| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ptcmp.1 |
|
| 2 |
|
ptcmp.2 |
|
| 3 |
|
ptcmp.3 |
|
| 4 |
|
ptcmp.4 |
|
| 5 |
|
ptcmp.5 |
|
| 6 |
|
ptcmplem2.5 |
|
| 7 |
|
ptcmplem2.6 |
|
| 8 |
|
ptcmplem2.7 |
|
| 9 |
|
ptcmplem3.8 |
|
| 10 |
1 2 3 4 5 6 7 8 9
|
ptcmplem3 |
|
| 11 |
|
simprl |
|
| 12 |
|
eldifi |
|
| 13 |
12
|
ralimi |
|
| 14 |
|
fveq2 |
|
| 15 |
|
fveq2 |
|
| 16 |
15
|
unieqd |
|
| 17 |
14 16
|
eleq12d |
|
| 18 |
17
|
cbvralvw |
|
| 19 |
13 18
|
sylibr |
|
| 20 |
19
|
ad2antll |
|
| 21 |
|
vex |
|
| 22 |
21
|
elixp |
|
| 23 |
11 20 22
|
sylanbrc |
|
| 24 |
23 2
|
eleqtrrdi |
|
| 25 |
7
|
adantr |
|
| 26 |
24 25
|
eleqtrd |
|
| 27 |
|
eluni2 |
|
| 28 |
26 27
|
sylib |
|
| 29 |
|
simplrr |
|
| 30 |
29
|
adantr |
|
| 31 |
|
simprr |
|
| 32 |
30 31
|
eleqtrd |
|
| 33 |
|
fveq1 |
|
| 34 |
33
|
eleq1d |
|
| 35 |
|
eqid |
|
| 36 |
35
|
mptpreima |
|
| 37 |
34 36
|
elrab2 |
|
| 38 |
37
|
simprbi |
|
| 39 |
32 38
|
syl |
|
| 40 |
|
simprl |
|
| 41 |
|
simplrl |
|
| 42 |
41
|
adantr |
|
| 43 |
31 42
|
eqeltrrd |
|
| 44 |
|
rabid |
|
| 45 |
40 43 44
|
sylanbrc |
|
| 46 |
45 9
|
eleqtrrdi |
|
| 47 |
|
elunii |
|
| 48 |
39 46 47
|
syl2anc |
|
| 49 |
48
|
rexlimdvaa |
|
| 50 |
49
|
expr |
|
| 51 |
50
|
ralimdva |
|
| 52 |
51
|
ex |
|
| 53 |
52
|
com23 |
|
| 54 |
53
|
impr |
|
| 55 |
54
|
imp |
|
| 56 |
6
|
adantr |
|
| 57 |
56
|
sselda |
|
| 58 |
57
|
adantrr |
|
| 59 |
1
|
rnmpo |
|
| 60 |
58 59
|
eleqtrdi |
|
| 61 |
|
abid |
|
| 62 |
60 61
|
sylib |
|
| 63 |
|
rexim |
|
| 64 |
55 62 63
|
sylc |
|
| 65 |
28 64
|
rexlimddv |
|
| 66 |
|
eldifn |
|
| 67 |
66
|
ralimi |
|
| 68 |
67
|
ad2antll |
|
| 69 |
|
ralnex |
|
| 70 |
68 69
|
sylib |
|
| 71 |
65 70
|
pm2.65da |
|
| 72 |
71
|
nexdv |
|
| 73 |
10 72
|
pm2.65i |
|