| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psgnunilem1.t |
⊢ 𝑇 = ran ( pmTrsp ‘ 𝐷 ) |
| 2 |
|
psgnunilem1.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 3 |
|
psgnunilem1.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝑇 ) |
| 4 |
|
psgnunilem1.q |
⊢ ( 𝜑 → 𝑄 ∈ 𝑇 ) |
| 5 |
|
psgnunilem1.a |
⊢ ( 𝜑 → 𝐴 ∈ dom ( 𝑃 ∖ I ) ) |
| 6 |
|
eqid |
⊢ ( pmTrsp ‘ 𝐷 ) = ( pmTrsp ‘ 𝐷 ) |
| 7 |
6 1
|
pmtrfinv |
⊢ ( 𝑄 ∈ 𝑇 → ( 𝑄 ∘ 𝑄 ) = ( I ↾ 𝐷 ) ) |
| 8 |
4 7
|
syl |
⊢ ( 𝜑 → ( 𝑄 ∘ 𝑄 ) = ( I ↾ 𝐷 ) ) |
| 9 |
|
coeq1 |
⊢ ( 𝑃 = 𝑄 → ( 𝑃 ∘ 𝑄 ) = ( 𝑄 ∘ 𝑄 ) ) |
| 10 |
9
|
eqeq1d |
⊢ ( 𝑃 = 𝑄 → ( ( 𝑃 ∘ 𝑄 ) = ( I ↾ 𝐷 ) ↔ ( 𝑄 ∘ 𝑄 ) = ( I ↾ 𝐷 ) ) ) |
| 11 |
8 10
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑃 = 𝑄 → ( 𝑃 ∘ 𝑄 ) = ( I ↾ 𝐷 ) ) ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) → ( 𝑃 = 𝑄 → ( 𝑃 ∘ 𝑄 ) = ( I ↾ 𝐷 ) ) ) |
| 13 |
12
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ∧ 𝑃 = 𝑄 ) → ( 𝑃 ∘ 𝑄 ) = ( I ↾ 𝐷 ) ) |
| 14 |
13
|
orcd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ∧ 𝑃 = 𝑄 ) → ( ( 𝑃 ∘ 𝑄 ) = ( I ↾ 𝐷 ) ∨ ∃ 𝑟 ∈ 𝑇 ∃ 𝑠 ∈ 𝑇 ( ( 𝑃 ∘ 𝑄 ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) |
| 15 |
6 1
|
pmtrfcnv |
⊢ ( 𝑃 ∈ 𝑇 → ◡ 𝑃 = 𝑃 ) |
| 16 |
3 15
|
syl |
⊢ ( 𝜑 → ◡ 𝑃 = 𝑃 ) |
| 17 |
16
|
eqcomd |
⊢ ( 𝜑 → 𝑃 = ◡ 𝑃 ) |
| 18 |
17
|
coeq2d |
⊢ ( 𝜑 → ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) = ( ( 𝑃 ∘ 𝑄 ) ∘ ◡ 𝑃 ) ) |
| 19 |
6 1
|
pmtrff1o |
⊢ ( 𝑃 ∈ 𝑇 → 𝑃 : 𝐷 –1-1-onto→ 𝐷 ) |
| 20 |
3 19
|
syl |
⊢ ( 𝜑 → 𝑃 : 𝐷 –1-1-onto→ 𝐷 ) |
| 21 |
6 1
|
pmtrfconj |
⊢ ( ( 𝑄 ∈ 𝑇 ∧ 𝑃 : 𝐷 –1-1-onto→ 𝐷 ) → ( ( 𝑃 ∘ 𝑄 ) ∘ ◡ 𝑃 ) ∈ 𝑇 ) |
| 22 |
4 20 21
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑃 ∘ 𝑄 ) ∘ ◡ 𝑃 ) ∈ 𝑇 ) |
| 23 |
18 22
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∈ 𝑇 ) |
| 24 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ∧ 𝑃 ≠ 𝑄 ) → ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∈ 𝑇 ) |
| 25 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ∧ 𝑃 ≠ 𝑄 ) → 𝑃 ∈ 𝑇 ) |
| 26 |
|
coass |
⊢ ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∘ 𝑃 ) = ( ( 𝑃 ∘ 𝑄 ) ∘ ( 𝑃 ∘ 𝑃 ) ) |
| 27 |
6 1
|
pmtrfinv |
⊢ ( 𝑃 ∈ 𝑇 → ( 𝑃 ∘ 𝑃 ) = ( I ↾ 𝐷 ) ) |
| 28 |
3 27
|
syl |
⊢ ( 𝜑 → ( 𝑃 ∘ 𝑃 ) = ( I ↾ 𝐷 ) ) |
| 29 |
28
|
coeq2d |
⊢ ( 𝜑 → ( ( 𝑃 ∘ 𝑄 ) ∘ ( 𝑃 ∘ 𝑃 ) ) = ( ( 𝑃 ∘ 𝑄 ) ∘ ( I ↾ 𝐷 ) ) ) |
| 30 |
|
f1of |
⊢ ( 𝑃 : 𝐷 –1-1-onto→ 𝐷 → 𝑃 : 𝐷 ⟶ 𝐷 ) |
| 31 |
20 30
|
syl |
⊢ ( 𝜑 → 𝑃 : 𝐷 ⟶ 𝐷 ) |
| 32 |
6 1
|
pmtrff1o |
⊢ ( 𝑄 ∈ 𝑇 → 𝑄 : 𝐷 –1-1-onto→ 𝐷 ) |
| 33 |
4 32
|
syl |
⊢ ( 𝜑 → 𝑄 : 𝐷 –1-1-onto→ 𝐷 ) |
| 34 |
|
f1of |
⊢ ( 𝑄 : 𝐷 –1-1-onto→ 𝐷 → 𝑄 : 𝐷 ⟶ 𝐷 ) |
| 35 |
33 34
|
syl |
⊢ ( 𝜑 → 𝑄 : 𝐷 ⟶ 𝐷 ) |
| 36 |
|
fco |
⊢ ( ( 𝑃 : 𝐷 ⟶ 𝐷 ∧ 𝑄 : 𝐷 ⟶ 𝐷 ) → ( 𝑃 ∘ 𝑄 ) : 𝐷 ⟶ 𝐷 ) |
| 37 |
31 35 36
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ∘ 𝑄 ) : 𝐷 ⟶ 𝐷 ) |
| 38 |
|
fcoi1 |
⊢ ( ( 𝑃 ∘ 𝑄 ) : 𝐷 ⟶ 𝐷 → ( ( 𝑃 ∘ 𝑄 ) ∘ ( I ↾ 𝐷 ) ) = ( 𝑃 ∘ 𝑄 ) ) |
| 39 |
37 38
|
syl |
⊢ ( 𝜑 → ( ( 𝑃 ∘ 𝑄 ) ∘ ( I ↾ 𝐷 ) ) = ( 𝑃 ∘ 𝑄 ) ) |
| 40 |
29 39
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑃 ∘ 𝑄 ) ∘ ( 𝑃 ∘ 𝑃 ) ) = ( 𝑃 ∘ 𝑄 ) ) |
| 41 |
26 40
|
eqtr2id |
⊢ ( 𝜑 → ( 𝑃 ∘ 𝑄 ) = ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∘ 𝑃 ) ) |
| 42 |
41
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝑃 ∘ 𝑄 ) = ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∘ 𝑃 ) ) |
| 43 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ∧ 𝑃 ≠ 𝑄 ) → 𝐴 ∈ dom ( 𝑃 ∖ I ) ) |
| 44 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → 𝑃 : 𝐷 –1-1-onto→ 𝐷 ) |
| 45 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → 𝑄 : 𝐷 –1-1-onto→ 𝐷 ) |
| 46 |
6 1
|
pmtrfb |
⊢ ( 𝑃 ∈ 𝑇 ↔ ( 𝐷 ∈ V ∧ 𝑃 : 𝐷 –1-1-onto→ 𝐷 ∧ dom ( 𝑃 ∖ I ) ≈ 2o ) ) |
| 47 |
46
|
simp3bi |
⊢ ( 𝑃 ∈ 𝑇 → dom ( 𝑃 ∖ I ) ≈ 2o ) |
| 48 |
3 47
|
syl |
⊢ ( 𝜑 → dom ( 𝑃 ∖ I ) ≈ 2o ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → dom ( 𝑃 ∖ I ) ≈ 2o ) |
| 50 |
|
2onn |
⊢ 2o ∈ ω |
| 51 |
|
nnfi |
⊢ ( 2o ∈ ω → 2o ∈ Fin ) |
| 52 |
50 51
|
ax-mp |
⊢ 2o ∈ Fin |
| 53 |
6 1
|
pmtrfb |
⊢ ( 𝑄 ∈ 𝑇 ↔ ( 𝐷 ∈ V ∧ 𝑄 : 𝐷 –1-1-onto→ 𝐷 ∧ dom ( 𝑄 ∖ I ) ≈ 2o ) ) |
| 54 |
53
|
simp3bi |
⊢ ( 𝑄 ∈ 𝑇 → dom ( 𝑄 ∖ I ) ≈ 2o ) |
| 55 |
4 54
|
syl |
⊢ ( 𝜑 → dom ( 𝑄 ∖ I ) ≈ 2o ) |
| 56 |
|
enfi |
⊢ ( dom ( 𝑄 ∖ I ) ≈ 2o → ( dom ( 𝑄 ∖ I ) ∈ Fin ↔ 2o ∈ Fin ) ) |
| 57 |
55 56
|
syl |
⊢ ( 𝜑 → ( dom ( 𝑄 ∖ I ) ∈ Fin ↔ 2o ∈ Fin ) ) |
| 58 |
52 57
|
mpbiri |
⊢ ( 𝜑 → dom ( 𝑄 ∖ I ) ∈ Fin ) |
| 59 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → dom ( 𝑄 ∖ I ) ∈ Fin ) |
| 60 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → 𝐴 ∈ dom ( 𝑃 ∖ I ) ) |
| 61 |
|
en2eleq |
⊢ ( ( 𝐴 ∈ dom ( 𝑃 ∖ I ) ∧ dom ( 𝑃 ∖ I ) ≈ 2o ) → dom ( 𝑃 ∖ I ) = { 𝐴 , ∪ ( dom ( 𝑃 ∖ I ) ∖ { 𝐴 } ) } ) |
| 62 |
60 49 61
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → dom ( 𝑃 ∖ I ) = { 𝐴 , ∪ ( dom ( 𝑃 ∖ I ) ∖ { 𝐴 } ) } ) |
| 63 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → 𝐴 ∈ dom ( 𝑄 ∖ I ) ) |
| 64 |
|
f1ofn |
⊢ ( 𝑃 : 𝐷 –1-1-onto→ 𝐷 → 𝑃 Fn 𝐷 ) |
| 65 |
20 64
|
syl |
⊢ ( 𝜑 → 𝑃 Fn 𝐷 ) |
| 66 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → 𝑃 Fn 𝐷 ) |
| 67 |
|
fimass |
⊢ ( 𝑃 : 𝐷 ⟶ 𝐷 → ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ⊆ 𝐷 ) |
| 68 |
31 67
|
syl |
⊢ ( 𝜑 → ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ⊆ 𝐷 ) |
| 69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ⊆ 𝐷 ) |
| 70 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) |
| 71 |
|
fnfvima |
⊢ ( ( 𝑃 Fn 𝐷 ∧ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ⊆ 𝐷 ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) → ( 𝑃 ‘ 𝐴 ) ∈ ( 𝑃 “ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) |
| 72 |
66 69 70 71
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → ( 𝑃 ‘ 𝐴 ) ∈ ( 𝑃 “ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) |
| 73 |
|
difss |
⊢ ( 𝑃 ∖ I ) ⊆ 𝑃 |
| 74 |
|
dmss |
⊢ ( ( 𝑃 ∖ I ) ⊆ 𝑃 → dom ( 𝑃 ∖ I ) ⊆ dom 𝑃 ) |
| 75 |
73 74
|
ax-mp |
⊢ dom ( 𝑃 ∖ I ) ⊆ dom 𝑃 |
| 76 |
|
f1odm |
⊢ ( 𝑃 : 𝐷 –1-1-onto→ 𝐷 → dom 𝑃 = 𝐷 ) |
| 77 |
20 76
|
syl |
⊢ ( 𝜑 → dom 𝑃 = 𝐷 ) |
| 78 |
75 77
|
sseqtrid |
⊢ ( 𝜑 → dom ( 𝑃 ∖ I ) ⊆ 𝐷 ) |
| 79 |
78 5
|
sseldd |
⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) |
| 80 |
|
eqid |
⊢ dom ( 𝑃 ∖ I ) = dom ( 𝑃 ∖ I ) |
| 81 |
6 1 80
|
pmtrffv |
⊢ ( ( 𝑃 ∈ 𝑇 ∧ 𝐴 ∈ 𝐷 ) → ( 𝑃 ‘ 𝐴 ) = if ( 𝐴 ∈ dom ( 𝑃 ∖ I ) , ∪ ( dom ( 𝑃 ∖ I ) ∖ { 𝐴 } ) , 𝐴 ) ) |
| 82 |
3 79 81
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝐴 ) = if ( 𝐴 ∈ dom ( 𝑃 ∖ I ) , ∪ ( dom ( 𝑃 ∖ I ) ∖ { 𝐴 } ) , 𝐴 ) ) |
| 83 |
5
|
iftrued |
⊢ ( 𝜑 → if ( 𝐴 ∈ dom ( 𝑃 ∖ I ) , ∪ ( dom ( 𝑃 ∖ I ) ∖ { 𝐴 } ) , 𝐴 ) = ∪ ( dom ( 𝑃 ∖ I ) ∖ { 𝐴 } ) ) |
| 84 |
82 83
|
eqtrd |
⊢ ( 𝜑 → ( 𝑃 ‘ 𝐴 ) = ∪ ( dom ( 𝑃 ∖ I ) ∖ { 𝐴 } ) ) |
| 85 |
84
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → ( 𝑃 ‘ 𝐴 ) = ∪ ( dom ( 𝑃 ∖ I ) ∖ { 𝐴 } ) ) |
| 86 |
|
imaco |
⊢ ( ( 𝑃 ∘ 𝑃 ) “ dom ( 𝑄 ∖ I ) ) = ( 𝑃 “ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) |
| 87 |
28
|
imaeq1d |
⊢ ( 𝜑 → ( ( 𝑃 ∘ 𝑃 ) “ dom ( 𝑄 ∖ I ) ) = ( ( I ↾ 𝐷 ) “ dom ( 𝑄 ∖ I ) ) ) |
| 88 |
|
difss |
⊢ ( 𝑄 ∖ I ) ⊆ 𝑄 |
| 89 |
|
dmss |
⊢ ( ( 𝑄 ∖ I ) ⊆ 𝑄 → dom ( 𝑄 ∖ I ) ⊆ dom 𝑄 ) |
| 90 |
88 89
|
ax-mp |
⊢ dom ( 𝑄 ∖ I ) ⊆ dom 𝑄 |
| 91 |
|
f1odm |
⊢ ( 𝑄 : 𝐷 –1-1-onto→ 𝐷 → dom 𝑄 = 𝐷 ) |
| 92 |
90 91
|
sseqtrid |
⊢ ( 𝑄 : 𝐷 –1-1-onto→ 𝐷 → dom ( 𝑄 ∖ I ) ⊆ 𝐷 ) |
| 93 |
33 92
|
syl |
⊢ ( 𝜑 → dom ( 𝑄 ∖ I ) ⊆ 𝐷 ) |
| 94 |
|
resiima |
⊢ ( dom ( 𝑄 ∖ I ) ⊆ 𝐷 → ( ( I ↾ 𝐷 ) “ dom ( 𝑄 ∖ I ) ) = dom ( 𝑄 ∖ I ) ) |
| 95 |
93 94
|
syl |
⊢ ( 𝜑 → ( ( I ↾ 𝐷 ) “ dom ( 𝑄 ∖ I ) ) = dom ( 𝑄 ∖ I ) ) |
| 96 |
87 95
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑃 ∘ 𝑃 ) “ dom ( 𝑄 ∖ I ) ) = dom ( 𝑄 ∖ I ) ) |
| 97 |
86 96
|
eqtr3id |
⊢ ( 𝜑 → ( 𝑃 “ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) = dom ( 𝑄 ∖ I ) ) |
| 98 |
97
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → ( 𝑃 “ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) = dom ( 𝑄 ∖ I ) ) |
| 99 |
72 85 98
|
3eltr3d |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → ∪ ( dom ( 𝑃 ∖ I ) ∖ { 𝐴 } ) ∈ dom ( 𝑄 ∖ I ) ) |
| 100 |
63 99
|
prssd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → { 𝐴 , ∪ ( dom ( 𝑃 ∖ I ) ∖ { 𝐴 } ) } ⊆ dom ( 𝑄 ∖ I ) ) |
| 101 |
62 100
|
eqsstrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → dom ( 𝑃 ∖ I ) ⊆ dom ( 𝑄 ∖ I ) ) |
| 102 |
55
|
ensymd |
⊢ ( 𝜑 → 2o ≈ dom ( 𝑄 ∖ I ) ) |
| 103 |
|
entr |
⊢ ( ( dom ( 𝑃 ∖ I ) ≈ 2o ∧ 2o ≈ dom ( 𝑄 ∖ I ) ) → dom ( 𝑃 ∖ I ) ≈ dom ( 𝑄 ∖ I ) ) |
| 104 |
48 102 103
|
syl2anc |
⊢ ( 𝜑 → dom ( 𝑃 ∖ I ) ≈ dom ( 𝑄 ∖ I ) ) |
| 105 |
104
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → dom ( 𝑃 ∖ I ) ≈ dom ( 𝑄 ∖ I ) ) |
| 106 |
|
fisseneq |
⊢ ( ( dom ( 𝑄 ∖ I ) ∈ Fin ∧ dom ( 𝑃 ∖ I ) ⊆ dom ( 𝑄 ∖ I ) ∧ dom ( 𝑃 ∖ I ) ≈ dom ( 𝑄 ∖ I ) ) → dom ( 𝑃 ∖ I ) = dom ( 𝑄 ∖ I ) ) |
| 107 |
59 101 105 106
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → dom ( 𝑃 ∖ I ) = dom ( 𝑄 ∖ I ) ) |
| 108 |
107
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → dom ( 𝑄 ∖ I ) = dom ( 𝑃 ∖ I ) ) |
| 109 |
|
f1otrspeq |
⊢ ( ( ( 𝑃 : 𝐷 –1-1-onto→ 𝐷 ∧ 𝑄 : 𝐷 –1-1-onto→ 𝐷 ) ∧ ( dom ( 𝑃 ∖ I ) ≈ 2o ∧ dom ( 𝑄 ∖ I ) = dom ( 𝑃 ∖ I ) ) ) → 𝑃 = 𝑄 ) |
| 110 |
44 45 49 108 109
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ∧ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) → 𝑃 = 𝑄 ) |
| 111 |
110
|
expr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) → ( 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) → 𝑃 = 𝑄 ) ) |
| 112 |
111
|
necon3ad |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) → ( 𝑃 ≠ 𝑄 → ¬ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) |
| 113 |
112
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ∧ 𝑃 ≠ 𝑄 ) → ¬ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) |
| 114 |
18
|
difeq1d |
⊢ ( 𝜑 → ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∖ I ) = ( ( ( 𝑃 ∘ 𝑄 ) ∘ ◡ 𝑃 ) ∖ I ) ) |
| 115 |
114
|
dmeqd |
⊢ ( 𝜑 → dom ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∖ I ) = dom ( ( ( 𝑃 ∘ 𝑄 ) ∘ ◡ 𝑃 ) ∖ I ) ) |
| 116 |
|
f1omvdconj |
⊢ ( ( 𝑄 : 𝐷 ⟶ 𝐷 ∧ 𝑃 : 𝐷 –1-1-onto→ 𝐷 ) → dom ( ( ( 𝑃 ∘ 𝑄 ) ∘ ◡ 𝑃 ) ∖ I ) = ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) |
| 117 |
35 20 116
|
syl2anc |
⊢ ( 𝜑 → dom ( ( ( 𝑃 ∘ 𝑄 ) ∘ ◡ 𝑃 ) ∖ I ) = ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) |
| 118 |
115 117
|
eqtrd |
⊢ ( 𝜑 → dom ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∖ I ) = ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) |
| 119 |
118
|
eleq2d |
⊢ ( 𝜑 → ( 𝐴 ∈ dom ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∖ I ) ↔ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) |
| 120 |
119
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝐴 ∈ dom ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∖ I ) ↔ 𝐴 ∈ ( 𝑃 “ dom ( 𝑄 ∖ I ) ) ) ) |
| 121 |
113 120
|
mtbird |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ∧ 𝑃 ≠ 𝑄 ) → ¬ 𝐴 ∈ dom ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∖ I ) ) |
| 122 |
|
coeq1 |
⊢ ( 𝑟 = ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) → ( 𝑟 ∘ 𝑠 ) = ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∘ 𝑠 ) ) |
| 123 |
122
|
eqeq2d |
⊢ ( 𝑟 = ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) → ( ( 𝑃 ∘ 𝑄 ) = ( 𝑟 ∘ 𝑠 ) ↔ ( 𝑃 ∘ 𝑄 ) = ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∘ 𝑠 ) ) ) |
| 124 |
|
difeq1 |
⊢ ( 𝑟 = ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) → ( 𝑟 ∖ I ) = ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∖ I ) ) |
| 125 |
124
|
dmeqd |
⊢ ( 𝑟 = ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) → dom ( 𝑟 ∖ I ) = dom ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∖ I ) ) |
| 126 |
125
|
eleq2d |
⊢ ( 𝑟 = ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) → ( 𝐴 ∈ dom ( 𝑟 ∖ I ) ↔ 𝐴 ∈ dom ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∖ I ) ) ) |
| 127 |
126
|
notbid |
⊢ ( 𝑟 = ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) → ( ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ↔ ¬ 𝐴 ∈ dom ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∖ I ) ) ) |
| 128 |
123 127
|
3anbi13d |
⊢ ( 𝑟 = ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) → ( ( ( 𝑃 ∘ 𝑄 ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ↔ ( ( 𝑃 ∘ 𝑄 ) = ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∖ I ) ) ) ) |
| 129 |
|
coeq2 |
⊢ ( 𝑠 = 𝑃 → ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∘ 𝑠 ) = ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∘ 𝑃 ) ) |
| 130 |
129
|
eqeq2d |
⊢ ( 𝑠 = 𝑃 → ( ( 𝑃 ∘ 𝑄 ) = ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∘ 𝑠 ) ↔ ( 𝑃 ∘ 𝑄 ) = ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∘ 𝑃 ) ) ) |
| 131 |
|
difeq1 |
⊢ ( 𝑠 = 𝑃 → ( 𝑠 ∖ I ) = ( 𝑃 ∖ I ) ) |
| 132 |
131
|
dmeqd |
⊢ ( 𝑠 = 𝑃 → dom ( 𝑠 ∖ I ) = dom ( 𝑃 ∖ I ) ) |
| 133 |
132
|
eleq2d |
⊢ ( 𝑠 = 𝑃 → ( 𝐴 ∈ dom ( 𝑠 ∖ I ) ↔ 𝐴 ∈ dom ( 𝑃 ∖ I ) ) ) |
| 134 |
130 133
|
3anbi12d |
⊢ ( 𝑠 = 𝑃 → ( ( ( 𝑃 ∘ 𝑄 ) = ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∖ I ) ) ↔ ( ( 𝑃 ∘ 𝑄 ) = ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∘ 𝑃 ) ∧ 𝐴 ∈ dom ( 𝑃 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∖ I ) ) ) ) |
| 135 |
128 134
|
rspc2ev |
⊢ ( ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∈ 𝑇 ∧ 𝑃 ∈ 𝑇 ∧ ( ( 𝑃 ∘ 𝑄 ) = ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∘ 𝑃 ) ∧ 𝐴 ∈ dom ( 𝑃 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( ( ( 𝑃 ∘ 𝑄 ) ∘ 𝑃 ) ∖ I ) ) ) → ∃ 𝑟 ∈ 𝑇 ∃ 𝑠 ∈ 𝑇 ( ( 𝑃 ∘ 𝑄 ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) |
| 136 |
24 25 42 43 121 135
|
syl113anc |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ∧ 𝑃 ≠ 𝑄 ) → ∃ 𝑟 ∈ 𝑇 ∃ 𝑠 ∈ 𝑇 ( ( 𝑃 ∘ 𝑄 ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) |
| 137 |
136
|
olcd |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ∧ 𝑃 ≠ 𝑄 ) → ( ( 𝑃 ∘ 𝑄 ) = ( I ↾ 𝐷 ) ∨ ∃ 𝑟 ∈ 𝑇 ∃ 𝑠 ∈ 𝑇 ( ( 𝑃 ∘ 𝑄 ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) |
| 138 |
14 137
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) → ( ( 𝑃 ∘ 𝑄 ) = ( I ↾ 𝐷 ) ∨ ∃ 𝑟 ∈ 𝑇 ∃ 𝑠 ∈ 𝑇 ( ( 𝑃 ∘ 𝑄 ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) |
| 139 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) → 𝑄 ∈ 𝑇 ) |
| 140 |
|
coass |
⊢ ( ( 𝑄 ∘ 𝑃 ) ∘ 𝑄 ) = ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) |
| 141 |
6 1
|
pmtrfcnv |
⊢ ( 𝑄 ∈ 𝑇 → ◡ 𝑄 = 𝑄 ) |
| 142 |
4 141
|
syl |
⊢ ( 𝜑 → ◡ 𝑄 = 𝑄 ) |
| 143 |
142
|
eqcomd |
⊢ ( 𝜑 → 𝑄 = ◡ 𝑄 ) |
| 144 |
143
|
coeq2d |
⊢ ( 𝜑 → ( ( 𝑄 ∘ 𝑃 ) ∘ 𝑄 ) = ( ( 𝑄 ∘ 𝑃 ) ∘ ◡ 𝑄 ) ) |
| 145 |
140 144
|
eqtr3id |
⊢ ( 𝜑 → ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) = ( ( 𝑄 ∘ 𝑃 ) ∘ ◡ 𝑄 ) ) |
| 146 |
6 1
|
pmtrfconj |
⊢ ( ( 𝑃 ∈ 𝑇 ∧ 𝑄 : 𝐷 –1-1-onto→ 𝐷 ) → ( ( 𝑄 ∘ 𝑃 ) ∘ ◡ 𝑄 ) ∈ 𝑇 ) |
| 147 |
3 33 146
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑄 ∘ 𝑃 ) ∘ ◡ 𝑄 ) ∈ 𝑇 ) |
| 148 |
145 147
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ∈ 𝑇 ) |
| 149 |
148
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) → ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ∈ 𝑇 ) |
| 150 |
8
|
coeq1d |
⊢ ( 𝜑 → ( ( 𝑄 ∘ 𝑄 ) ∘ ( 𝑃 ∘ 𝑄 ) ) = ( ( I ↾ 𝐷 ) ∘ ( 𝑃 ∘ 𝑄 ) ) ) |
| 151 |
|
fcoi2 |
⊢ ( ( 𝑃 ∘ 𝑄 ) : 𝐷 ⟶ 𝐷 → ( ( I ↾ 𝐷 ) ∘ ( 𝑃 ∘ 𝑄 ) ) = ( 𝑃 ∘ 𝑄 ) ) |
| 152 |
37 151
|
syl |
⊢ ( 𝜑 → ( ( I ↾ 𝐷 ) ∘ ( 𝑃 ∘ 𝑄 ) ) = ( 𝑃 ∘ 𝑄 ) ) |
| 153 |
150 152
|
eqtr2d |
⊢ ( 𝜑 → ( 𝑃 ∘ 𝑄 ) = ( ( 𝑄 ∘ 𝑄 ) ∘ ( 𝑃 ∘ 𝑄 ) ) ) |
| 154 |
|
coass |
⊢ ( ( 𝑄 ∘ 𝑄 ) ∘ ( 𝑃 ∘ 𝑄 ) ) = ( 𝑄 ∘ ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ) |
| 155 |
153 154
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑃 ∘ 𝑄 ) = ( 𝑄 ∘ ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ) ) |
| 156 |
155
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) → ( 𝑃 ∘ 𝑄 ) = ( 𝑄 ∘ ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ) ) |
| 157 |
|
f1ofn |
⊢ ( 𝑄 : 𝐷 –1-1-onto→ 𝐷 → 𝑄 Fn 𝐷 ) |
| 158 |
33 157
|
syl |
⊢ ( 𝜑 → 𝑄 Fn 𝐷 ) |
| 159 |
|
fnelnfp |
⊢ ( ( 𝑄 Fn 𝐷 ∧ 𝐴 ∈ 𝐷 ) → ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ↔ ( 𝑄 ‘ 𝐴 ) ≠ 𝐴 ) ) |
| 160 |
158 79 159
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ∈ dom ( 𝑄 ∖ I ) ↔ ( 𝑄 ‘ 𝐴 ) ≠ 𝐴 ) ) |
| 161 |
160
|
necon2bbid |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐴 ) = 𝐴 ↔ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ) |
| 162 |
161
|
biimpar |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) → ( 𝑄 ‘ 𝐴 ) = 𝐴 ) |
| 163 |
|
fnfvima |
⊢ ( ( 𝑄 Fn 𝐷 ∧ dom ( 𝑃 ∖ I ) ⊆ 𝐷 ∧ 𝐴 ∈ dom ( 𝑃 ∖ I ) ) → ( 𝑄 ‘ 𝐴 ) ∈ ( 𝑄 “ dom ( 𝑃 ∖ I ) ) ) |
| 164 |
158 78 5 163
|
syl3anc |
⊢ ( 𝜑 → ( 𝑄 ‘ 𝐴 ) ∈ ( 𝑄 “ dom ( 𝑃 ∖ I ) ) ) |
| 165 |
164
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) → ( 𝑄 ‘ 𝐴 ) ∈ ( 𝑄 “ dom ( 𝑃 ∖ I ) ) ) |
| 166 |
162 165
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) → 𝐴 ∈ ( 𝑄 “ dom ( 𝑃 ∖ I ) ) ) |
| 167 |
145
|
difeq1d |
⊢ ( 𝜑 → ( ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ∖ I ) = ( ( ( 𝑄 ∘ 𝑃 ) ∘ ◡ 𝑄 ) ∖ I ) ) |
| 168 |
167
|
dmeqd |
⊢ ( 𝜑 → dom ( ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ∖ I ) = dom ( ( ( 𝑄 ∘ 𝑃 ) ∘ ◡ 𝑄 ) ∖ I ) ) |
| 169 |
|
f1omvdconj |
⊢ ( ( 𝑃 : 𝐷 ⟶ 𝐷 ∧ 𝑄 : 𝐷 –1-1-onto→ 𝐷 ) → dom ( ( ( 𝑄 ∘ 𝑃 ) ∘ ◡ 𝑄 ) ∖ I ) = ( 𝑄 “ dom ( 𝑃 ∖ I ) ) ) |
| 170 |
31 33 169
|
syl2anc |
⊢ ( 𝜑 → dom ( ( ( 𝑄 ∘ 𝑃 ) ∘ ◡ 𝑄 ) ∖ I ) = ( 𝑄 “ dom ( 𝑃 ∖ I ) ) ) |
| 171 |
168 170
|
eqtrd |
⊢ ( 𝜑 → dom ( ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ∖ I ) = ( 𝑄 “ dom ( 𝑃 ∖ I ) ) ) |
| 172 |
171
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) → dom ( ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ∖ I ) = ( 𝑄 “ dom ( 𝑃 ∖ I ) ) ) |
| 173 |
166 172
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) → 𝐴 ∈ dom ( ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ∖ I ) ) |
| 174 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) → ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) |
| 175 |
|
coeq1 |
⊢ ( 𝑟 = 𝑄 → ( 𝑟 ∘ 𝑠 ) = ( 𝑄 ∘ 𝑠 ) ) |
| 176 |
175
|
eqeq2d |
⊢ ( 𝑟 = 𝑄 → ( ( 𝑃 ∘ 𝑄 ) = ( 𝑟 ∘ 𝑠 ) ↔ ( 𝑃 ∘ 𝑄 ) = ( 𝑄 ∘ 𝑠 ) ) ) |
| 177 |
|
difeq1 |
⊢ ( 𝑟 = 𝑄 → ( 𝑟 ∖ I ) = ( 𝑄 ∖ I ) ) |
| 178 |
177
|
dmeqd |
⊢ ( 𝑟 = 𝑄 → dom ( 𝑟 ∖ I ) = dom ( 𝑄 ∖ I ) ) |
| 179 |
178
|
eleq2d |
⊢ ( 𝑟 = 𝑄 → ( 𝐴 ∈ dom ( 𝑟 ∖ I ) ↔ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ) |
| 180 |
179
|
notbid |
⊢ ( 𝑟 = 𝑄 → ( ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ↔ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ) |
| 181 |
176 180
|
3anbi13d |
⊢ ( 𝑟 = 𝑄 → ( ( ( 𝑃 ∘ 𝑄 ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ↔ ( ( 𝑃 ∘ 𝑄 ) = ( 𝑄 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ) ) |
| 182 |
|
coeq2 |
⊢ ( 𝑠 = ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) → ( 𝑄 ∘ 𝑠 ) = ( 𝑄 ∘ ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ) ) |
| 183 |
182
|
eqeq2d |
⊢ ( 𝑠 = ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) → ( ( 𝑃 ∘ 𝑄 ) = ( 𝑄 ∘ 𝑠 ) ↔ ( 𝑃 ∘ 𝑄 ) = ( 𝑄 ∘ ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ) ) ) |
| 184 |
|
difeq1 |
⊢ ( 𝑠 = ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) → ( 𝑠 ∖ I ) = ( ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ∖ I ) ) |
| 185 |
184
|
dmeqd |
⊢ ( 𝑠 = ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) → dom ( 𝑠 ∖ I ) = dom ( ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ∖ I ) ) |
| 186 |
185
|
eleq2d |
⊢ ( 𝑠 = ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) → ( 𝐴 ∈ dom ( 𝑠 ∖ I ) ↔ 𝐴 ∈ dom ( ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ∖ I ) ) ) |
| 187 |
183 186
|
3anbi12d |
⊢ ( 𝑠 = ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) → ( ( ( 𝑃 ∘ 𝑄 ) = ( 𝑄 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ↔ ( ( 𝑃 ∘ 𝑄 ) = ( 𝑄 ∘ ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ) ∧ 𝐴 ∈ dom ( ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ) ) |
| 188 |
181 187
|
rspc2ev |
⊢ ( ( 𝑄 ∈ 𝑇 ∧ ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ∈ 𝑇 ∧ ( ( 𝑃 ∘ 𝑄 ) = ( 𝑄 ∘ ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ) ∧ 𝐴 ∈ dom ( ( 𝑄 ∘ ( 𝑃 ∘ 𝑄 ) ) ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) ) → ∃ 𝑟 ∈ 𝑇 ∃ 𝑠 ∈ 𝑇 ( ( 𝑃 ∘ 𝑄 ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) |
| 189 |
139 149 156 173 174 188
|
syl113anc |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) → ∃ 𝑟 ∈ 𝑇 ∃ 𝑠 ∈ 𝑇 ( ( 𝑃 ∘ 𝑄 ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) |
| 190 |
189
|
olcd |
⊢ ( ( 𝜑 ∧ ¬ 𝐴 ∈ dom ( 𝑄 ∖ I ) ) → ( ( 𝑃 ∘ 𝑄 ) = ( I ↾ 𝐷 ) ∨ ∃ 𝑟 ∈ 𝑇 ∃ 𝑠 ∈ 𝑇 ( ( 𝑃 ∘ 𝑄 ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) |
| 191 |
138 190
|
pm2.61dan |
⊢ ( 𝜑 → ( ( 𝑃 ∘ 𝑄 ) = ( I ↾ 𝐷 ) ∨ ∃ 𝑟 ∈ 𝑇 ∃ 𝑠 ∈ 𝑇 ( ( 𝑃 ∘ 𝑄 ) = ( 𝑟 ∘ 𝑠 ) ∧ 𝐴 ∈ dom ( 𝑠 ∖ I ) ∧ ¬ 𝐴 ∈ dom ( 𝑟 ∖ I ) ) ) ) |