| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 2 |  | elicopnf | ⊢ ( 1  ∈  ℝ  →  ( 𝑦  ∈  ( 1 [,) +∞ )  ↔  ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 ) ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( 𝑦  ∈  ( 1 [,) +∞ )  ↔  ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 ) ) | 
						
							| 4 | 3 | simplbi | ⊢ ( 𝑦  ∈  ( 1 [,) +∞ )  →  𝑦  ∈  ℝ ) | 
						
							| 5 | 4 | ssriv | ⊢ ( 1 [,) +∞ )  ⊆  ℝ | 
						
							| 6 | 5 | a1i | ⊢ ( ⊤  →  ( 1 [,) +∞ )  ⊆  ℝ ) | 
						
							| 7 | 1 | a1i | ⊢ ( ⊤  →  1  ∈  ℝ ) | 
						
							| 8 |  | fzfid | ⊢ ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  →  ( 1 ... ( ⌊ ‘ 𝑦 ) )  ∈  Fin ) | 
						
							| 9 |  | elfznn | ⊢ ( 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) )  →  𝑚  ∈  ℕ ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 11 |  | vmacl | ⊢ ( 𝑚  ∈  ℕ  →  ( Λ ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  ( Λ ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 13 | 10 | nnrpd | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  𝑚  ∈  ℝ+ ) | 
						
							| 14 | 13 | relogcld | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  ( log ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 15 | 12 14 | remulcld | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  ∈  ℝ ) | 
						
							| 16 | 8 15 | fsumrecl | ⊢ ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  ∈  ℝ ) | 
						
							| 17 | 4 | adantl | ⊢ ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  →  𝑦  ∈  ℝ ) | 
						
							| 18 |  | chpcl | ⊢ ( 𝑦  ∈  ℝ  →  ( ψ ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 19 | 17 18 | syl | ⊢ ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  →  ( ψ ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 20 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 21 | 20 | a1i | ⊢ ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  →  1  ∈  ℝ+ ) | 
						
							| 22 | 3 | simprbi | ⊢ ( 𝑦  ∈  ( 1 [,) +∞ )  →  1  ≤  𝑦 ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  →  1  ≤  𝑦 ) | 
						
							| 24 | 17 21 23 | rpgecld | ⊢ ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  →  𝑦  ∈  ℝ+ ) | 
						
							| 25 | 24 | relogcld | ⊢ ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  →  ( log ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 26 | 19 25 | remulcld | ⊢ ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  →  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) )  ∈  ℝ ) | 
						
							| 27 | 16 26 | resubcld | ⊢ ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) )  ∈  ℝ ) | 
						
							| 28 | 27 24 | rerpdivcld | ⊢ ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  →  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) )  /  𝑦 )  ∈  ℝ ) | 
						
							| 29 | 28 | recnd | ⊢ ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  →  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) )  /  𝑦 )  ∈  ℂ ) | 
						
							| 30 | 24 | ex | ⊢ ( ⊤  →  ( 𝑦  ∈  ( 1 [,) +∞ )  →  𝑦  ∈  ℝ+ ) ) | 
						
							| 31 | 30 | ssrdv | ⊢ ( ⊤  →  ( 1 [,) +∞ )  ⊆  ℝ+ ) | 
						
							| 32 |  | selberg2lem | ⊢ ( 𝑦  ∈  ℝ+  ↦  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) )  /  𝑦 ) )  ∈  𝑂(1) | 
						
							| 33 | 32 | a1i | ⊢ ( ⊤  →  ( 𝑦  ∈  ℝ+  ↦  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) )  /  𝑦 ) )  ∈  𝑂(1) ) | 
						
							| 34 | 31 33 | o1res2 | ⊢ ( ⊤  →  ( 𝑦  ∈  ( 1 [,) +∞ )  ↦  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) )  /  𝑦 ) )  ∈  𝑂(1) ) | 
						
							| 35 |  | fzfid | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 ) )  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∈  Fin ) | 
						
							| 36 |  | elfznn | ⊢ ( 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑚  ∈  ℕ ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( ( ⊤  ∧  ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 38 | 37 11 | syl | ⊢ ( ( ( ⊤  ∧  ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Λ ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 39 | 37 | nnrpd | ⊢ ( ( ( ⊤  ∧  ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑚  ∈  ℝ+ ) | 
						
							| 40 | 39 | relogcld | ⊢ ( ( ( ⊤  ∧  ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( log ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 41 | 38 40 | remulcld | ⊢ ( ( ( ⊤  ∧  ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  ∈  ℝ ) | 
						
							| 42 | 35 41 | fsumrecl | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  ∈  ℝ ) | 
						
							| 43 |  | chpcl | ⊢ ( 𝑥  ∈  ℝ  →  ( ψ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 44 | 43 | ad2antrl | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 ) )  →  ( ψ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 45 |  | simprl | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 46 | 20 | a1i | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 ) )  →  1  ∈  ℝ+ ) | 
						
							| 47 |  | simprr | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 ) )  →  1  ≤  𝑥 ) | 
						
							| 48 | 45 46 47 | rpgecld | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 ) )  →  𝑥  ∈  ℝ+ ) | 
						
							| 49 | 48 | relogcld | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 ) )  →  ( log ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 50 | 44 49 | remulcld | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 ) )  →  ( ( ψ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 51 | 42 50 | readdcld | ⊢ ( ( ⊤  ∧  ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 ) )  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  +  ( ( ψ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 52 | 27 | adantr | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) )  ∈  ℝ ) | 
						
							| 53 | 52 | recnd | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) )  ∈  ℂ ) | 
						
							| 54 | 24 | adantr | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  𝑦  ∈  ℝ+ ) | 
						
							| 55 | 54 | rpcnd | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  𝑦  ∈  ℂ ) | 
						
							| 56 | 54 | rpne0d | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  𝑦  ≠  0 ) | 
						
							| 57 | 53 55 56 | absdivd | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) )  /  𝑦 ) )  =  ( ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) ) )  /  ( abs ‘ 𝑦 ) ) ) | 
						
							| 58 | 17 | adantr | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  𝑦  ∈  ℝ ) | 
						
							| 59 | 54 | rpge0d | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  0  ≤  𝑦 ) | 
						
							| 60 | 58 59 | absidd | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( abs ‘ 𝑦 )  =  𝑦 ) | 
						
							| 61 | 60 | oveq2d | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) ) )  /  ( abs ‘ 𝑦 ) )  =  ( ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) ) )  /  𝑦 ) ) | 
						
							| 62 | 57 61 | eqtrd | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) )  /  𝑦 ) )  =  ( ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) ) )  /  𝑦 ) ) | 
						
							| 63 | 53 | abscld | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) ) )  ∈  ℝ ) | 
						
							| 64 | 63 54 | rerpdivcld | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) ) )  /  𝑦 )  ∈  ℝ ) | 
						
							| 65 | 42 | ad2ant2r | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  ∈  ℝ ) | 
						
							| 66 |  | simprll | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  𝑥  ∈  ℝ ) | 
						
							| 67 | 66 43 | syl | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( ψ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 68 |  | simprr | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  𝑦  <  𝑥 ) | 
						
							| 69 | 58 66 68 | ltled | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  𝑦  ≤  𝑥 ) | 
						
							| 70 | 66 54 69 | rpgecld | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  𝑥  ∈  ℝ+ ) | 
						
							| 71 | 70 | relogcld | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( log ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 72 | 67 71 | remulcld | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( ( ψ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 73 | 65 72 | readdcld | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  +  ( ( ψ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 74 | 20 | a1i | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  1  ∈  ℝ+ ) | 
						
							| 75 | 53 | absge0d | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  0  ≤  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) ) ) ) | 
						
							| 76 | 23 | adantr | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  1  ≤  𝑦 ) | 
						
							| 77 | 74 54 63 75 76 | lediv2ad | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) ) )  /  𝑦 )  ≤  ( ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) ) )  /  1 ) ) | 
						
							| 78 | 63 | recnd | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) ) )  ∈  ℂ ) | 
						
							| 79 | 78 | div1d | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) ) )  /  1 )  =  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) ) ) ) | 
						
							| 80 | 77 79 | breqtrd | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) ) )  /  𝑦 )  ≤  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) ) ) ) | 
						
							| 81 | 16 | adantr | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  ∈  ℝ ) | 
						
							| 82 | 58 18 | syl | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( ψ ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 83 | 54 | relogcld | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( log ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 84 | 82 83 | remulcld | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) )  ∈  ℝ ) | 
						
							| 85 | 81 84 | readdcld | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  +  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) )  ∈  ℝ ) | 
						
							| 86 | 81 | recnd | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  ∈  ℂ ) | 
						
							| 87 | 26 | adantr | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) )  ∈  ℝ ) | 
						
							| 88 | 87 | recnd | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) )  ∈  ℂ ) | 
						
							| 89 | 86 88 | abs2dif2d | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) ) )  ≤  ( ( abs ‘ Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) ) )  +  ( abs ‘ ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) ) ) ) | 
						
							| 90 |  | vmage0 | ⊢ ( 𝑚  ∈  ℕ  →  0  ≤  ( Λ ‘ 𝑚 ) ) | 
						
							| 91 | 10 90 | syl | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  0  ≤  ( Λ ‘ 𝑚 ) ) | 
						
							| 92 | 10 | nnred | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  𝑚  ∈  ℝ ) | 
						
							| 93 | 10 | nnge1d | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  1  ≤  𝑚 ) | 
						
							| 94 | 92 93 | logge0d | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  0  ≤  ( log ‘ 𝑚 ) ) | 
						
							| 95 | 12 14 91 94 | mulge0d | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  0  ≤  ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) ) ) | 
						
							| 96 | 8 15 95 | fsumge0 | ⊢ ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  →  0  ≤  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) ) ) | 
						
							| 97 | 96 | adantr | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  0  ≤  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) ) ) | 
						
							| 98 | 81 97 | absidd | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( abs ‘ Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) ) )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) ) ) | 
						
							| 99 |  | chpge0 | ⊢ ( 𝑦  ∈  ℝ  →  0  ≤  ( ψ ‘ 𝑦 ) ) | 
						
							| 100 | 58 99 | syl | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  0  ≤  ( ψ ‘ 𝑦 ) ) | 
						
							| 101 | 58 76 | logge0d | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  0  ≤  ( log ‘ 𝑦 ) ) | 
						
							| 102 | 82 83 100 101 | mulge0d | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  0  ≤  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) ) | 
						
							| 103 | 87 102 | absidd | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( abs ‘ ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) )  =  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) ) | 
						
							| 104 | 98 103 | oveq12d | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( ( abs ‘ Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) ) )  +  ( abs ‘ ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) ) )  =  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  +  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) ) ) | 
						
							| 105 | 89 104 | breqtrd | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) ) )  ≤  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  +  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) ) ) | 
						
							| 106 |  | fzfid | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∈  Fin ) | 
						
							| 107 | 36 | adantl | ⊢ ( ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 108 | 107 11 | syl | ⊢ ( ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Λ ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 109 | 107 | nnrpd | ⊢ ( ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑚  ∈  ℝ+ ) | 
						
							| 110 | 109 | relogcld | ⊢ ( ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( log ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 111 | 108 110 | remulcld | ⊢ ( ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  ∈  ℝ ) | 
						
							| 112 | 107 90 | syl | ⊢ ( ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( Λ ‘ 𝑚 ) ) | 
						
							| 113 | 107 | nnred | ⊢ ( ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑚  ∈  ℝ ) | 
						
							| 114 | 107 | nnge1d | ⊢ ( ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  1  ≤  𝑚 ) | 
						
							| 115 | 113 114 | logge0d | ⊢ ( ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( log ‘ 𝑚 ) ) | 
						
							| 116 | 108 110 112 115 | mulge0d | ⊢ ( ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) ) ) | 
						
							| 117 |  | flword2 | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑥  ∈  ℝ  ∧  𝑦  ≤  𝑥 )  →  ( ⌊ ‘ 𝑥 )  ∈  ( ℤ≥ ‘ ( ⌊ ‘ 𝑦 ) ) ) | 
						
							| 118 | 58 66 69 117 | syl3anc | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( ⌊ ‘ 𝑥 )  ∈  ( ℤ≥ ‘ ( ⌊ ‘ 𝑦 ) ) ) | 
						
							| 119 |  | fzss2 | ⊢ ( ( ⌊ ‘ 𝑥 )  ∈  ( ℤ≥ ‘ ( ⌊ ‘ 𝑦 ) )  →  ( 1 ... ( ⌊ ‘ 𝑦 ) )  ⊆  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) | 
						
							| 120 | 118 119 | syl | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( 1 ... ( ⌊ ‘ 𝑦 ) )  ⊆  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) | 
						
							| 121 | 106 111 116 120 | fsumless | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  ≤  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) ) ) | 
						
							| 122 |  | chpwordi | ⊢ ( ( 𝑦  ∈  ℝ  ∧  𝑥  ∈  ℝ  ∧  𝑦  ≤  𝑥 )  →  ( ψ ‘ 𝑦 )  ≤  ( ψ ‘ 𝑥 ) ) | 
						
							| 123 | 58 66 69 122 | syl3anc | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( ψ ‘ 𝑦 )  ≤  ( ψ ‘ 𝑥 ) ) | 
						
							| 124 | 54 70 | logled | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( 𝑦  ≤  𝑥  ↔  ( log ‘ 𝑦 )  ≤  ( log ‘ 𝑥 ) ) ) | 
						
							| 125 | 69 124 | mpbid | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( log ‘ 𝑦 )  ≤  ( log ‘ 𝑥 ) ) | 
						
							| 126 | 82 67 83 71 100 101 123 125 | lemul12ad | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) )  ≤  ( ( ψ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) ) | 
						
							| 127 | 81 84 65 72 121 126 | le2addd | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  +  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) )  ≤  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  +  ( ( ψ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 128 | 63 85 73 105 127 | letrd | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) ) )  ≤  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  +  ( ( ψ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 129 | 64 63 73 80 128 | letrd | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( ( abs ‘ ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) ) )  /  𝑦 )  ≤  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  +  ( ( ψ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 130 | 62 129 | eqbrtrd | ⊢ ( ( ( ⊤  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  ∧  ( ( 𝑥  ∈  ℝ  ∧  1  ≤  𝑥 )  ∧  𝑦  <  𝑥 ) )  →  ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) )  /  𝑦 ) )  ≤  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  +  ( ( ψ ‘ 𝑥 )  ·  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 131 | 6 7 29 34 51 130 | o1bddrp | ⊢ ( ⊤  →  ∃ 𝑐  ∈  ℝ+ ∀ 𝑦  ∈  ( 1 [,) +∞ ) ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) )  /  𝑦 ) )  ≤  𝑐 ) | 
						
							| 132 | 131 | mptru | ⊢ ∃ 𝑐  ∈  ℝ+ ∀ 𝑦  ∈  ( 1 [,) +∞ ) ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) )  /  𝑦 ) )  ≤  𝑐 | 
						
							| 133 |  | simpl | ⊢ ( ( 𝑐  ∈  ℝ+  ∧  ∀ 𝑦  ∈  ( 1 [,) +∞ ) ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) )  /  𝑦 ) )  ≤  𝑐 )  →  𝑐  ∈  ℝ+ ) | 
						
							| 134 |  | simpr | ⊢ ( ( 𝑐  ∈  ℝ+  ∧  ∀ 𝑦  ∈  ( 1 [,) +∞ ) ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) )  /  𝑦 ) )  ≤  𝑐 )  →  ∀ 𝑦  ∈  ( 1 [,) +∞ ) ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) )  /  𝑦 ) )  ≤  𝑐 ) | 
						
							| 135 | 133 134 | selberg3lem1 | ⊢ ( ( 𝑐  ∈  ℝ+  ∧  ∀ 𝑦  ∈  ( 1 [,) +∞ ) ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) )  /  𝑦 ) )  ≤  𝑐 )  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( ( ( 2  /  ( log ‘ 𝑥 ) )  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( log ‘ 𝑛 ) ) )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 ) )  ∈  𝑂(1) ) | 
						
							| 136 | 135 | rexlimiva | ⊢ ( ∃ 𝑐  ∈  ℝ+ ∀ 𝑦  ∈  ( 1 [,) +∞ ) ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( log ‘ 𝑚 ) )  −  ( ( ψ ‘ 𝑦 )  ·  ( log ‘ 𝑦 ) ) )  /  𝑦 ) )  ≤  𝑐  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( ( ( 2  /  ( log ‘ 𝑥 ) )  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( log ‘ 𝑛 ) ) )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 ) )  ∈  𝑂(1) ) | 
						
							| 137 | 132 136 | ax-mp | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( ( ( 2  /  ( log ‘ 𝑥 ) )  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑥  /  𝑛 ) ) )  ·  ( log ‘ 𝑛 ) ) )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ψ ‘ ( 𝑥  /  𝑛 ) ) ) )  /  𝑥 ) )  ∈  𝑂(1) |