Metamath Proof Explorer


Theorem ptcmplem4

Description: Lemma for ptcmp . (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Hypotheses ptcmp.1 S=kA,uFkwXwk-1u
ptcmp.2 X=nAFn
ptcmp.3 φAV
ptcmp.4 φF:AComp
ptcmp.5 φXUFLdomcard
ptcmplem2.5 φUranS
ptcmplem2.6 φX=U
ptcmplem2.7 φ¬z𝒫UFinX=z
ptcmplem3.8 K=uFk|wXwk-1uU
Assertion ptcmplem4 ¬φ

Proof

Step Hyp Ref Expression
1 ptcmp.1 S=kA,uFkwXwk-1u
2 ptcmp.2 X=nAFn
3 ptcmp.3 φAV
4 ptcmp.4 φF:AComp
5 ptcmp.5 φXUFLdomcard
6 ptcmplem2.5 φUranS
7 ptcmplem2.6 φX=U
8 ptcmplem2.7 φ¬z𝒫UFinX=z
9 ptcmplem3.8 K=uFk|wXwk-1uU
10 1 2 3 4 5 6 7 8 9 ptcmplem3 φffFnAkAfkFkK
11 simprl φfFnAkAfkFkKfFnA
12 eldifi fkFkKfkFk
13 12 ralimi kAfkFkKkAfkFk
14 fveq2 n=kfn=fk
15 fveq2 n=kFn=Fk
16 15 unieqd n=kFn=Fk
17 14 16 eleq12d n=kfnFnfkFk
18 17 cbvralvw nAfnFnkAfkFk
19 13 18 sylibr kAfkFkKnAfnFn
20 19 ad2antll φfFnAkAfkFkKnAfnFn
21 vex fV
22 21 elixp fnAFnfFnAnAfnFn
23 11 20 22 sylanbrc φfFnAkAfkFkKfnAFn
24 23 2 eleqtrrdi φfFnAkAfkFkKfX
25 7 adantr φfFnAkAfkFkKX=U
26 24 25 eleqtrd φfFnAkAfkFkKfU
27 eluni2 fUvUfv
28 26 27 sylib φfFnAkAfkFkKvUfv
29 simplrr φfFnAvUfvkAfkFkKfv
30 29 adantr φfFnAvUfvkAfkFkKuFkv=wXwk-1ufv
31 simprr φfFnAvUfvkAfkFkKuFkv=wXwk-1uv=wXwk-1u
32 30 31 eleqtrd φfFnAvUfvkAfkFkKuFkv=wXwk-1ufwXwk-1u
33 fveq1 w=fwk=fk
34 33 eleq1d w=fwkufku
35 eqid wXwk=wXwk
36 35 mptpreima wXwk-1u=wX|wku
37 34 36 elrab2 fwXwk-1ufXfku
38 37 simprbi fwXwk-1ufku
39 32 38 syl φfFnAvUfvkAfkFkKuFkv=wXwk-1ufku
40 simprl φfFnAvUfvkAfkFkKuFkv=wXwk-1uuFk
41 simplrl φfFnAvUfvkAfkFkKvU
42 41 adantr φfFnAvUfvkAfkFkKuFkv=wXwk-1uvU
43 31 42 eqeltrrd φfFnAvUfvkAfkFkKuFkv=wXwk-1uwXwk-1uU
44 rabid uuFk|wXwk-1uUuFkwXwk-1uU
45 40 43 44 sylanbrc φfFnAvUfvkAfkFkKuFkv=wXwk-1uuuFk|wXwk-1uU
46 45 9 eleqtrrdi φfFnAvUfvkAfkFkKuFkv=wXwk-1uuK
47 elunii fkuuKfkK
48 39 46 47 syl2anc φfFnAvUfvkAfkFkKuFkv=wXwk-1ufkK
49 48 rexlimdvaa φfFnAvUfvkAfkFkKuFkv=wXwk-1ufkK
50 49 expr φfFnAvUfvkAfkFkKuFkv=wXwk-1ufkK
51 50 ralimdva φfFnAvUfvkAfkFkKkAuFkv=wXwk-1ufkK
52 51 ex φfFnAvUfvkAfkFkKkAuFkv=wXwk-1ufkK
53 52 com23 φfFnAkAfkFkKvUfvkAuFkv=wXwk-1ufkK
54 53 impr φfFnAkAfkFkKvUfvkAuFkv=wXwk-1ufkK
55 54 imp φfFnAkAfkFkKvUfvkAuFkv=wXwk-1ufkK
56 6 adantr φfFnAkAfkFkKUranS
57 56 sselda φfFnAkAfkFkKvUvranS
58 57 adantrr φfFnAkAfkFkKvUfvvranS
59 1 rnmpo ranS=v|kAuFkv=wXwk-1u
60 58 59 eleqtrdi φfFnAkAfkFkKvUfvvv|kAuFkv=wXwk-1u
61 abid vv|kAuFkv=wXwk-1ukAuFkv=wXwk-1u
62 60 61 sylib φfFnAkAfkFkKvUfvkAuFkv=wXwk-1u
63 rexim kAuFkv=wXwk-1ufkKkAuFkv=wXwk-1ukAfkK
64 55 62 63 sylc φfFnAkAfkFkKvUfvkAfkK
65 28 64 rexlimddv φfFnAkAfkFkKkAfkK
66 eldifn fkFkK¬fkK
67 66 ralimi kAfkFkKkA¬fkK
68 67 ad2antll φfFnAkAfkFkKkA¬fkK
69 ralnex kA¬fkK¬kAfkK
70 68 69 sylib φfFnAkAfkFkK¬kAfkK
71 65 70 pm2.65da φ¬fFnAkAfkFkK
72 71 nexdv φ¬ffFnAkAfkFkK
73 10 72 pm2.65i ¬φ