| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ptcmp.1 |
|
| 2 |
|
ptcmp.2 |
|
| 3 |
|
ptcmp.3 |
|
| 4 |
|
ptcmp.4 |
|
| 5 |
|
ptcmp.5 |
|
| 6 |
|
ptcmplem2.5 |
|
| 7 |
|
ptcmplem2.6 |
|
| 8 |
|
ptcmplem2.7 |
|
| 9 |
|
ptcmplem3.8 |
|
| 10 |
|
rabexg |
|
| 11 |
3 10
|
syl |
|
| 12 |
1 2 3 4 5 6 7 8
|
ptcmplem2 |
|
| 13 |
|
eldifi |
|
| 14 |
13
|
3ad2ant3 |
|
| 15 |
14
|
rabssdv |
|
| 16 |
15
|
ralrimivw |
|
| 17 |
|
ss2iun |
|
| 18 |
16 17
|
syl |
|
| 19 |
|
ssnum |
|
| 20 |
12 18 19
|
syl2anc |
|
| 21 |
|
elrabi |
|
| 22 |
8
|
adantr |
|
| 23 |
|
ssdif0 |
|
| 24 |
4
|
ffvelcdmda |
|
| 25 |
24
|
adantr |
|
| 26 |
9
|
ssrab3 |
|
| 27 |
26
|
a1i |
|
| 28 |
|
simpr |
|
| 29 |
|
uniss |
|
| 30 |
26 29
|
mp1i |
|
| 31 |
28 30
|
eqssd |
|
| 32 |
|
eqid |
|
| 33 |
32
|
cmpcov |
|
| 34 |
25 27 31 33
|
syl3anc |
|
| 35 |
|
elfpw |
|
| 36 |
35
|
simplbi |
|
| 37 |
36
|
ad2antrl |
|
| 38 |
37
|
sselda |
|
| 39 |
|
imaeq2 |
|
| 40 |
39
|
eleq1d |
|
| 41 |
40 9
|
elrab2 |
|
| 42 |
41
|
simprbi |
|
| 43 |
38 42
|
syl |
|
| 44 |
43
|
fmpttd |
|
| 45 |
44
|
frnd |
|
| 46 |
35
|
simprbi |
|
| 47 |
46
|
ad2antrl |
|
| 48 |
|
eqid |
|
| 49 |
48
|
rnmpt |
|
| 50 |
|
abrexfi |
|
| 51 |
49 50
|
eqeltrid |
|
| 52 |
47 51
|
syl |
|
| 53 |
|
elfpw |
|
| 54 |
45 52 53
|
sylanbrc |
|
| 55 |
|
fveq2 |
|
| 56 |
|
fveq2 |
|
| 57 |
56
|
unieqd |
|
| 58 |
55 57
|
eleq12d |
|
| 59 |
|
simpr |
|
| 60 |
59 2
|
eleqtrdi |
|
| 61 |
|
vex |
|
| 62 |
61
|
elixp |
|
| 63 |
62
|
simprbi |
|
| 64 |
60 63
|
syl |
|
| 65 |
|
simp-4r |
|
| 66 |
58 64 65
|
rspcdva |
|
| 67 |
|
simplrr |
|
| 68 |
66 67
|
eleqtrd |
|
| 69 |
|
eluni2 |
|
| 70 |
68 69
|
sylib |
|
| 71 |
|
fveq1 |
|
| 72 |
71
|
eleq1d |
|
| 73 |
|
eqid |
|
| 74 |
73
|
mptpreima |
|
| 75 |
72 74
|
elrab2 |
|
| 76 |
75
|
baib |
|
| 77 |
76
|
ad2antlr |
|
| 78 |
77
|
rexbidva |
|
| 79 |
70 78
|
mpbird |
|
| 80 |
|
eliun |
|
| 81 |
79 80
|
sylibr |
|
| 82 |
81
|
ex |
|
| 83 |
82
|
ssrdv |
|
| 84 |
43
|
ralrimiva |
|
| 85 |
|
dfiun2g |
|
| 86 |
84 85
|
syl |
|
| 87 |
49
|
unieqi |
|
| 88 |
86 87
|
eqtr4di |
|
| 89 |
83 88
|
sseqtrd |
|
| 90 |
45
|
unissd |
|
| 91 |
7
|
ad3antrrr |
|
| 92 |
90 91
|
sseqtrrd |
|
| 93 |
89 92
|
eqssd |
|
| 94 |
|
unieq |
|
| 95 |
94
|
rspceeqv |
|
| 96 |
54 93 95
|
syl2anc |
|
| 97 |
34 96
|
rexlimddv |
|
| 98 |
97
|
ex |
|
| 99 |
23 98
|
biimtrrid |
|
| 100 |
22 99
|
mtod |
|
| 101 |
|
neq0 |
|
| 102 |
100 101
|
sylib |
|
| 103 |
|
rexv |
|
| 104 |
102 103
|
sylibr |
|
| 105 |
21 104
|
sylan2 |
|
| 106 |
105
|
ralrimiva |
|
| 107 |
|
eleq1 |
|
| 108 |
107
|
ac6num |
|
| 109 |
11 20 106 108
|
syl3anc |
|
| 110 |
3
|
adantr |
|
| 111 |
110
|
mptexd |
|
| 112 |
|
fvex |
|
| 113 |
112
|
uniex |
|
| 114 |
113
|
uniex |
|
| 115 |
|
fvex |
|
| 116 |
114 115
|
ifex |
|
| 117 |
116
|
rgenw |
|
| 118 |
|
eqid |
|
| 119 |
118
|
fnmpt |
|
| 120 |
117 119
|
mp1i |
|
| 121 |
57
|
breq1d |
|
| 122 |
121
|
notbid |
|
| 123 |
122
|
ralrab |
|
| 124 |
|
iftrue |
|
| 125 |
124
|
ad2antll |
|
| 126 |
102
|
adantrr |
|
| 127 |
13
|
adantl |
|
| 128 |
|
simplrr |
|
| 129 |
|
en1b |
|
| 130 |
128 129
|
sylib |
|
| 131 |
127 130
|
eleqtrd |
|
| 132 |
|
elsni |
|
| 133 |
131 132
|
syl |
|
| 134 |
|
simpr |
|
| 135 |
133 134
|
eqeltrrd |
|
| 136 |
126 135
|
exlimddv |
|
| 137 |
136
|
adantlr |
|
| 138 |
125 137
|
eqeltrd |
|
| 139 |
138
|
a1d |
|
| 140 |
139
|
expr |
|
| 141 |
|
pm2.27 |
|
| 142 |
|
iffalse |
|
| 143 |
142
|
eleq1d |
|
| 144 |
141 143
|
sylibrd |
|
| 145 |
140 144
|
pm2.61d1 |
|
| 146 |
145
|
ralimdva |
|
| 147 |
123 146
|
biimtrid |
|
| 148 |
147
|
impr |
|
| 149 |
|
fneq1 |
|
| 150 |
|
fveq1 |
|
| 151 |
|
fveq2 |
|
| 152 |
151
|
unieqd |
|
| 153 |
152
|
breq1d |
|
| 154 |
152
|
unieqd |
|
| 155 |
|
fveq2 |
|
| 156 |
153 154 155
|
ifbieq12d |
|
| 157 |
|
fvex |
|
| 158 |
157
|
uniex |
|
| 159 |
158
|
uniex |
|
| 160 |
|
fvex |
|
| 161 |
159 160
|
ifex |
|
| 162 |
156 118 161
|
fvmpt |
|
| 163 |
150 162
|
sylan9eq |
|
| 164 |
163
|
eleq1d |
|
| 165 |
164
|
ralbidva |
|
| 166 |
149 165
|
anbi12d |
|
| 167 |
166
|
spcegv |
|
| 168 |
167
|
3impib |
|
| 169 |
111 120 148 168
|
syl3anc |
|
| 170 |
109 169
|
exlimddv |
|