| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ptcmp.1 |
⊢ 𝑆 = ( 𝑘 ∈ 𝐴 , 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ↦ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
| 2 |
|
ptcmp.2 |
⊢ 𝑋 = X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) |
| 3 |
|
ptcmp.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 4 |
|
ptcmp.4 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ Comp ) |
| 5 |
|
ptcmp.5 |
⊢ ( 𝜑 → 𝑋 ∈ ( UFL ∩ dom card ) ) |
| 6 |
|
ptcmplem2.5 |
⊢ ( 𝜑 → 𝑈 ⊆ ran 𝑆 ) |
| 7 |
|
ptcmplem2.6 |
⊢ ( 𝜑 → 𝑋 = ∪ 𝑈 ) |
| 8 |
|
ptcmplem2.7 |
⊢ ( 𝜑 → ¬ ∃ 𝑧 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 = ∪ 𝑧 ) |
| 9 |
|
ptcmplem3.8 |
⊢ 𝐾 = { 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∣ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ 𝑈 } |
| 10 |
1 2 3 4 5 6 7 8 9
|
ptcmplem3 |
⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) |
| 11 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → 𝑓 Fn 𝐴 ) |
| 12 |
|
eldifi |
⊢ ( ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) → ( 𝑓 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 13 |
12
|
ralimi |
⊢ ( ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) → ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 14 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑘 ) ) |
| 15 |
|
fveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 16 |
15
|
unieqd |
⊢ ( 𝑛 = 𝑘 → ∪ ( 𝐹 ‘ 𝑛 ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 17 |
14 16
|
eleq12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑓 ‘ 𝑛 ) ∈ ∪ ( 𝐹 ‘ 𝑛 ) ↔ ( 𝑓 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) ) |
| 18 |
17
|
cbvralvw |
⊢ ( ∀ 𝑛 ∈ 𝐴 ( 𝑓 ‘ 𝑛 ) ∈ ∪ ( 𝐹 ‘ 𝑛 ) ↔ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 19 |
13 18
|
sylibr |
⊢ ( ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) → ∀ 𝑛 ∈ 𝐴 ( 𝑓 ‘ 𝑛 ) ∈ ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 20 |
19
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → ∀ 𝑛 ∈ 𝐴 ( 𝑓 ‘ 𝑛 ) ∈ ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 21 |
|
vex |
⊢ 𝑓 ∈ V |
| 22 |
21
|
elixp |
⊢ ( 𝑓 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑛 ∈ 𝐴 ( 𝑓 ‘ 𝑛 ) ∈ ∪ ( 𝐹 ‘ 𝑛 ) ) ) |
| 23 |
11 20 22
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → 𝑓 ∈ X 𝑛 ∈ 𝐴 ∪ ( 𝐹 ‘ 𝑛 ) ) |
| 24 |
23 2
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → 𝑓 ∈ 𝑋 ) |
| 25 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → 𝑋 = ∪ 𝑈 ) |
| 26 |
24 25
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → 𝑓 ∈ ∪ 𝑈 ) |
| 27 |
|
eluni2 |
⊢ ( 𝑓 ∈ ∪ 𝑈 ↔ ∃ 𝑣 ∈ 𝑈 𝑓 ∈ 𝑣 ) |
| 28 |
26 27
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → ∃ 𝑣 ∈ 𝑈 𝑓 ∈ 𝑣 ) |
| 29 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → 𝑓 ∈ 𝑣 ) |
| 30 |
29
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ ( 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) → 𝑓 ∈ 𝑣 ) |
| 31 |
|
simprr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ ( 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) → 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
| 32 |
30 31
|
eleqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ ( 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) → 𝑓 ∈ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
| 33 |
|
fveq1 |
⊢ ( 𝑤 = 𝑓 → ( 𝑤 ‘ 𝑘 ) = ( 𝑓 ‘ 𝑘 ) ) |
| 34 |
33
|
eleq1d |
⊢ ( 𝑤 = 𝑓 → ( ( 𝑤 ‘ 𝑘 ) ∈ 𝑢 ↔ ( 𝑓 ‘ 𝑘 ) ∈ 𝑢 ) ) |
| 35 |
|
eqid |
⊢ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) |
| 36 |
35
|
mptpreima |
⊢ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) = { 𝑤 ∈ 𝑋 ∣ ( 𝑤 ‘ 𝑘 ) ∈ 𝑢 } |
| 37 |
34 36
|
elrab2 |
⊢ ( 𝑓 ∈ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ↔ ( 𝑓 ∈ 𝑋 ∧ ( 𝑓 ‘ 𝑘 ) ∈ 𝑢 ) ) |
| 38 |
37
|
simprbi |
⊢ ( 𝑓 ∈ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) → ( 𝑓 ‘ 𝑘 ) ∈ 𝑢 ) |
| 39 |
32 38
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ ( 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) → ( 𝑓 ‘ 𝑘 ) ∈ 𝑢 ) |
| 40 |
|
simprl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ ( 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) → 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ) |
| 41 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → 𝑣 ∈ 𝑈 ) |
| 42 |
41
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ ( 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) → 𝑣 ∈ 𝑈 ) |
| 43 |
31 42
|
eqeltrrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ ( 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) → ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ 𝑈 ) |
| 44 |
|
rabid |
⊢ ( 𝑢 ∈ { 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∣ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ 𝑈 } ↔ ( 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∧ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ 𝑈 ) ) |
| 45 |
40 43 44
|
sylanbrc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ ( 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) → 𝑢 ∈ { 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∣ ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ∈ 𝑈 } ) |
| 46 |
45 9
|
eleqtrrdi |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ ( 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) → 𝑢 ∈ 𝐾 ) |
| 47 |
|
elunii |
⊢ ( ( ( 𝑓 ‘ 𝑘 ) ∈ 𝑢 ∧ 𝑢 ∈ 𝐾 ) → ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) |
| 48 |
39 46 47
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ ( 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) ∧ 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) ) → ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) |
| 49 |
48
|
rexlimdvaa |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) ∧ ( 𝑘 ∈ 𝐴 ∧ ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → ( ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) → ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) ) |
| 50 |
49
|
expr |
⊢ ( ( ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) → ( ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) → ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) ) ) |
| 51 |
50
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) → ( ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) → ∀ 𝑘 ∈ 𝐴 ( ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) → ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) ) ) |
| 52 |
51
|
ex |
⊢ ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) → ( ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) → ( ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) → ∀ 𝑘 ∈ 𝐴 ( ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) → ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) ) ) ) |
| 53 |
52
|
com23 |
⊢ ( ( 𝜑 ∧ 𝑓 Fn 𝐴 ) → ( ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) → ( ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) → ∀ 𝑘 ∈ 𝐴 ( ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) → ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) ) ) ) |
| 54 |
53
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → ( ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) → ∀ 𝑘 ∈ 𝐴 ( ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) → ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) ) ) |
| 55 |
54
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) → ∀ 𝑘 ∈ 𝐴 ( ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) → ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) ) |
| 56 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → 𝑈 ⊆ ran 𝑆 ) |
| 57 |
56
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ 𝑣 ∈ 𝑈 ) → 𝑣 ∈ ran 𝑆 ) |
| 58 |
57
|
adantrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) → 𝑣 ∈ ran 𝑆 ) |
| 59 |
1
|
rnmpo |
⊢ ran 𝑆 = { 𝑣 ∣ ∃ 𝑘 ∈ 𝐴 ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) } |
| 60 |
58 59
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) → 𝑣 ∈ { 𝑣 ∣ ∃ 𝑘 ∈ 𝐴 ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) } ) |
| 61 |
|
abid |
⊢ ( 𝑣 ∈ { 𝑣 ∣ ∃ 𝑘 ∈ 𝐴 ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) } ↔ ∃ 𝑘 ∈ 𝐴 ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
| 62 |
60 61
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) → ∃ 𝑘 ∈ 𝐴 ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) ) |
| 63 |
|
rexim |
⊢ ( ∀ 𝑘 ∈ 𝐴 ( ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) → ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) → ( ∃ 𝑘 ∈ 𝐴 ∃ 𝑢 ∈ ( 𝐹 ‘ 𝑘 ) 𝑣 = ( ◡ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 ‘ 𝑘 ) ) “ 𝑢 ) → ∃ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) ) |
| 64 |
55 62 63
|
sylc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) ∧ ( 𝑣 ∈ 𝑈 ∧ 𝑓 ∈ 𝑣 ) ) → ∃ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) |
| 65 |
28 64
|
rexlimddv |
⊢ ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → ∃ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) |
| 66 |
|
eldifn |
⊢ ( ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) → ¬ ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) |
| 67 |
66
|
ralimi |
⊢ ( ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) → ∀ 𝑘 ∈ 𝐴 ¬ ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) |
| 68 |
67
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → ∀ 𝑘 ∈ 𝐴 ¬ ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) |
| 69 |
|
ralnex |
⊢ ( ∀ 𝑘 ∈ 𝐴 ¬ ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ↔ ¬ ∃ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) |
| 70 |
68 69
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) → ¬ ∃ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ∪ 𝐾 ) |
| 71 |
65 70
|
pm2.65da |
⊢ ( 𝜑 → ¬ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) |
| 72 |
71
|
nexdv |
⊢ ( 𝜑 → ¬ ∃ 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ ( 𝐹 ‘ 𝑘 ) ∖ ∪ 𝐾 ) ) ) |
| 73 |
10 72
|
pm2.65i |
⊢ ¬ 𝜑 |