |  | dmss | ⊢ ( ( 𝑄  ∖   I  )  ⊆  𝑄  →  dom  ( 𝑄  ∖   I  )  ⊆  dom  𝑄 ) | 
						
							| 90 | 88 89 | ax-mp | ⊢ dom  ( 𝑄  ∖   I  )  ⊆  dom  𝑄 | 
						
							| 91 |  | f1odm | ⊢ ( 𝑄 : 𝐷 –1-1-onto→ 𝐷  →  dom  𝑄  =  𝐷 ) | 
						
							| 92 | 90 91 | sseqtrid | ⊢ ( 𝑄 : 𝐷 –1-1-onto→ 𝐷  →  dom  ( 𝑄  ∖   I  )  ⊆  𝐷 ) | 
						
							| 93 | 33 92 | syl | ⊢ ( 𝜑  →  dom  ( 𝑄  ∖   I  )  ⊆  𝐷 ) | 
						
							| 94 |  | resiima | ⊢ ( dom  ( 𝑄  ∖   I  )  ⊆  𝐷  →  ( (  I   ↾  𝐷 )  “  dom  ( 𝑄  ∖   I  ) )  =  dom  ( 𝑄  ∖   I  ) ) | 
						
							| 95 | 93 94 | syl | ⊢ ( 𝜑  →  ( (  I   ↾  𝐷 )  “  dom  ( 𝑄  ∖   I  ) )  =  dom  ( 𝑄  ∖   I  ) ) | 
						
							| 96 | 87 95 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑃  ∘  𝑃 )  “  dom  ( 𝑄  ∖   I  ) )  =  dom  ( 𝑄  ∖   I  ) ) | 
						
							| 97 | 86 96 | eqtr3id | ⊢ ( 𝜑  →  ( 𝑃  “  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) )  =  dom  ( 𝑄  ∖   I  ) ) | 
						
							| 98 | 97 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  dom  ( 𝑄  ∖   I  )  ∧  𝐴  ∈  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) )  →  ( 𝑃  “  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) )  =  dom  ( 𝑄  ∖   I  ) ) | 
						
							| 99 | 72 85 98 | 3eltr3d | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  dom  ( 𝑄  ∖   I  )  ∧  𝐴  ∈  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) )  →  ∪  ( dom  ( 𝑃  ∖   I  )  ∖  { 𝐴 } )  ∈  dom  ( 𝑄  ∖   I  ) ) | 
						
							| 100 | 63 99 | prssd | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  dom  ( 𝑄  ∖   I  )  ∧  𝐴  ∈  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) )  →  { 𝐴 ,  ∪  ( dom  ( 𝑃  ∖   I  )  ∖  { 𝐴 } ) }  ⊆  dom  ( 𝑄  ∖   I  ) ) | 
						
							| 101 | 62 100 | eqsstrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  dom  ( 𝑄  ∖   I  )  ∧  𝐴  ∈  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) )  →  dom  ( 𝑃  ∖   I  )  ⊆  dom  ( 𝑄  ∖   I  ) ) | 
						
							| 102 | 55 | ensymd | ⊢ ( 𝜑  →  2o  ≈  dom  ( 𝑄  ∖   I  ) ) | 
						
							| 103 |  | entr | ⊢ ( ( dom  ( 𝑃  ∖   I  )  ≈  2o  ∧  2o  ≈  dom  ( 𝑄  ∖   I  ) )  →  dom  ( 𝑃  ∖   I  )  ≈  dom  ( 𝑄  ∖   I  ) ) | 
						
							| 104 | 48 102 103 | syl2anc | ⊢ ( 𝜑  →  dom  ( 𝑃  ∖   I  )  ≈  dom  ( 𝑄  ∖   I  ) ) | 
						
							| 105 | 104 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  dom  ( 𝑄  ∖   I  )  ∧  𝐴  ∈  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) )  →  dom  ( 𝑃  ∖   I  )  ≈  dom  ( 𝑄  ∖   I  ) ) | 
						
							| 106 |  | fisseneq | ⊢ ( ( dom  ( 𝑄  ∖   I  )  ∈  Fin  ∧  dom  ( 𝑃  ∖   I  )  ⊆  dom  ( 𝑄  ∖   I  )  ∧  dom  ( 𝑃  ∖   I  )  ≈  dom  ( 𝑄  ∖   I  ) )  →  dom  ( 𝑃  ∖   I  )  =  dom  ( 𝑄  ∖   I  ) ) | 
						
							| 107 | 59 101 105 106 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  dom  ( 𝑄  ∖   I  )  ∧  𝐴  ∈  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) )  →  dom  ( 𝑃  ∖   I  )  =  dom  ( 𝑄  ∖   I  ) ) | 
						
							| 108 | 107 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  dom  ( 𝑄  ∖   I  )  ∧  𝐴  ∈  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) )  →  dom  ( 𝑄  ∖   I  )  =  dom  ( 𝑃  ∖   I  ) ) | 
						
							| 109 |  | f1otrspeq | ⊢ ( ( ( 𝑃 : 𝐷 –1-1-onto→ 𝐷  ∧  𝑄 : 𝐷 –1-1-onto→ 𝐷 )  ∧  ( dom  ( 𝑃  ∖   I  )  ≈  2o  ∧  dom  ( 𝑄  ∖   I  )  =  dom  ( 𝑃  ∖   I  ) ) )  →  𝑃  =  𝑄 ) | 
						
							| 110 | 44 45 49 108 109 | syl22anc | ⊢ ( ( 𝜑  ∧  ( 𝐴  ∈  dom  ( 𝑄  ∖   I  )  ∧  𝐴  ∈  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) )  →  𝑃  =  𝑄 ) | 
						
							| 111 | 110 | expr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  dom  ( 𝑄  ∖   I  ) )  →  ( 𝐴  ∈  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) )  →  𝑃  =  𝑄 ) ) | 
						
							| 112 | 111 | necon3ad | ⊢ ( ( 𝜑  ∧  𝐴  ∈  dom  ( 𝑄  ∖   I  ) )  →  ( 𝑃  ≠  𝑄  →  ¬  𝐴  ∈  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) ) | 
						
							| 113 | 112 | imp | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  dom  ( 𝑄  ∖   I  ) )  ∧  𝑃  ≠  𝑄 )  →  ¬  𝐴  ∈  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) | 
						
							| 114 | 18 | difeq1d | ⊢ ( 𝜑  →  ( ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  ∖   I  )  =  ( ( ( 𝑃  ∘  𝑄 )  ∘  ◡ 𝑃 )  ∖   I  ) ) | 
						
							| 115 | 114 | dmeqd | ⊢ ( 𝜑  →  dom  ( ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  ∖   I  )  =  dom  ( ( ( 𝑃  ∘  𝑄 )  ∘  ◡ 𝑃 )  ∖   I  ) ) | 
						
							| 116 |  | f1omvdconj | ⊢ ( ( 𝑄 : 𝐷 ⟶ 𝐷  ∧  𝑃 : 𝐷 –1-1-onto→ 𝐷 )  →  dom  ( ( ( 𝑃  ∘  𝑄 )  ∘  ◡ 𝑃 )  ∖   I  )  =  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) | 
						
							| 117 | 35 20 116 | syl2anc | ⊢ ( 𝜑  →  dom  ( ( ( 𝑃  ∘  𝑄 )  ∘  ◡ 𝑃 )  ∖   I  )  =  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) | 
						
							| 118 | 115 117 | eqtrd | ⊢ ( 𝜑  →  dom  ( ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  ∖   I  )  =  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) | 
						
							| 119 | 118 | eleq2d | ⊢ ( 𝜑  →  ( 𝐴  ∈  dom  ( ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  ∖   I  )  ↔  𝐴  ∈  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) ) | 
						
							| 120 | 119 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  dom  ( 𝑄  ∖   I  ) )  ∧  𝑃  ≠  𝑄 )  →  ( 𝐴  ∈  dom  ( ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  ∖   I  )  ↔  𝐴  ∈  ( 𝑃  “  dom  ( 𝑄  ∖   I  ) ) ) ) | 
						
							| 121 | 113 120 | mtbird | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  dom  ( 𝑄  ∖   I  ) )  ∧  𝑃  ≠  𝑄 )  →  ¬  𝐴  ∈  dom  ( ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  ∖   I  ) ) | 
						
							| 122 |  | coeq1 | ⊢ ( 𝑟  =  ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  →  ( 𝑟  ∘  𝑠 )  =  ( ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  ∘  𝑠 ) ) | 
						
							| 123 | 122 | eqeq2d | ⊢ ( 𝑟  =  ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  →  ( ( 𝑃  ∘  𝑄 )  =  ( 𝑟  ∘  𝑠 )  ↔  ( 𝑃  ∘  𝑄 )  =  ( ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  ∘  𝑠 ) ) ) | 
						
							| 124 |  | difeq1 | ⊢ ( 𝑟  =  ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  →  ( 𝑟  ∖   I  )  =  ( ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  ∖   I  ) ) | 
						
							| 125 | 124 | dmeqd | ⊢ ( 𝑟  =  ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  →  dom  ( 𝑟  ∖   I  )  =  dom  ( ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  ∖   I  ) ) | 
						
							| 126 | 125 | eleq2d | ⊢ ( 𝑟  =  ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  →  ( 𝐴  ∈  dom  ( 𝑟  ∖   I  )  ↔  𝐴  ∈  dom  ( ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  ∖   I  ) ) ) | 
						
							| 127 | 126 | notbid | ⊢ ( 𝑟  =  ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  →  ( ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  )  ↔  ¬  𝐴  ∈  dom  ( ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  ∖   I  ) ) ) | 
						
							| 128 | 123 127 | 3anbi13d | ⊢ ( 𝑟  =  ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  →  ( ( ( 𝑃  ∘  𝑄 )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) )  ↔  ( ( 𝑃  ∘  𝑄 )  =  ( ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  ∖   I  ) ) ) ) | 
						
							| 129 |  | coeq2 | ⊢ ( 𝑠  =  𝑃  →  ( ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  ∘  𝑠 )  =  ( ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  ∘  𝑃 ) ) | 
						
							| 130 | 129 | eqeq2d | ⊢ ( 𝑠  =  𝑃  →  ( ( 𝑃  ∘  𝑄 )  =  ( ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  ∘  𝑠 )  ↔  ( 𝑃  ∘  𝑄 )  =  ( ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  ∘  𝑃 ) ) ) | 
						
							| 131 |  | difeq1 | ⊢ ( 𝑠  =  𝑃  →  ( 𝑠  ∖   I  )  =  ( 𝑃  ∖   I  ) ) | 
						
							| 132 | 131 | dmeqd | ⊢ ( 𝑠  =  𝑃  →  dom  ( 𝑠  ∖   I  )  =  dom  ( 𝑃  ∖   I  ) ) | 
						
							| 133 | 132 | eleq2d | ⊢ ( 𝑠  =  𝑃  →  ( 𝐴  ∈  dom  ( 𝑠  ∖   I  )  ↔  𝐴  ∈  dom  ( 𝑃  ∖   I  ) ) ) | 
						
							| 134 | 130 133 | 3anbi12d | ⊢ ( 𝑠  =  𝑃  →  ( ( ( 𝑃  ∘  𝑄 )  =  ( ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  ∖   I  ) )  ↔  ( ( 𝑃  ∘  𝑄 )  =  ( ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  ∘  𝑃 )  ∧  𝐴  ∈  dom  ( 𝑃  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  ∖   I  ) ) ) ) | 
						
							| 135 | 128 134 | rspc2ev | ⊢ ( ( ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  ∈  𝑇  ∧  𝑃  ∈  𝑇  ∧  ( ( 𝑃  ∘  𝑄 )  =  ( ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  ∘  𝑃 )  ∧  𝐴  ∈  dom  ( 𝑃  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( ( ( 𝑃  ∘  𝑄 )  ∘  𝑃 )  ∖   I  ) ) )  →  ∃ 𝑟  ∈  𝑇 ∃ 𝑠  ∈  𝑇 ( ( 𝑃  ∘  𝑄 )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) | 
						
							| 136 | 24 25 42 43 121 135 | syl113anc | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  dom  ( 𝑄  ∖   I  ) )  ∧  𝑃  ≠  𝑄 )  →  ∃ 𝑟  ∈  𝑇 ∃ 𝑠  ∈  𝑇 ( ( 𝑃  ∘  𝑄 )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) | 
						
							| 137 | 136 | olcd | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  dom  ( 𝑄  ∖   I  ) )  ∧  𝑃  ≠  𝑄 )  →  ( ( 𝑃  ∘  𝑄 )  =  (  I   ↾  𝐷 )  ∨  ∃ 𝑟  ∈  𝑇 ∃ 𝑠  ∈  𝑇 ( ( 𝑃  ∘  𝑄 )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) ) | 
						
							| 138 | 14 137 | pm2.61dane | ⊢ ( ( 𝜑  ∧  𝐴  ∈  dom  ( 𝑄  ∖   I  ) )  →  ( ( 𝑃  ∘  𝑄 )  =  (  I   ↾  𝐷 )  ∨  ∃ 𝑟  ∈  𝑇 ∃ 𝑠  ∈  𝑇 ( ( 𝑃  ∘  𝑄 )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) ) | 
						
							| 139 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  dom  ( 𝑄  ∖   I  ) )  →  𝑄  ∈  𝑇 ) | 
						
							| 140 |  | coass | ⊢ ( ( 𝑄  ∘  𝑃 )  ∘  𝑄 )  =  ( 𝑄  ∘  ( 𝑃  ∘  𝑄 ) ) | 
						
							| 141 | 6 1 | pmtrfcnv | ⊢ ( 𝑄  ∈  𝑇  →  ◡ 𝑄  =  𝑄 ) | 
						
							| 142 | 4 141 | syl | ⊢ ( 𝜑  →  ◡ 𝑄  =  𝑄 ) | 
						
							| 143 | 142 | eqcomd | ⊢ ( 𝜑  →  𝑄  =  ◡ 𝑄 ) | 
						
							| 144 | 143 | coeq2d | ⊢ ( 𝜑  →  ( ( 𝑄  ∘  𝑃 )  ∘  𝑄 )  =  ( ( 𝑄  ∘  𝑃 )  ∘  ◡ 𝑄 ) ) | 
						
							| 145 | 140 144 | eqtr3id | ⊢ ( 𝜑  →  ( 𝑄  ∘  ( 𝑃  ∘  𝑄 ) )  =  ( ( 𝑄  ∘  𝑃 )  ∘  ◡ 𝑄 ) ) | 
						
							| 146 | 6 1 | pmtrfconj | ⊢ ( ( 𝑃  ∈  𝑇  ∧  𝑄 : 𝐷 –1-1-onto→ 𝐷 )  →  ( ( 𝑄  ∘  𝑃 )  ∘  ◡ 𝑄 )  ∈  𝑇 ) | 
						
							| 147 | 3 33 146 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑄  ∘  𝑃 )  ∘  ◡ 𝑄 )  ∈  𝑇 ) | 
						
							| 148 | 145 147 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑄  ∘  ( 𝑃  ∘  𝑄 ) )  ∈  𝑇 ) | 
						
							| 149 | 148 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  dom  ( 𝑄  ∖   I  ) )  →  ( 𝑄  ∘  ( 𝑃  ∘  𝑄 ) )  ∈  𝑇 ) | 
						
							| 150 | 8 | coeq1d | ⊢ ( 𝜑  →  ( ( 𝑄  ∘  𝑄 )  ∘  ( 𝑃  ∘  𝑄 ) )  =  ( (  I   ↾  𝐷 )  ∘  ( 𝑃  ∘  𝑄 ) ) ) | 
						
							| 151 |  | fcoi2 | ⊢ ( ( 𝑃  ∘  𝑄 ) : 𝐷 ⟶ 𝐷  →  ( (  I   ↾  𝐷 )  ∘  ( 𝑃  ∘  𝑄 ) )  =  ( 𝑃  ∘  𝑄 ) ) | 
						
							| 152 | 37 151 | syl | ⊢ ( 𝜑  →  ( (  I   ↾  𝐷 )  ∘  ( 𝑃  ∘  𝑄 ) )  =  ( 𝑃  ∘  𝑄 ) ) | 
						
							| 153 | 150 152 | eqtr2d | ⊢ ( 𝜑  →  ( 𝑃  ∘  𝑄 )  =  ( ( 𝑄  ∘  𝑄 )  ∘  ( 𝑃  ∘  𝑄 ) ) ) | 
						
							| 154 |  | coass | ⊢ ( ( 𝑄  ∘  𝑄 )  ∘  ( 𝑃  ∘  𝑄 ) )  =  ( 𝑄  ∘  ( 𝑄  ∘  ( 𝑃  ∘  𝑄 ) ) ) | 
						
							| 155 | 153 154 | eqtrdi | ⊢ ( 𝜑  →  ( 𝑃  ∘  𝑄 )  =  ( 𝑄  ∘  ( 𝑄  ∘  ( 𝑃  ∘  𝑄 ) ) ) ) | 
						
							| 156 | 155 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  dom  ( 𝑄  ∖   I  ) )  →  ( 𝑃  ∘  𝑄 )  =  ( 𝑄  ∘  ( 𝑄  ∘  ( 𝑃  ∘  𝑄 ) ) ) ) | 
						
							| 157 |  | f1ofn | ⊢ ( 𝑄 : 𝐷 –1-1-onto→ 𝐷  →  𝑄  Fn  𝐷 ) | 
						
							| 158 | 33 157 | syl | ⊢ ( 𝜑  →  𝑄  Fn  𝐷 ) | 
						
							| 159 |  | fnelnfp | ⊢ ( ( 𝑄  Fn  𝐷  ∧  𝐴  ∈  𝐷 )  →  ( 𝐴  ∈  dom  ( 𝑄  ∖   I  )  ↔  ( 𝑄 ‘ 𝐴 )  ≠  𝐴 ) ) | 
						
							| 160 | 158 79 159 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  ∈  dom  ( 𝑄  ∖   I  )  ↔  ( 𝑄 ‘ 𝐴 )  ≠  𝐴 ) ) | 
						
							| 161 | 160 | necon2bbid | ⊢ ( 𝜑  →  ( ( 𝑄 ‘ 𝐴 )  =  𝐴  ↔  ¬  𝐴  ∈  dom  ( 𝑄  ∖   I  ) ) ) | 
						
							| 162 | 161 | biimpar | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  dom  ( 𝑄  ∖   I  ) )  →  ( 𝑄 ‘ 𝐴 )  =  𝐴 ) | 
						
							| 163 |  | fnfvima | ⊢ ( ( 𝑄  Fn  𝐷  ∧  dom  ( 𝑃  ∖   I  )  ⊆  𝐷  ∧  𝐴  ∈  dom  ( 𝑃  ∖   I  ) )  →  ( 𝑄 ‘ 𝐴 )  ∈  ( 𝑄  “  dom  ( 𝑃  ∖   I  ) ) ) | 
						
							| 164 | 158 78 5 163 | syl3anc | ⊢ ( 𝜑  →  ( 𝑄 ‘ 𝐴 )  ∈  ( 𝑄  “  dom  ( 𝑃  ∖   I  ) ) ) | 
						
							| 165 | 164 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  dom  ( 𝑄  ∖   I  ) )  →  ( 𝑄 ‘ 𝐴 )  ∈  ( 𝑄  “  dom  ( 𝑃  ∖   I  ) ) ) | 
						
							| 166 | 162 165 | eqeltrrd | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  dom  ( 𝑄  ∖   I  ) )  →  𝐴  ∈  ( 𝑄  “  dom  ( 𝑃  ∖   I  ) ) ) | 
						
							| 167 | 145 | difeq1d | ⊢ ( 𝜑  →  ( ( 𝑄  ∘  ( 𝑃  ∘  𝑄 ) )  ∖   I  )  =  ( ( ( 𝑄  ∘  𝑃 )  ∘  ◡ 𝑄 )  ∖   I  ) ) | 
						
							| 168 | 167 | dmeqd | ⊢ ( 𝜑  →  dom  ( ( 𝑄  ∘  ( 𝑃  ∘  𝑄 ) )  ∖   I  )  =  dom  ( ( ( 𝑄  ∘  𝑃 )  ∘  ◡ 𝑄 )  ∖   I  ) ) | 
						
							| 169 |  | f1omvdconj | ⊢ ( ( 𝑃 : 𝐷 ⟶ 𝐷  ∧  𝑄 : 𝐷 –1-1-onto→ 𝐷 )  →  dom  ( ( ( 𝑄  ∘  𝑃 )  ∘  ◡ 𝑄 )  ∖   I  )  =  ( 𝑄  “  dom  ( 𝑃  ∖   I  ) ) ) | 
						
							| 170 | 31 33 169 | syl2anc | ⊢ ( 𝜑  →  dom  ( ( ( 𝑄  ∘  𝑃 )  ∘  ◡ 𝑄 )  ∖   I  )  =  ( 𝑄  “  dom  ( 𝑃  ∖   I  ) ) ) | 
						
							| 171 | 168 170 | eqtrd | ⊢ ( 𝜑  →  dom  ( ( 𝑄  ∘  ( 𝑃  ∘  𝑄 ) )  ∖   I  )  =  ( 𝑄  “  dom  ( 𝑃  ∖   I  ) ) ) | 
						
							| 172 | 171 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  dom  ( 𝑄  ∖   I  ) )  →  dom  ( ( 𝑄  ∘  ( 𝑃  ∘  𝑄 ) )  ∖   I  )  =  ( 𝑄  “  dom  ( 𝑃  ∖   I  ) ) ) | 
						
							| 173 | 166 172 | eleqtrrd | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  dom  ( 𝑄  ∖   I  ) )  →  𝐴  ∈  dom  ( ( 𝑄  ∘  ( 𝑃  ∘  𝑄 ) )  ∖   I  ) ) | 
						
							| 174 |  | simpr | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  dom  ( 𝑄  ∖   I  ) )  →  ¬  𝐴  ∈  dom  ( 𝑄  ∖   I  ) ) | 
						
							| 175 |  | coeq1 | ⊢ ( 𝑟  =  𝑄  →  ( 𝑟  ∘  𝑠 )  =  ( 𝑄  ∘  𝑠 ) ) | 
						
							| 176 | 175 | eqeq2d | ⊢ ( 𝑟  =  𝑄  →  ( ( 𝑃  ∘  𝑄 )  =  ( 𝑟  ∘  𝑠 )  ↔  ( 𝑃  ∘  𝑄 )  =  ( 𝑄  ∘  𝑠 ) ) ) | 
						
							| 177 |  | difeq1 | ⊢ ( 𝑟  =  𝑄  →  ( 𝑟  ∖   I  )  =  ( 𝑄  ∖   I  ) ) | 
						
							| 178 | 177 | dmeqd | ⊢ ( 𝑟  =  𝑄  →  dom  ( 𝑟  ∖   I  )  =  dom  ( 𝑄  ∖   I  ) ) | 
						
							| 179 | 178 | eleq2d | ⊢ ( 𝑟  =  𝑄  →  ( 𝐴  ∈  dom  ( 𝑟  ∖   I  )  ↔  𝐴  ∈  dom  ( 𝑄  ∖   I  ) ) ) | 
						
							| 180 | 179 | notbid | ⊢ ( 𝑟  =  𝑄  →  ( ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  )  ↔  ¬  𝐴  ∈  dom  ( 𝑄  ∖   I  ) ) ) | 
						
							| 181 | 176 180 | 3anbi13d | ⊢ ( 𝑟  =  𝑄  →  ( ( ( 𝑃  ∘  𝑄 )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) )  ↔  ( ( 𝑃  ∘  𝑄 )  =  ( 𝑄  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑄  ∖   I  ) ) ) ) | 
						
							| 182 |  | coeq2 | ⊢ ( 𝑠  =  ( 𝑄  ∘  ( 𝑃  ∘  𝑄 ) )  →  ( 𝑄  ∘  𝑠 )  =  ( 𝑄  ∘  ( 𝑄  ∘  ( 𝑃  ∘  𝑄 ) ) ) ) | 
						
							| 183 | 182 | eqeq2d | ⊢ ( 𝑠  =  ( 𝑄  ∘  ( 𝑃  ∘  𝑄 ) )  →  ( ( 𝑃  ∘  𝑄 )  =  ( 𝑄  ∘  𝑠 )  ↔  ( 𝑃  ∘  𝑄 )  =  ( 𝑄  ∘  ( 𝑄  ∘  ( 𝑃  ∘  𝑄 ) ) ) ) ) | 
						
							| 184 |  | difeq1 | ⊢ ( 𝑠  =  ( 𝑄  ∘  ( 𝑃  ∘  𝑄 ) )  →  ( 𝑠  ∖   I  )  =  ( ( 𝑄  ∘  ( 𝑃  ∘  𝑄 ) )  ∖   I  ) ) | 
						
							| 185 | 184 | dmeqd | ⊢ ( 𝑠  =  ( 𝑄  ∘  ( 𝑃  ∘  𝑄 ) )  →  dom  ( 𝑠  ∖   I  )  =  dom  ( ( 𝑄  ∘  ( 𝑃  ∘  𝑄 ) )  ∖   I  ) ) | 
						
							| 186 | 185 | eleq2d | ⊢ ( 𝑠  =  ( 𝑄  ∘  ( 𝑃  ∘  𝑄 ) )  →  ( 𝐴  ∈  dom  ( 𝑠  ∖   I  )  ↔  𝐴  ∈  dom  ( ( 𝑄  ∘  ( 𝑃  ∘  𝑄 ) )  ∖   I  ) ) ) | 
						
							| 187 | 183 186 | 3anbi12d | ⊢ ( 𝑠  =  ( 𝑄  ∘  ( 𝑃  ∘  𝑄 ) )  →  ( ( ( 𝑃  ∘  𝑄 )  =  ( 𝑄  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑄  ∖   I  ) )  ↔  ( ( 𝑃  ∘  𝑄 )  =  ( 𝑄  ∘  ( 𝑄  ∘  ( 𝑃  ∘  𝑄 ) ) )  ∧  𝐴  ∈  dom  ( ( 𝑄  ∘  ( 𝑃  ∘  𝑄 ) )  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑄  ∖   I  ) ) ) ) | 
						
							| 188 | 181 187 | rspc2ev | ⊢ ( ( 𝑄  ∈  𝑇  ∧  ( 𝑄  ∘  ( 𝑃  ∘  𝑄 ) )  ∈  𝑇  ∧  ( ( 𝑃  ∘  𝑄 )  =  ( 𝑄  ∘  ( 𝑄  ∘  ( 𝑃  ∘  𝑄 ) ) )  ∧  𝐴  ∈  dom  ( ( 𝑄  ∘  ( 𝑃  ∘  𝑄 ) )  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑄  ∖   I  ) ) )  →  ∃ 𝑟  ∈  𝑇 ∃ 𝑠  ∈  𝑇 ( ( 𝑃  ∘  𝑄 )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) | 
						
							| 189 | 139 149 156 173 174 188 | syl113anc | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  dom  ( 𝑄  ∖   I  ) )  →  ∃ 𝑟  ∈  𝑇 ∃ 𝑠  ∈  𝑇 ( ( 𝑃  ∘  𝑄 )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) | 
						
							| 190 | 189 | olcd | ⊢ ( ( 𝜑  ∧  ¬  𝐴  ∈  dom  ( 𝑄  ∖   I  ) )  →  ( ( 𝑃  ∘  𝑄 )  =  (  I   ↾  𝐷 )  ∨  ∃ 𝑟  ∈  𝑇 ∃ 𝑠  ∈  𝑇 ( ( 𝑃  ∘  𝑄 )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) ) | 
						
							| 191 | 138 190 | pm2.61dan | ⊢ ( 𝜑  →  ( ( 𝑃  ∘  𝑄 )  =  (  I   ↾  𝐷 )  ∨  ∃ 𝑟  ∈  𝑇 ∃ 𝑠  ∈  𝑇 ( ( 𝑃  ∘  𝑄 )  =  ( 𝑟  ∘  𝑠 )  ∧  𝐴  ∈  dom  ( 𝑠  ∖   I  )  ∧  ¬  𝐴  ∈  dom  ( 𝑟  ∖   I  ) ) ) ) |