| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ptcmp.1 |
|
| 2 |
|
ptcmp.2 |
|
| 3 |
|
ptcmp.3 |
|
| 4 |
|
ptcmp.4 |
|
| 5 |
|
ptcmp.5 |
|
| 6 |
|
ptcmplem2.5 |
|
| 7 |
|
ptcmplem2.6 |
|
| 8 |
|
ptcmplem2.7 |
|
| 9 |
|
0ss |
|
| 10 |
|
0fi |
|
| 11 |
|
elfpw |
|
| 12 |
9 10 11
|
mpbir2an |
|
| 13 |
|
unieq |
|
| 14 |
|
uni0 |
|
| 15 |
13 14
|
eqtrdi |
|
| 16 |
15
|
rspceeqv |
|
| 17 |
12 16
|
mpan |
|
| 18 |
17
|
necon3bi |
|
| 19 |
8 18
|
syl |
|
| 20 |
|
n0 |
|
| 21 |
19 20
|
sylib |
|
| 22 |
|
fveq2 |
|
| 23 |
22
|
unieqd |
|
| 24 |
23
|
cbvixpv |
|
| 25 |
2 24
|
eqtri |
|
| 26 |
5
|
elin2d |
|
| 27 |
26
|
adantr |
|
| 28 |
25 27
|
eqeltrrid |
|
| 29 |
|
ssrab2 |
|
| 30 |
19
|
adantr |
|
| 31 |
25 30
|
eqnetrrid |
|
| 32 |
|
eqid |
|
| 33 |
32
|
resixpfo |
|
| 34 |
29 31 33
|
sylancr |
|
| 35 |
|
fonum |
|
| 36 |
28 34 35
|
syl2anc |
|
| 37 |
|
vex |
|
| 38 |
|
difexg |
|
| 39 |
37 38
|
mp1i |
|
| 40 |
|
dmexg |
|
| 41 |
|
uniexg |
|
| 42 |
39 40 41
|
3syl |
|
| 43 |
42
|
ralrimivw |
|
| 44 |
|
eqid |
|
| 45 |
44
|
fnmpt |
|
| 46 |
43 45
|
syl |
|
| 47 |
|
dffn4 |
|
| 48 |
46 47
|
sylib |
|
| 49 |
|
fonum |
|
| 50 |
27 48 49
|
syl2anc |
|
| 51 |
|
ssdif0 |
|
| 52 |
|
simpr |
|
| 53 |
|
simpr |
|
| 54 |
53 25
|
eleqtrdi |
|
| 55 |
|
vex |
|
| 56 |
55
|
elixp |
|
| 57 |
56
|
simprbi |
|
| 58 |
54 57
|
syl |
|
| 59 |
58
|
r19.21bi |
|
| 60 |
59
|
snssd |
|
| 61 |
60
|
adantr |
|
| 62 |
52 61
|
eqssd |
|
| 63 |
|
fvex |
|
| 64 |
63
|
ensn1 |
|
| 65 |
62 64
|
eqbrtrdi |
|
| 66 |
65
|
ex |
|
| 67 |
51 66
|
biimtrrid |
|
| 68 |
67
|
con3d |
|
| 69 |
|
neq0 |
|
| 70 |
68 69
|
imbitrdi |
|
| 71 |
|
eldifi |
|
| 72 |
|
simplr |
|
| 73 |
|
iftrue |
|
| 74 |
73 23
|
eleq12d |
|
| 75 |
72 74
|
syl5ibrcom |
|
| 76 |
53 2
|
eleqtrdi |
|
| 77 |
55
|
elixp |
|
| 78 |
77
|
simprbi |
|
| 79 |
76 78
|
syl |
|
| 80 |
79
|
ad2antrr |
|
| 81 |
80
|
r19.21bi |
|
| 82 |
|
iffalse |
|
| 83 |
82
|
eleq1d |
|
| 84 |
81 83
|
syl5ibrcom |
|
| 85 |
75 84
|
pm2.61d |
|
| 86 |
85
|
ralrimiva |
|
| 87 |
3
|
ad3antrrr |
|
| 88 |
|
mptelixpg |
|
| 89 |
87 88
|
syl |
|
| 90 |
86 89
|
mpbird |
|
| 91 |
90 2
|
eleqtrrdi |
|
| 92 |
71 91
|
sylan2 |
|
| 93 |
|
unisnv |
|
| 94 |
|
simplr |
|
| 95 |
|
eleq1w |
|
| 96 |
94 95
|
syl5ibrcom |
|
| 97 |
96
|
pm4.71rd |
|
| 98 |
|
equequ1 |
|
| 99 |
|
fveq2 |
|
| 100 |
98 99
|
ifbieq2d |
|
| 101 |
|
eqid |
|
| 102 |
|
vex |
|
| 103 |
|
fvex |
|
| 104 |
102 103
|
ifex |
|
| 105 |
100 101 104
|
fvmpt |
|
| 106 |
105
|
neeq1d |
|
| 107 |
106
|
adantl |
|
| 108 |
|
iffalse |
|
| 109 |
108
|
necon1ai |
|
| 110 |
|
eldifsni |
|
| 111 |
110
|
ad2antlr |
|
| 112 |
|
iftrue |
|
| 113 |
|
fveq2 |
|
| 114 |
112 113
|
neeq12d |
|
| 115 |
111 114
|
syl5ibrcom |
|
| 116 |
109 115
|
impbid2 |
|
| 117 |
107 116
|
bitrd |
|
| 118 |
117
|
pm5.32da |
|
| 119 |
97 118
|
bitr4d |
|
| 120 |
119
|
abbidv |
|
| 121 |
|
df-sn |
|
| 122 |
|
df-rab |
|
| 123 |
120 121 122
|
3eqtr4g |
|
| 124 |
|
fvex |
|
| 125 |
102 124
|
ifex |
|
| 126 |
125
|
rgenw |
|
| 127 |
101
|
fnmpt |
|
| 128 |
126 127
|
mp1i |
|
| 129 |
|
ixpfn |
|
| 130 |
76 129
|
syl |
|
| 131 |
130
|
ad2antrr |
|
| 132 |
|
fndmdif |
|
| 133 |
128 131 132
|
syl2anc |
|
| 134 |
123 133
|
eqtr4d |
|
| 135 |
134
|
unieqd |
|
| 136 |
93 135
|
eqtr3id |
|
| 137 |
|
difeq1 |
|
| 138 |
137
|
dmeqd |
|
| 139 |
138
|
unieqd |
|
| 140 |
139
|
rspceeqv |
|
| 141 |
92 136 140
|
syl2anc |
|
| 142 |
141
|
ex |
|
| 143 |
142
|
exlimdv |
|
| 144 |
70 143
|
syld |
|
| 145 |
144
|
expimpd |
|
| 146 |
23
|
breq1d |
|
| 147 |
146
|
notbid |
|
| 148 |
147
|
elrab |
|
| 149 |
44
|
elrnmpt |
|
| 150 |
149
|
elv |
|
| 151 |
145 148 150
|
3imtr4g |
|
| 152 |
151
|
ssrdv |
|
| 153 |
|
ssnum |
|
| 154 |
50 152 153
|
syl2anc |
|
| 155 |
|
xpnum |
|
| 156 |
36 154 155
|
syl2anc |
|
| 157 |
3
|
adantr |
|
| 158 |
|
rabexg |
|
| 159 |
157 158
|
syl |
|
| 160 |
|
fvex |
|
| 161 |
160
|
uniex |
|
| 162 |
161
|
rgenw |
|
| 163 |
|
iunexg |
|
| 164 |
159 162 163
|
sylancl |
|
| 165 |
|
resixp |
|
| 166 |
29 54 165
|
sylancr |
|
| 167 |
166
|
ne0d |
|
| 168 |
|
ixpiunwdom |
|
| 169 |
159 164 167 168
|
syl3anc |
|
| 170 |
|
numwdom |
|
| 171 |
156 169 170
|
syl2anc |
|
| 172 |
21 171
|
exlimddv |
|