| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pser.g |
⊢ 𝐺 = ( 𝑥 ∈ ℂ ↦ ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) ) |
| 2 |
|
radcnv.a |
⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) |
| 3 |
|
psergf.x |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 4 |
|
radcnvlem2.y |
⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
| 5 |
|
radcnvlem2.a |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) < ( abs ‘ 𝑌 ) ) |
| 6 |
|
radcnvlem2.c |
⊢ ( 𝜑 → seq 0 ( + , ( 𝐺 ‘ 𝑌 ) ) ∈ dom ⇝ ) |
| 7 |
|
radcnvlem1.h |
⊢ 𝐻 = ( 𝑚 ∈ ℕ0 ↦ ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ) |
| 8 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 9 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 10 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℝ+ ) |
| 12 |
1
|
pserval2 |
⊢ ( ( 𝑌 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑌 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) |
| 13 |
4 12
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑌 ) ‘ 𝑘 ) = ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) |
| 14 |
|
fvexd |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑌 ) ∈ V ) |
| 15 |
1 2 4
|
psergf |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑌 ) : ℕ0 ⟶ ℂ ) |
| 16 |
15
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑌 ) ‘ 𝑘 ) ∈ ℂ ) |
| 17 |
8 9 14 6 16
|
serf0 |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑌 ) ⇝ 0 ) |
| 18 |
8 9 11 13 17
|
climi0 |
⊢ ( 𝜑 → ∃ 𝑗 ∈ ℕ0 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) |
| 19 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) → 𝑗 ∈ ℕ0 ) |
| 20 |
|
nn0re |
⊢ ( 𝑖 ∈ ℕ0 → 𝑖 ∈ ℝ ) |
| 21 |
20
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑖 ∈ ℕ0 ) → 𝑖 ∈ ℝ ) |
| 22 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) → 𝑋 ∈ ℂ ) |
| 23 |
22
|
abscld |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) → ( abs ‘ 𝑋 ) ∈ ℝ ) |
| 24 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) → 𝑌 ∈ ℂ ) |
| 25 |
24
|
abscld |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) → ( abs ‘ 𝑌 ) ∈ ℝ ) |
| 26 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 27 |
3
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ∈ ℝ ) |
| 28 |
4
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝑌 ) ∈ ℝ ) |
| 29 |
3
|
absge0d |
⊢ ( 𝜑 → 0 ≤ ( abs ‘ 𝑋 ) ) |
| 30 |
26 27 28 29 5
|
lelttrd |
⊢ ( 𝜑 → 0 < ( abs ‘ 𝑌 ) ) |
| 31 |
30
|
gt0ne0d |
⊢ ( 𝜑 → ( abs ‘ 𝑌 ) ≠ 0 ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) → ( abs ‘ 𝑌 ) ≠ 0 ) |
| 33 |
23 25 32
|
redivcld |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) → ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ∈ ℝ ) |
| 34 |
|
reexpcl |
⊢ ( ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ∈ ℝ ∧ 𝑖 ∈ ℕ0 ) → ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) ∈ ℝ ) |
| 35 |
33 34
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑖 ∈ ℕ0 ) → ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) ∈ ℝ ) |
| 36 |
21 35
|
remulcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑖 ∈ ℕ0 ) → ( 𝑖 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) ) ∈ ℝ ) |
| 37 |
|
eqid |
⊢ ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) ) ) = ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) ) ) |
| 38 |
36 37
|
fmptd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) → ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) ) ) : ℕ0 ⟶ ℝ ) |
| 39 |
38
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) ) ) ‘ 𝑚 ) ∈ ℝ ) |
| 40 |
|
nn0re |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℝ ) |
| 41 |
40
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℝ ) |
| 42 |
1 2 3
|
psergf |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑋 ) : ℕ0 ⟶ ℂ ) |
| 43 |
42
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ∈ ℂ ) |
| 44 |
43
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ∈ ℝ ) |
| 45 |
41 44
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ∈ ℝ ) |
| 46 |
45 7
|
fmptd |
⊢ ( 𝜑 → 𝐻 : ℕ0 ⟶ ℝ ) |
| 47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) → 𝐻 : ℕ0 ⟶ ℝ ) |
| 48 |
47
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑚 ) ∈ ℝ ) |
| 49 |
48
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝐻 ‘ 𝑚 ) ∈ ℂ ) |
| 50 |
27 28 31
|
redivcld |
⊢ ( 𝜑 → ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ∈ ℝ ) |
| 51 |
50
|
recnd |
⊢ ( 𝜑 → ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ∈ ℂ ) |
| 52 |
|
divge0 |
⊢ ( ( ( ( abs ‘ 𝑋 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑋 ) ) ∧ ( ( abs ‘ 𝑌 ) ∈ ℝ ∧ 0 < ( abs ‘ 𝑌 ) ) ) → 0 ≤ ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ) |
| 53 |
27 29 28 30 52
|
syl22anc |
⊢ ( 𝜑 → 0 ≤ ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ) |
| 54 |
50 53
|
absidd |
⊢ ( 𝜑 → ( abs ‘ ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ) = ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ) |
| 55 |
28
|
recnd |
⊢ ( 𝜑 → ( abs ‘ 𝑌 ) ∈ ℂ ) |
| 56 |
55
|
mulridd |
⊢ ( 𝜑 → ( ( abs ‘ 𝑌 ) · 1 ) = ( abs ‘ 𝑌 ) ) |
| 57 |
5 56
|
breqtrrd |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) < ( ( abs ‘ 𝑌 ) · 1 ) ) |
| 58 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 59 |
|
ltdivmul |
⊢ ( ( ( abs ‘ 𝑋 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( abs ‘ 𝑌 ) ∈ ℝ ∧ 0 < ( abs ‘ 𝑌 ) ) ) → ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) < 1 ↔ ( abs ‘ 𝑋 ) < ( ( abs ‘ 𝑌 ) · 1 ) ) ) |
| 60 |
27 58 28 30 59
|
syl112anc |
⊢ ( 𝜑 → ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) < 1 ↔ ( abs ‘ 𝑋 ) < ( ( abs ‘ 𝑌 ) · 1 ) ) ) |
| 61 |
57 60
|
mpbird |
⊢ ( 𝜑 → ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) < 1 ) |
| 62 |
54 61
|
eqbrtrd |
⊢ ( 𝜑 → ( abs ‘ ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ) < 1 ) |
| 63 |
37
|
geomulcvg |
⊢ ( ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ∈ ℂ ∧ ( abs ‘ ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ) < 1 ) → seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) ) ) ) ∈ dom ⇝ ) |
| 64 |
51 62 63
|
syl2anc |
⊢ ( 𝜑 → seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) ) ) ) ∈ dom ⇝ ) |
| 65 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) → seq 0 ( + , ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) ) ) ) ∈ dom ⇝ ) |
| 66 |
|
1red |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) → 1 ∈ ℝ ) |
| 67 |
42
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐺 ‘ 𝑋 ) : ℕ0 ⟶ ℂ ) |
| 68 |
|
eluznn0 |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑚 ∈ ℕ0 ) |
| 69 |
19 68
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑚 ∈ ℕ0 ) |
| 70 |
67 69
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ∈ ℂ ) |
| 71 |
70
|
abscld |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ∈ ℝ ) |
| 72 |
33
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ∈ ℝ ) |
| 73 |
72 69
|
reexpcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑚 ) ∈ ℝ ) |
| 74 |
69
|
nn0red |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑚 ∈ ℝ ) |
| 75 |
69
|
nn0ge0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 0 ≤ 𝑚 ) |
| 76 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝐴 : ℕ0 ⟶ ℂ ) |
| 77 |
76 69
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐴 ‘ 𝑚 ) ∈ ℂ ) |
| 78 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑌 ∈ ℂ ) |
| 79 |
78 69
|
expcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑌 ↑ 𝑚 ) ∈ ℂ ) |
| 80 |
77 79
|
mulcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ∈ ℂ ) |
| 81 |
80
|
abscld |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) ∈ ℝ ) |
| 82 |
|
1red |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 1 ∈ ℝ ) |
| 83 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑋 ∈ ℂ ) |
| 84 |
83
|
abscld |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ 𝑋 ) ∈ ℝ ) |
| 85 |
84 69
|
reexpcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) ∈ ℝ ) |
| 86 |
83
|
absge0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 0 ≤ ( abs ‘ 𝑋 ) ) |
| 87 |
84 69 86
|
expge0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 0 ≤ ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) ) |
| 88 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) |
| 89 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝐴 ‘ 𝑘 ) = ( 𝐴 ‘ 𝑚 ) ) |
| 90 |
|
oveq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝑌 ↑ 𝑘 ) = ( 𝑌 ↑ 𝑚 ) ) |
| 91 |
89 90
|
oveq12d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) = ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) |
| 92 |
91
|
fveq2d |
⊢ ( 𝑘 = 𝑚 → ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) = ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) ) |
| 93 |
92
|
breq1d |
⊢ ( 𝑘 = 𝑚 → ( ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ↔ ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) < 1 ) ) |
| 94 |
93
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) < 1 ) |
| 95 |
88 94
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) < 1 ) |
| 96 |
|
1re |
⊢ 1 ∈ ℝ |
| 97 |
|
ltle |
⊢ ( ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) < 1 → ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) ≤ 1 ) ) |
| 98 |
81 96 97
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) < 1 → ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) ≤ 1 ) ) |
| 99 |
95 98
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) ≤ 1 ) |
| 100 |
81 82 85 87 99
|
lemul1ad |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) · ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) ) ≤ ( 1 · ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) ) ) |
| 101 |
83 69
|
expcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑋 ↑ 𝑚 ) ∈ ℂ ) |
| 102 |
77 101
|
mulcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ∈ ℂ ) |
| 103 |
102 79
|
absmuld |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) · ( 𝑌 ↑ 𝑚 ) ) ) = ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) · ( abs ‘ ( 𝑌 ↑ 𝑚 ) ) ) ) |
| 104 |
80 101
|
absmuld |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) · ( 𝑋 ↑ 𝑚 ) ) ) = ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) · ( abs ‘ ( 𝑋 ↑ 𝑚 ) ) ) ) |
| 105 |
77 79 101
|
mul32d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) · ( 𝑋 ↑ 𝑚 ) ) = ( ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) · ( 𝑌 ↑ 𝑚 ) ) ) |
| 106 |
105
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) · ( 𝑋 ↑ 𝑚 ) ) ) = ( abs ‘ ( ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) · ( 𝑌 ↑ 𝑚 ) ) ) ) |
| 107 |
83 69
|
absexpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( 𝑋 ↑ 𝑚 ) ) = ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) ) |
| 108 |
107
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) · ( abs ‘ ( 𝑋 ↑ 𝑚 ) ) ) = ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) · ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) ) ) |
| 109 |
104 106 108
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) · ( 𝑌 ↑ 𝑚 ) ) ) = ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) · ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) ) ) |
| 110 |
78 69
|
absexpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( 𝑌 ↑ 𝑚 ) ) = ( ( abs ‘ 𝑌 ) ↑ 𝑚 ) ) |
| 111 |
110
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) · ( abs ‘ ( 𝑌 ↑ 𝑚 ) ) ) = ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) · ( ( abs ‘ 𝑌 ) ↑ 𝑚 ) ) ) |
| 112 |
103 109 111
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑌 ↑ 𝑚 ) ) ) · ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) ) = ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) · ( ( abs ‘ 𝑌 ) ↑ 𝑚 ) ) ) |
| 113 |
85
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) ∈ ℂ ) |
| 114 |
113
|
mullidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 1 · ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) ) = ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) ) |
| 115 |
100 112 114
|
3brtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) · ( ( abs ‘ 𝑌 ) ↑ 𝑚 ) ) ≤ ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) ) |
| 116 |
102
|
abscld |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) ∈ ℝ ) |
| 117 |
25
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ 𝑌 ) ∈ ℝ ) |
| 118 |
117 69
|
reexpcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ 𝑌 ) ↑ 𝑚 ) ∈ ℝ ) |
| 119 |
|
eluzelz |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) → 𝑚 ∈ ℤ ) |
| 120 |
119
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑚 ∈ ℤ ) |
| 121 |
30
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 0 < ( abs ‘ 𝑌 ) ) |
| 122 |
|
expgt0 |
⊢ ( ( ( abs ‘ 𝑌 ) ∈ ℝ ∧ 𝑚 ∈ ℤ ∧ 0 < ( abs ‘ 𝑌 ) ) → 0 < ( ( abs ‘ 𝑌 ) ↑ 𝑚 ) ) |
| 123 |
117 120 121 122
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 0 < ( ( abs ‘ 𝑌 ) ↑ 𝑚 ) ) |
| 124 |
|
lemuldiv |
⊢ ( ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) ∈ ℝ ∧ ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) ∈ ℝ ∧ ( ( ( abs ‘ 𝑌 ) ↑ 𝑚 ) ∈ ℝ ∧ 0 < ( ( abs ‘ 𝑌 ) ↑ 𝑚 ) ) ) → ( ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) · ( ( abs ‘ 𝑌 ) ↑ 𝑚 ) ) ≤ ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) ↔ ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) ≤ ( ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) / ( ( abs ‘ 𝑌 ) ↑ 𝑚 ) ) ) ) |
| 125 |
116 85 118 123 124
|
syl112anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) · ( ( abs ‘ 𝑌 ) ↑ 𝑚 ) ) ≤ ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) ↔ ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) ≤ ( ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) / ( ( abs ‘ 𝑌 ) ↑ 𝑚 ) ) ) ) |
| 126 |
115 125
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) ≤ ( ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) / ( ( abs ‘ 𝑌 ) ↑ 𝑚 ) ) ) |
| 127 |
1
|
pserval2 |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) = ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) |
| 128 |
83 69 127
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) = ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) |
| 129 |
128
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) = ( abs ‘ ( ( 𝐴 ‘ 𝑚 ) · ( 𝑋 ↑ 𝑚 ) ) ) ) |
| 130 |
23
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) → ( abs ‘ 𝑋 ) ∈ ℂ ) |
| 131 |
130
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ 𝑋 ) ∈ ℂ ) |
| 132 |
25
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) → ( abs ‘ 𝑌 ) ∈ ℂ ) |
| 133 |
132
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ 𝑌 ) ∈ ℂ ) |
| 134 |
31
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ 𝑌 ) ≠ 0 ) |
| 135 |
131 133 134 69
|
expdivd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑚 ) = ( ( ( abs ‘ 𝑋 ) ↑ 𝑚 ) / ( ( abs ‘ 𝑌 ) ↑ 𝑚 ) ) ) |
| 136 |
126 129 135
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ≤ ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑚 ) ) |
| 137 |
71 73 74 75 136
|
lemul2ad |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ≤ ( 𝑚 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑚 ) ) ) |
| 138 |
74 71
|
remulcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ∈ ℝ ) |
| 139 |
70
|
absge0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 0 ≤ ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) |
| 140 |
74 71 75 139
|
mulge0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 0 ≤ ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ) |
| 141 |
138 140
|
absidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ) = ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ) |
| 142 |
74 73
|
remulcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑚 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑚 ) ) ∈ ℝ ) |
| 143 |
142
|
recnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑚 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑚 ) ) ∈ ℂ ) |
| 144 |
143
|
mullidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 1 · ( 𝑚 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑚 ) ) ) = ( 𝑚 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑚 ) ) ) |
| 145 |
137 141 144
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ) ≤ ( 1 · ( 𝑚 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑚 ) ) ) ) |
| 146 |
|
ovex |
⊢ ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ∈ V |
| 147 |
7
|
fvmpt2 |
⊢ ( ( 𝑚 ∈ ℕ0 ∧ ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ∈ V ) → ( 𝐻 ‘ 𝑚 ) = ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ) |
| 148 |
69 146 147
|
sylancl |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐻 ‘ 𝑚 ) = ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ) |
| 149 |
148
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( 𝐻 ‘ 𝑚 ) ) = ( abs ‘ ( 𝑚 · ( abs ‘ ( ( 𝐺 ‘ 𝑋 ) ‘ 𝑚 ) ) ) ) ) |
| 150 |
|
id |
⊢ ( 𝑖 = 𝑚 → 𝑖 = 𝑚 ) |
| 151 |
|
oveq2 |
⊢ ( 𝑖 = 𝑚 → ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) = ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑚 ) ) |
| 152 |
150 151
|
oveq12d |
⊢ ( 𝑖 = 𝑚 → ( 𝑖 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) ) = ( 𝑚 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑚 ) ) ) |
| 153 |
|
ovex |
⊢ ( 𝑚 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑚 ) ) ∈ V |
| 154 |
152 37 153
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) ) ) ‘ 𝑚 ) = ( 𝑚 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑚 ) ) ) |
| 155 |
69 154
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) ) ) ‘ 𝑚 ) = ( 𝑚 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑚 ) ) ) |
| 156 |
155
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 1 · ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) ) ) ‘ 𝑚 ) ) = ( 1 · ( 𝑚 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑚 ) ) ) ) |
| 157 |
145 149 156
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( 𝐻 ‘ 𝑚 ) ) ≤ ( 1 · ( ( 𝑖 ∈ ℕ0 ↦ ( 𝑖 · ( ( ( abs ‘ 𝑋 ) / ( abs ‘ 𝑌 ) ) ↑ 𝑖 ) ) ) ‘ 𝑚 ) ) ) |
| 158 |
8 19 39 49 65 66 157
|
cvgcmpce |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐴 ‘ 𝑘 ) · ( 𝑌 ↑ 𝑘 ) ) ) < 1 ) ) → seq 0 ( + , 𝐻 ) ∈ dom ⇝ ) |
| 159 |
18 158
|
rexlimddv |
⊢ ( 𝜑 → seq 0 ( + , 𝐻 ) ∈ dom ⇝ ) |