| Step |
Hyp |
Ref |
Expression |
| 1 |
|
geomulcvg.1 |
⊢ 𝐹 = ( 𝑘 ∈ ℕ0 ↦ ( 𝑘 · ( 𝐴 ↑ 𝑘 ) ) ) |
| 2 |
|
elnn0 |
⊢ ( 𝑘 ∈ ℕ0 ↔ ( 𝑘 ∈ ℕ ∨ 𝑘 = 0 ) ) |
| 3 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) → 𝐴 = 0 ) |
| 4 |
3
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) → ( 𝐴 ↑ 𝑘 ) = ( 0 ↑ 𝑘 ) ) |
| 5 |
|
0exp |
⊢ ( 𝑘 ∈ ℕ → ( 0 ↑ 𝑘 ) = 0 ) |
| 6 |
4 5
|
sylan9eq |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ↑ 𝑘 ) = 0 ) |
| 7 |
6
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 · ( 𝐴 ↑ 𝑘 ) ) = ( 𝑘 · 0 ) ) |
| 8 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
| 9 |
8
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℂ ) |
| 10 |
9
|
mul01d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 · 0 ) = 0 ) |
| 11 |
7 10
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 · ( 𝐴 ↑ 𝑘 ) ) = 0 ) |
| 12 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) ∧ 𝑘 = 0 ) → 𝑘 = 0 ) |
| 13 |
12
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) ∧ 𝑘 = 0 ) → ( 𝑘 · ( 𝐴 ↑ 𝑘 ) ) = ( 0 · ( 𝐴 ↑ 𝑘 ) ) ) |
| 14 |
|
simplll |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) ∧ 𝑘 = 0 ) → 𝐴 ∈ ℂ ) |
| 15 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 16 |
12 15
|
eqeltrdi |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) ∧ 𝑘 = 0 ) → 𝑘 ∈ ℕ0 ) |
| 17 |
14 16
|
expcld |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) ∧ 𝑘 = 0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 18 |
17
|
mul02d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) ∧ 𝑘 = 0 ) → ( 0 · ( 𝐴 ↑ 𝑘 ) ) = 0 ) |
| 19 |
13 18
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) ∧ 𝑘 = 0 ) → ( 𝑘 · ( 𝐴 ↑ 𝑘 ) ) = 0 ) |
| 20 |
11 19
|
jaodan |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) ∧ ( 𝑘 ∈ ℕ ∨ 𝑘 = 0 ) ) → ( 𝑘 · ( 𝐴 ↑ 𝑘 ) ) = 0 ) |
| 21 |
2 20
|
sylan2b |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 · ( 𝐴 ↑ 𝑘 ) ) = 0 ) |
| 22 |
21
|
mpteq2dva |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝑘 · ( 𝐴 ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ 0 ) ) |
| 23 |
1 22
|
eqtrid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) → 𝐹 = ( 𝑘 ∈ ℕ0 ↦ 0 ) ) |
| 24 |
|
fconstmpt |
⊢ ( ℕ0 × { 0 } ) = ( 𝑘 ∈ ℕ0 ↦ 0 ) |
| 25 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 26 |
25
|
xpeq1i |
⊢ ( ℕ0 × { 0 } ) = ( ( ℤ≥ ‘ 0 ) × { 0 } ) |
| 27 |
24 26
|
eqtr3i |
⊢ ( 𝑘 ∈ ℕ0 ↦ 0 ) = ( ( ℤ≥ ‘ 0 ) × { 0 } ) |
| 28 |
23 27
|
eqtrdi |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) → 𝐹 = ( ( ℤ≥ ‘ 0 ) × { 0 } ) ) |
| 29 |
28
|
seqeq3d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) → seq 0 ( + , 𝐹 ) = seq 0 ( + , ( ( ℤ≥ ‘ 0 ) × { 0 } ) ) ) |
| 30 |
|
0z |
⊢ 0 ∈ ℤ |
| 31 |
|
serclim0 |
⊢ ( 0 ∈ ℤ → seq 0 ( + , ( ( ℤ≥ ‘ 0 ) × { 0 } ) ) ⇝ 0 ) |
| 32 |
30 31
|
ax-mp |
⊢ seq 0 ( + , ( ( ℤ≥ ‘ 0 ) × { 0 } ) ) ⇝ 0 |
| 33 |
29 32
|
eqbrtrdi |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) → seq 0 ( + , 𝐹 ) ⇝ 0 ) |
| 34 |
|
seqex |
⊢ seq 0 ( + , 𝐹 ) ∈ V |
| 35 |
|
c0ex |
⊢ 0 ∈ V |
| 36 |
34 35
|
breldm |
⊢ ( seq 0 ( + , 𝐹 ) ⇝ 0 → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 37 |
33 36
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 = 0 ) → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 38 |
|
1red |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) → 1 ∈ ℝ ) |
| 39 |
|
abscl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 41 |
|
peano2re |
⊢ ( ( abs ‘ 𝐴 ) ∈ ℝ → ( ( abs ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 42 |
40 41
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( ( abs ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 43 |
42
|
rehalfcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ∈ ℝ ) |
| 44 |
43
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ∈ ℝ ) |
| 45 |
|
absrpcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
| 46 |
45
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
| 47 |
44 46
|
rerpdivcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) → ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) / ( abs ‘ 𝐴 ) ) ∈ ℝ ) |
| 48 |
40
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 49 |
48
|
mullidd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 1 · ( abs ‘ 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |
| 50 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ 𝐴 ) < 1 ) |
| 51 |
|
1re |
⊢ 1 ∈ ℝ |
| 52 |
|
avglt1 |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( abs ‘ 𝐴 ) < 1 ↔ ( abs ‘ 𝐴 ) < ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ) ) |
| 53 |
40 51 52
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( ( abs ‘ 𝐴 ) < 1 ↔ ( abs ‘ 𝐴 ) < ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ) ) |
| 54 |
50 53
|
mpbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ 𝐴 ) < ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ) |
| 55 |
49 54
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( 1 · ( abs ‘ 𝐴 ) ) < ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ) |
| 56 |
55
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) → ( 1 · ( abs ‘ 𝐴 ) ) < ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ) |
| 57 |
38 44 46
|
ltmuldivd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) → ( ( 1 · ( abs ‘ 𝐴 ) ) < ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↔ 1 < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) / ( abs ‘ 𝐴 ) ) ) ) |
| 58 |
56 57
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) → 1 < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) / ( abs ‘ 𝐴 ) ) ) |
| 59 |
|
expmulnbnd |
⊢ ( ( 1 ∈ ℝ ∧ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) / ( abs ‘ 𝐴 ) ) ∈ ℝ ∧ 1 < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) / ( abs ‘ 𝐴 ) ) ) → ∃ 𝑛 ∈ ℕ0 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 1 · 𝑘 ) < ( ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ) |
| 60 |
38 47 58 59
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) → ∃ 𝑛 ∈ ℕ0 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 1 · 𝑘 ) < ( ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ) |
| 61 |
|
eluznn0 |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑘 ∈ ℕ0 ) |
| 62 |
|
nn0cn |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) |
| 63 |
62
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℂ ) |
| 64 |
63
|
mullidd |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 1 · 𝑘 ) = 𝑘 ) |
| 65 |
43
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ∈ ℂ ) |
| 66 |
65
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ∈ ℂ ) |
| 67 |
48
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 68 |
46
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
| 69 |
68
|
rpne0d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ 𝐴 ) ≠ 0 ) |
| 70 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
| 71 |
66 67 69 70
|
expdivd |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) = ( ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) / ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) |
| 72 |
64 71
|
breq12d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 · 𝑘 ) < ( ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ↔ 𝑘 < ( ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) / ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) ) |
| 73 |
|
nn0re |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) |
| 74 |
73
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℝ ) |
| 75 |
|
reexpcl |
⊢ ( ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ∈ ℝ ) |
| 76 |
44 75
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ∈ ℝ ) |
| 77 |
40
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 78 |
|
reexpcl |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ ℝ ) |
| 79 |
77 78
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ ℝ ) |
| 80 |
77
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 81 |
|
nn0z |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℤ ) |
| 82 |
81
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℤ ) |
| 83 |
68
|
rpgt0d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → 0 < ( abs ‘ 𝐴 ) ) |
| 84 |
|
expgt0 |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < ( abs ‘ 𝐴 ) ) → 0 < ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) |
| 85 |
80 82 83 84
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → 0 < ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) |
| 86 |
|
ltmuldiv |
⊢ ( ( 𝑘 ∈ ℝ ∧ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ∈ ℝ ∧ ( ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ∈ ℝ ∧ 0 < ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) → ( ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ↔ 𝑘 < ( ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) / ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) ) |
| 87 |
74 76 79 85 86
|
syl112anc |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ↔ 𝑘 < ( ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) / ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) ) ) |
| 88 |
72 87
|
bitr4d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 · 𝑘 ) < ( ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ↔ ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) |
| 89 |
61 88
|
sylan2 |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑛 ∈ ℕ0 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) ) → ( ( 1 · 𝑘 ) < ( ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ↔ ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) |
| 90 |
89
|
anassrs |
⊢ ( ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 1 · 𝑘 ) < ( ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ↔ ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) |
| 91 |
90
|
ralbidva |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 1 · 𝑘 ) < ( ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) |
| 92 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) → 𝑛 ∈ ℕ0 ) |
| 93 |
|
oveq2 |
⊢ ( 𝑘 = 𝑚 → ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) = ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ) |
| 94 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) |
| 95 |
|
ovex |
⊢ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ∈ V |
| 96 |
93 94 95
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ‘ 𝑚 ) = ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ) |
| 97 |
96
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ‘ 𝑚 ) = ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ) |
| 98 |
43
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ0 ) → ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ∈ ℝ ) |
| 99 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℕ0 ) |
| 100 |
98 99
|
reexpcld |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ0 ) → ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ∈ ℝ ) |
| 101 |
97 100
|
eqeltrd |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ‘ 𝑚 ) ∈ ℝ ) |
| 102 |
|
id |
⊢ ( 𝑘 = 𝑚 → 𝑘 = 𝑚 ) |
| 103 |
|
oveq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝐴 ↑ 𝑘 ) = ( 𝐴 ↑ 𝑚 ) ) |
| 104 |
102 103
|
oveq12d |
⊢ ( 𝑘 = 𝑚 → ( 𝑘 · ( 𝐴 ↑ 𝑘 ) ) = ( 𝑚 · ( 𝐴 ↑ 𝑚 ) ) ) |
| 105 |
|
ovex |
⊢ ( 𝑚 · ( 𝐴 ↑ 𝑚 ) ) ∈ V |
| 106 |
104 1 105
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ0 → ( 𝐹 ‘ 𝑚 ) = ( 𝑚 · ( 𝐴 ↑ 𝑚 ) ) ) |
| 107 |
106
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑚 ) = ( 𝑚 · ( 𝐴 ↑ 𝑚 ) ) ) |
| 108 |
|
nn0cn |
⊢ ( 𝑚 ∈ ℕ0 → 𝑚 ∈ ℂ ) |
| 109 |
108
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ0 ) → 𝑚 ∈ ℂ ) |
| 110 |
|
expcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑚 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑚 ) ∈ ℂ ) |
| 111 |
110
|
ad4ant14 |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑚 ) ∈ ℂ ) |
| 112 |
109 111
|
mulcld |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝑚 · ( 𝐴 ↑ 𝑚 ) ) ∈ ℂ ) |
| 113 |
107 112
|
eqeltrd |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
| 114 |
|
0red |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 0 ∈ ℝ ) |
| 115 |
|
absge0 |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) |
| 116 |
115
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 0 ≤ ( abs ‘ 𝐴 ) ) |
| 117 |
114 40 43 116 54
|
lelttrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 0 < ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ) |
| 118 |
114 43 117
|
ltled |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → 0 ≤ ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ) |
| 119 |
43 118
|
absidd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ) = ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ) |
| 120 |
|
avglt2 |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( abs ‘ 𝐴 ) < 1 ↔ ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) < 1 ) ) |
| 121 |
40 51 120
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( ( abs ‘ 𝐴 ) < 1 ↔ ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) < 1 ) ) |
| 122 |
50 121
|
mpbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) < 1 ) |
| 123 |
119 122
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → ( abs ‘ ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ) < 1 ) |
| 124 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) = ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑛 ) ) |
| 125 |
|
ovex |
⊢ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑛 ) ∈ V |
| 126 |
124 94 125
|
fvmpt |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ‘ 𝑛 ) = ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑛 ) ) |
| 127 |
126
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ‘ 𝑛 ) = ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑛 ) ) |
| 128 |
65 123 127
|
geolim |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ⇝ ( 1 / ( 1 − ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ) ) ) |
| 129 |
|
seqex |
⊢ seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∈ V |
| 130 |
|
ovex |
⊢ ( 1 / ( 1 − ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ) ) ∈ V |
| 131 |
129 130
|
breldm |
⊢ ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ⇝ ( 1 / ( 1 − ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ) ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∈ dom ⇝ ) |
| 132 |
128 131
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∈ dom ⇝ ) |
| 133 |
132
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∈ dom ⇝ ) |
| 134 |
|
1red |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) → 1 ∈ ℝ ) |
| 135 |
|
eluznn0 |
⊢ ( ( 𝑛 ∈ ℕ0 ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ ℕ0 ) |
| 136 |
92 135
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ ℕ0 ) |
| 137 |
136
|
nn0red |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ ℝ ) |
| 138 |
|
simplll |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝐴 ∈ ℂ ) |
| 139 |
138
|
abscld |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 140 |
139 136
|
reexpcld |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) ∈ ℝ ) |
| 141 |
137 140
|
remulcld |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝑚 · ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) ) ∈ ℝ ) |
| 142 |
136 100
|
syldan |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ∈ ℝ ) |
| 143 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) |
| 144 |
|
oveq2 |
⊢ ( 𝑘 = 𝑚 → ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) = ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) ) |
| 145 |
102 144
|
oveq12d |
⊢ ( 𝑘 = 𝑚 → ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) = ( 𝑚 · ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) ) ) |
| 146 |
145 93
|
breq12d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ↔ ( 𝑚 · ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ) ) |
| 147 |
146
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝑚 · ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ) |
| 148 |
143 147
|
sylan |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝑚 · ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ) |
| 149 |
141 142 148
|
ltled |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝑚 · ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) ) ≤ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ) |
| 150 |
136
|
nn0cnd |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 𝑚 ∈ ℂ ) |
| 151 |
138 136
|
expcld |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝐴 ↑ 𝑚 ) ∈ ℂ ) |
| 152 |
150 151
|
absmuld |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( abs ‘ ( 𝑚 · ( 𝐴 ↑ 𝑚 ) ) ) = ( ( abs ‘ 𝑚 ) · ( abs ‘ ( 𝐴 ↑ 𝑚 ) ) ) ) |
| 153 |
136
|
nn0ge0d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → 0 ≤ 𝑚 ) |
| 154 |
137 153
|
absidd |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( abs ‘ 𝑚 ) = 𝑚 ) |
| 155 |
138 136
|
absexpd |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( abs ‘ ( 𝐴 ↑ 𝑚 ) ) = ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) ) |
| 156 |
154 155
|
oveq12d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( abs ‘ 𝑚 ) · ( abs ‘ ( 𝐴 ↑ 𝑚 ) ) ) = ( 𝑚 · ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) ) ) |
| 157 |
152 156
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( abs ‘ ( 𝑚 · ( 𝐴 ↑ 𝑚 ) ) ) = ( 𝑚 · ( ( abs ‘ 𝐴 ) ↑ 𝑚 ) ) ) |
| 158 |
142
|
recnd |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ∈ ℂ ) |
| 159 |
158
|
mullidd |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 1 · ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ) = ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ) |
| 160 |
149 157 159
|
3brtr4d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( abs ‘ ( 𝑚 · ( 𝐴 ↑ 𝑚 ) ) ) ≤ ( 1 · ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ) ) |
| 161 |
136 106
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝐹 ‘ 𝑚 ) = ( 𝑚 · ( 𝐴 ↑ 𝑚 ) ) ) |
| 162 |
161
|
fveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑚 ) ) = ( abs ‘ ( 𝑚 · ( 𝐴 ↑ 𝑚 ) ) ) ) |
| 163 |
136 96
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ‘ 𝑚 ) = ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ) |
| 164 |
163
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 1 · ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ‘ 𝑚 ) ) = ( 1 · ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑚 ) ) ) |
| 165 |
160 162 164
|
3brtr4d |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( abs ‘ ( 𝐹 ‘ 𝑚 ) ) ≤ ( 1 · ( ( 𝑘 ∈ ℕ0 ↦ ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ‘ 𝑚 ) ) ) |
| 166 |
25 92 101 113 133 134 165
|
cvgcmpce |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ ( 𝑛 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) ) ) → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 167 |
166
|
expr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) ) |
| 168 |
167
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 𝑘 · ( ( abs ‘ 𝐴 ) ↑ 𝑘 ) ) < ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) ↑ 𝑘 ) → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) ) |
| 169 |
91 168
|
sylbid |
⊢ ( ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) ∧ 𝑛 ∈ ℕ0 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 1 · 𝑘 ) < ( ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) ) |
| 170 |
169
|
rexlimdva |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) → ( ∃ 𝑛 ∈ ℕ0 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑛 ) ( 1 · 𝑘 ) < ( ( ( ( ( abs ‘ 𝐴 ) + 1 ) / 2 ) / ( abs ‘ 𝐴 ) ) ↑ 𝑘 ) → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) ) |
| 171 |
60 170
|
mpd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) ∧ 𝐴 ≠ 0 ) → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 172 |
37 171
|
pm2.61dane |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( abs ‘ 𝐴 ) < 1 ) → seq 0 ( + , 𝐹 ) ∈ dom ⇝ ) |