| Step |
Hyp |
Ref |
Expression |
| 1 |
|
geomulcvg.1 |
|- F = ( k e. NN0 |-> ( k x. ( A ^ k ) ) ) |
| 2 |
|
elnn0 |
|- ( k e. NN0 <-> ( k e. NN \/ k = 0 ) ) |
| 3 |
|
simpr |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> A = 0 ) |
| 4 |
3
|
oveq1d |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> ( A ^ k ) = ( 0 ^ k ) ) |
| 5 |
|
0exp |
|- ( k e. NN -> ( 0 ^ k ) = 0 ) |
| 6 |
4 5
|
sylan9eq |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k e. NN ) -> ( A ^ k ) = 0 ) |
| 7 |
6
|
oveq2d |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k e. NN ) -> ( k x. ( A ^ k ) ) = ( k x. 0 ) ) |
| 8 |
|
nncn |
|- ( k e. NN -> k e. CC ) |
| 9 |
8
|
adantl |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k e. NN ) -> k e. CC ) |
| 10 |
9
|
mul01d |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k e. NN ) -> ( k x. 0 ) = 0 ) |
| 11 |
7 10
|
eqtrd |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k e. NN ) -> ( k x. ( A ^ k ) ) = 0 ) |
| 12 |
|
simpr |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k = 0 ) -> k = 0 ) |
| 13 |
12
|
oveq1d |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k = 0 ) -> ( k x. ( A ^ k ) ) = ( 0 x. ( A ^ k ) ) ) |
| 14 |
|
simplll |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k = 0 ) -> A e. CC ) |
| 15 |
|
0nn0 |
|- 0 e. NN0 |
| 16 |
12 15
|
eqeltrdi |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k = 0 ) -> k e. NN0 ) |
| 17 |
14 16
|
expcld |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k = 0 ) -> ( A ^ k ) e. CC ) |
| 18 |
17
|
mul02d |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k = 0 ) -> ( 0 x. ( A ^ k ) ) = 0 ) |
| 19 |
13 18
|
eqtrd |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k = 0 ) -> ( k x. ( A ^ k ) ) = 0 ) |
| 20 |
11 19
|
jaodan |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ ( k e. NN \/ k = 0 ) ) -> ( k x. ( A ^ k ) ) = 0 ) |
| 21 |
2 20
|
sylan2b |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) /\ k e. NN0 ) -> ( k x. ( A ^ k ) ) = 0 ) |
| 22 |
21
|
mpteq2dva |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> ( k e. NN0 |-> ( k x. ( A ^ k ) ) ) = ( k e. NN0 |-> 0 ) ) |
| 23 |
1 22
|
eqtrid |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> F = ( k e. NN0 |-> 0 ) ) |
| 24 |
|
fconstmpt |
|- ( NN0 X. { 0 } ) = ( k e. NN0 |-> 0 ) |
| 25 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 26 |
25
|
xpeq1i |
|- ( NN0 X. { 0 } ) = ( ( ZZ>= ` 0 ) X. { 0 } ) |
| 27 |
24 26
|
eqtr3i |
|- ( k e. NN0 |-> 0 ) = ( ( ZZ>= ` 0 ) X. { 0 } ) |
| 28 |
23 27
|
eqtrdi |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> F = ( ( ZZ>= ` 0 ) X. { 0 } ) ) |
| 29 |
28
|
seqeq3d |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> seq 0 ( + , F ) = seq 0 ( + , ( ( ZZ>= ` 0 ) X. { 0 } ) ) ) |
| 30 |
|
0z |
|- 0 e. ZZ |
| 31 |
|
serclim0 |
|- ( 0 e. ZZ -> seq 0 ( + , ( ( ZZ>= ` 0 ) X. { 0 } ) ) ~~> 0 ) |
| 32 |
30 31
|
ax-mp |
|- seq 0 ( + , ( ( ZZ>= ` 0 ) X. { 0 } ) ) ~~> 0 |
| 33 |
29 32
|
eqbrtrdi |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> seq 0 ( + , F ) ~~> 0 ) |
| 34 |
|
seqex |
|- seq 0 ( + , F ) e. _V |
| 35 |
|
c0ex |
|- 0 e. _V |
| 36 |
34 35
|
breldm |
|- ( seq 0 ( + , F ) ~~> 0 -> seq 0 ( + , F ) e. dom ~~> ) |
| 37 |
33 36
|
syl |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A = 0 ) -> seq 0 ( + , F ) e. dom ~~> ) |
| 38 |
|
1red |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> 1 e. RR ) |
| 39 |
|
abscl |
|- ( A e. CC -> ( abs ` A ) e. RR ) |
| 40 |
39
|
adantr |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) e. RR ) |
| 41 |
|
peano2re |
|- ( ( abs ` A ) e. RR -> ( ( abs ` A ) + 1 ) e. RR ) |
| 42 |
40 41
|
syl |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( abs ` A ) + 1 ) e. RR ) |
| 43 |
42
|
rehalfcld |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( ( abs ` A ) + 1 ) / 2 ) e. RR ) |
| 44 |
43
|
adantr |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> ( ( ( abs ` A ) + 1 ) / 2 ) e. RR ) |
| 45 |
|
absrpcl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( abs ` A ) e. RR+ ) |
| 46 |
45
|
adantlr |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> ( abs ` A ) e. RR+ ) |
| 47 |
44 46
|
rerpdivcld |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) e. RR ) |
| 48 |
40
|
recnd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) e. CC ) |
| 49 |
48
|
mullidd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( 1 x. ( abs ` A ) ) = ( abs ` A ) ) |
| 50 |
|
simpr |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) < 1 ) |
| 51 |
|
1re |
|- 1 e. RR |
| 52 |
|
avglt1 |
|- ( ( ( abs ` A ) e. RR /\ 1 e. RR ) -> ( ( abs ` A ) < 1 <-> ( abs ` A ) < ( ( ( abs ` A ) + 1 ) / 2 ) ) ) |
| 53 |
40 51 52
|
sylancl |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( abs ` A ) < 1 <-> ( abs ` A ) < ( ( ( abs ` A ) + 1 ) / 2 ) ) ) |
| 54 |
50 53
|
mpbid |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) < ( ( ( abs ` A ) + 1 ) / 2 ) ) |
| 55 |
49 54
|
eqbrtrd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( 1 x. ( abs ` A ) ) < ( ( ( abs ` A ) + 1 ) / 2 ) ) |
| 56 |
55
|
adantr |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> ( 1 x. ( abs ` A ) ) < ( ( ( abs ` A ) + 1 ) / 2 ) ) |
| 57 |
38 44 46
|
ltmuldivd |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> ( ( 1 x. ( abs ` A ) ) < ( ( ( abs ` A ) + 1 ) / 2 ) <-> 1 < ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ) ) |
| 58 |
56 57
|
mpbid |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> 1 < ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ) |
| 59 |
|
expmulnbnd |
|- ( ( 1 e. RR /\ ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) e. RR /\ 1 < ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ) -> E. n e. NN0 A. k e. ( ZZ>= ` n ) ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) ) |
| 60 |
38 47 58 59
|
syl3anc |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> E. n e. NN0 A. k e. ( ZZ>= ` n ) ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) ) |
| 61 |
|
eluznn0 |
|- ( ( n e. NN0 /\ k e. ( ZZ>= ` n ) ) -> k e. NN0 ) |
| 62 |
|
nn0cn |
|- ( k e. NN0 -> k e. CC ) |
| 63 |
62
|
adantl |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> k e. CC ) |
| 64 |
63
|
mullidd |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( 1 x. k ) = k ) |
| 65 |
43
|
recnd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( ( abs ` A ) + 1 ) / 2 ) e. CC ) |
| 66 |
65
|
ad2antrr |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( ( ( abs ` A ) + 1 ) / 2 ) e. CC ) |
| 67 |
48
|
ad2antrr |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( abs ` A ) e. CC ) |
| 68 |
46
|
adantr |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( abs ` A ) e. RR+ ) |
| 69 |
68
|
rpne0d |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( abs ` A ) =/= 0 ) |
| 70 |
|
simpr |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> k e. NN0 ) |
| 71 |
66 67 69 70
|
expdivd |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) = ( ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) / ( ( abs ` A ) ^ k ) ) ) |
| 72 |
64 71
|
breq12d |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) <-> k < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) / ( ( abs ` A ) ^ k ) ) ) ) |
| 73 |
|
nn0re |
|- ( k e. NN0 -> k e. RR ) |
| 74 |
73
|
adantl |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> k e. RR ) |
| 75 |
|
reexpcl |
|- ( ( ( ( ( abs ` A ) + 1 ) / 2 ) e. RR /\ k e. NN0 ) -> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) e. RR ) |
| 76 |
44 75
|
sylan |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) e. RR ) |
| 77 |
40
|
adantr |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> ( abs ` A ) e. RR ) |
| 78 |
|
reexpcl |
|- ( ( ( abs ` A ) e. RR /\ k e. NN0 ) -> ( ( abs ` A ) ^ k ) e. RR ) |
| 79 |
77 78
|
sylan |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( ( abs ` A ) ^ k ) e. RR ) |
| 80 |
77
|
adantr |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( abs ` A ) e. RR ) |
| 81 |
|
nn0z |
|- ( k e. NN0 -> k e. ZZ ) |
| 82 |
81
|
adantl |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> k e. ZZ ) |
| 83 |
68
|
rpgt0d |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> 0 < ( abs ` A ) ) |
| 84 |
|
expgt0 |
|- ( ( ( abs ` A ) e. RR /\ k e. ZZ /\ 0 < ( abs ` A ) ) -> 0 < ( ( abs ` A ) ^ k ) ) |
| 85 |
80 82 83 84
|
syl3anc |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> 0 < ( ( abs ` A ) ^ k ) ) |
| 86 |
|
ltmuldiv |
|- ( ( k e. RR /\ ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) e. RR /\ ( ( ( abs ` A ) ^ k ) e. RR /\ 0 < ( ( abs ` A ) ^ k ) ) ) -> ( ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) <-> k < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) / ( ( abs ` A ) ^ k ) ) ) ) |
| 87 |
74 76 79 85 86
|
syl112anc |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) <-> k < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) / ( ( abs ` A ) ^ k ) ) ) ) |
| 88 |
72 87
|
bitr4d |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ k e. NN0 ) -> ( ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) <-> ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) |
| 89 |
61 88
|
sylan2 |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ ( n e. NN0 /\ k e. ( ZZ>= ` n ) ) ) -> ( ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) <-> ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) |
| 90 |
89
|
anassrs |
|- ( ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ n e. NN0 ) /\ k e. ( ZZ>= ` n ) ) -> ( ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) <-> ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) |
| 91 |
90
|
ralbidva |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ n e. NN0 ) -> ( A. k e. ( ZZ>= ` n ) ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) <-> A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) |
| 92 |
|
simprl |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) -> n e. NN0 ) |
| 93 |
|
oveq2 |
|- ( k = m -> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) |
| 94 |
|
eqid |
|- ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) = ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) |
| 95 |
|
ovex |
|- ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) e. _V |
| 96 |
93 94 95
|
fvmpt |
|- ( m e. NN0 -> ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` m ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) |
| 97 |
96
|
adantl |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` m ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) |
| 98 |
43
|
ad2antrr |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( ( ( abs ` A ) + 1 ) / 2 ) e. RR ) |
| 99 |
|
simpr |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> m e. NN0 ) |
| 100 |
98 99
|
reexpcld |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) e. RR ) |
| 101 |
97 100
|
eqeltrd |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` m ) e. RR ) |
| 102 |
|
id |
|- ( k = m -> k = m ) |
| 103 |
|
oveq2 |
|- ( k = m -> ( A ^ k ) = ( A ^ m ) ) |
| 104 |
102 103
|
oveq12d |
|- ( k = m -> ( k x. ( A ^ k ) ) = ( m x. ( A ^ m ) ) ) |
| 105 |
|
ovex |
|- ( m x. ( A ^ m ) ) e. _V |
| 106 |
104 1 105
|
fvmpt |
|- ( m e. NN0 -> ( F ` m ) = ( m x. ( A ^ m ) ) ) |
| 107 |
106
|
adantl |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( F ` m ) = ( m x. ( A ^ m ) ) ) |
| 108 |
|
nn0cn |
|- ( m e. NN0 -> m e. CC ) |
| 109 |
108
|
adantl |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> m e. CC ) |
| 110 |
|
expcl |
|- ( ( A e. CC /\ m e. NN0 ) -> ( A ^ m ) e. CC ) |
| 111 |
110
|
ad4ant14 |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( A ^ m ) e. CC ) |
| 112 |
109 111
|
mulcld |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( m x. ( A ^ m ) ) e. CC ) |
| 113 |
107 112
|
eqeltrd |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. NN0 ) -> ( F ` m ) e. CC ) |
| 114 |
|
0red |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 e. RR ) |
| 115 |
|
absge0 |
|- ( A e. CC -> 0 <_ ( abs ` A ) ) |
| 116 |
115
|
adantr |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 <_ ( abs ` A ) ) |
| 117 |
114 40 43 116 54
|
lelttrd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 < ( ( ( abs ` A ) + 1 ) / 2 ) ) |
| 118 |
114 43 117
|
ltled |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 <_ ( ( ( abs ` A ) + 1 ) / 2 ) ) |
| 119 |
43 118
|
absidd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( ( ( abs ` A ) + 1 ) / 2 ) ) = ( ( ( abs ` A ) + 1 ) / 2 ) ) |
| 120 |
|
avglt2 |
|- ( ( ( abs ` A ) e. RR /\ 1 e. RR ) -> ( ( abs ` A ) < 1 <-> ( ( ( abs ` A ) + 1 ) / 2 ) < 1 ) ) |
| 121 |
40 51 120
|
sylancl |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( abs ` A ) < 1 <-> ( ( ( abs ` A ) + 1 ) / 2 ) < 1 ) ) |
| 122 |
50 121
|
mpbid |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( ( abs ` A ) + 1 ) / 2 ) < 1 ) |
| 123 |
119 122
|
eqbrtrd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` ( ( ( abs ` A ) + 1 ) / 2 ) ) < 1 ) |
| 124 |
|
oveq2 |
|- ( k = n -> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ n ) ) |
| 125 |
|
ovex |
|- ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ n ) e. _V |
| 126 |
124 94 125
|
fvmpt |
|- ( n e. NN0 -> ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` n ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ n ) ) |
| 127 |
126
|
adantl |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` n ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ n ) ) |
| 128 |
65 123 127
|
geolim |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) ~~> ( 1 / ( 1 - ( ( ( abs ` A ) + 1 ) / 2 ) ) ) ) |
| 129 |
|
seqex |
|- seq 0 ( + , ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) e. _V |
| 130 |
|
ovex |
|- ( 1 / ( 1 - ( ( ( abs ` A ) + 1 ) / 2 ) ) ) e. _V |
| 131 |
129 130
|
breldm |
|- ( seq 0 ( + , ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) ~~> ( 1 / ( 1 - ( ( ( abs ` A ) + 1 ) / 2 ) ) ) -> seq 0 ( + , ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) e. dom ~~> ) |
| 132 |
128 131
|
syl |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) e. dom ~~> ) |
| 133 |
132
|
adantr |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) -> seq 0 ( + , ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) e. dom ~~> ) |
| 134 |
|
1red |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) -> 1 e. RR ) |
| 135 |
|
eluznn0 |
|- ( ( n e. NN0 /\ m e. ( ZZ>= ` n ) ) -> m e. NN0 ) |
| 136 |
92 135
|
sylan |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> m e. NN0 ) |
| 137 |
136
|
nn0red |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> m e. RR ) |
| 138 |
|
simplll |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> A e. CC ) |
| 139 |
138
|
abscld |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` A ) e. RR ) |
| 140 |
139 136
|
reexpcld |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( ( abs ` A ) ^ m ) e. RR ) |
| 141 |
137 140
|
remulcld |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( m x. ( ( abs ` A ) ^ m ) ) e. RR ) |
| 142 |
136 100
|
syldan |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) e. RR ) |
| 143 |
|
simprr |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) -> A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) |
| 144 |
|
oveq2 |
|- ( k = m -> ( ( abs ` A ) ^ k ) = ( ( abs ` A ) ^ m ) ) |
| 145 |
102 144
|
oveq12d |
|- ( k = m -> ( k x. ( ( abs ` A ) ^ k ) ) = ( m x. ( ( abs ` A ) ^ m ) ) ) |
| 146 |
145 93
|
breq12d |
|- ( k = m -> ( ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) <-> ( m x. ( ( abs ` A ) ^ m ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) ) |
| 147 |
146
|
rspccva |
|- ( ( A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) /\ m e. ( ZZ>= ` n ) ) -> ( m x. ( ( abs ` A ) ^ m ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) |
| 148 |
143 147
|
sylan |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( m x. ( ( abs ` A ) ^ m ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) |
| 149 |
141 142 148
|
ltled |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( m x. ( ( abs ` A ) ^ m ) ) <_ ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) |
| 150 |
136
|
nn0cnd |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> m e. CC ) |
| 151 |
138 136
|
expcld |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( A ^ m ) e. CC ) |
| 152 |
150 151
|
absmuld |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` ( m x. ( A ^ m ) ) ) = ( ( abs ` m ) x. ( abs ` ( A ^ m ) ) ) ) |
| 153 |
136
|
nn0ge0d |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> 0 <_ m ) |
| 154 |
137 153
|
absidd |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` m ) = m ) |
| 155 |
138 136
|
absexpd |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` ( A ^ m ) ) = ( ( abs ` A ) ^ m ) ) |
| 156 |
154 155
|
oveq12d |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( ( abs ` m ) x. ( abs ` ( A ^ m ) ) ) = ( m x. ( ( abs ` A ) ^ m ) ) ) |
| 157 |
152 156
|
eqtrd |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` ( m x. ( A ^ m ) ) ) = ( m x. ( ( abs ` A ) ^ m ) ) ) |
| 158 |
142
|
recnd |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) e. CC ) |
| 159 |
158
|
mullidd |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( 1 x. ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) |
| 160 |
149 157 159
|
3brtr4d |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` ( m x. ( A ^ m ) ) ) <_ ( 1 x. ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) ) |
| 161 |
136 106
|
syl |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( F ` m ) = ( m x. ( A ^ m ) ) ) |
| 162 |
161
|
fveq2d |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` ( F ` m ) ) = ( abs ` ( m x. ( A ^ m ) ) ) ) |
| 163 |
136 96
|
syl |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` m ) = ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) |
| 164 |
163
|
oveq2d |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( 1 x. ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` m ) ) = ( 1 x. ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ m ) ) ) |
| 165 |
160 162 164
|
3brtr4d |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) /\ m e. ( ZZ>= ` n ) ) -> ( abs ` ( F ` m ) ) <_ ( 1 x. ( ( k e. NN0 |-> ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ` m ) ) ) |
| 166 |
25 92 101 113 133 134 165
|
cvgcmpce |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ ( n e. NN0 /\ A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) ) ) -> seq 0 ( + , F ) e. dom ~~> ) |
| 167 |
166
|
expr |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ n e. NN0 ) -> ( A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) -> seq 0 ( + , F ) e. dom ~~> ) ) |
| 168 |
167
|
adantlr |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ n e. NN0 ) -> ( A. k e. ( ZZ>= ` n ) ( k x. ( ( abs ` A ) ^ k ) ) < ( ( ( ( abs ` A ) + 1 ) / 2 ) ^ k ) -> seq 0 ( + , F ) e. dom ~~> ) ) |
| 169 |
91 168
|
sylbid |
|- ( ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) /\ n e. NN0 ) -> ( A. k e. ( ZZ>= ` n ) ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) -> seq 0 ( + , F ) e. dom ~~> ) ) |
| 170 |
169
|
rexlimdva |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> ( E. n e. NN0 A. k e. ( ZZ>= ` n ) ( 1 x. k ) < ( ( ( ( ( abs ` A ) + 1 ) / 2 ) / ( abs ` A ) ) ^ k ) -> seq 0 ( + , F ) e. dom ~~> ) ) |
| 171 |
60 170
|
mpd |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ A =/= 0 ) -> seq 0 ( + , F ) e. dom ~~> ) |
| 172 |
37 171
|
pm2.61dane |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , F ) e. dom ~~> ) |