Step |
Hyp |
Ref |
Expression |
1 |
|
sqrlem1.1 |
⊢ 𝑆 = { 𝑥 ∈ ℝ+ ∣ ( 𝑥 ↑ 2 ) ≤ 𝐴 } |
2 |
|
sqrlem1.2 |
⊢ 𝐵 = sup ( 𝑆 , ℝ , < ) |
3 |
|
sqrlem5.3 |
⊢ 𝑇 = { 𝑦 ∣ ∃ 𝑎 ∈ 𝑆 ∃ 𝑏 ∈ 𝑆 𝑦 = ( 𝑎 · 𝑏 ) } |
4 |
1 2 3
|
sqrlem5 |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( ( 𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑢 ∈ 𝑇 𝑢 ≤ 𝑣 ) ∧ ( 𝐵 ↑ 2 ) = sup ( 𝑇 , ℝ , < ) ) ) |
5 |
4
|
simprd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝐵 ↑ 2 ) = sup ( 𝑇 , ℝ , < ) ) |
6 |
|
vex |
⊢ 𝑣 ∈ V |
7 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑣 → ( 𝑦 = ( 𝑎 · 𝑏 ) ↔ 𝑣 = ( 𝑎 · 𝑏 ) ) ) |
8 |
7
|
2rexbidv |
⊢ ( 𝑦 = 𝑣 → ( ∃ 𝑎 ∈ 𝑆 ∃ 𝑏 ∈ 𝑆 𝑦 = ( 𝑎 · 𝑏 ) ↔ ∃ 𝑎 ∈ 𝑆 ∃ 𝑏 ∈ 𝑆 𝑣 = ( 𝑎 · 𝑏 ) ) ) |
9 |
6 8 3
|
elab2 |
⊢ ( 𝑣 ∈ 𝑇 ↔ ∃ 𝑎 ∈ 𝑆 ∃ 𝑏 ∈ 𝑆 𝑣 = ( 𝑎 · 𝑏 ) ) |
10 |
|
oveq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 ↑ 2 ) = ( 𝑎 ↑ 2 ) ) |
11 |
10
|
breq1d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 ↑ 2 ) ≤ 𝐴 ↔ ( 𝑎 ↑ 2 ) ≤ 𝐴 ) ) |
12 |
11 1
|
elrab2 |
⊢ ( 𝑎 ∈ 𝑆 ↔ ( 𝑎 ∈ ℝ+ ∧ ( 𝑎 ↑ 2 ) ≤ 𝐴 ) ) |
13 |
12
|
simplbi |
⊢ ( 𝑎 ∈ 𝑆 → 𝑎 ∈ ℝ+ ) |
14 |
|
oveq1 |
⊢ ( 𝑥 = 𝑏 → ( 𝑥 ↑ 2 ) = ( 𝑏 ↑ 2 ) ) |
15 |
14
|
breq1d |
⊢ ( 𝑥 = 𝑏 → ( ( 𝑥 ↑ 2 ) ≤ 𝐴 ↔ ( 𝑏 ↑ 2 ) ≤ 𝐴 ) ) |
16 |
15 1
|
elrab2 |
⊢ ( 𝑏 ∈ 𝑆 ↔ ( 𝑏 ∈ ℝ+ ∧ ( 𝑏 ↑ 2 ) ≤ 𝐴 ) ) |
17 |
16
|
simplbi |
⊢ ( 𝑏 ∈ 𝑆 → 𝑏 ∈ ℝ+ ) |
18 |
|
rpre |
⊢ ( 𝑎 ∈ ℝ+ → 𝑎 ∈ ℝ ) |
19 |
18
|
adantr |
⊢ ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) → 𝑎 ∈ ℝ ) |
20 |
|
rpre |
⊢ ( 𝑏 ∈ ℝ+ → 𝑏 ∈ ℝ ) |
21 |
20
|
adantl |
⊢ ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) → 𝑏 ∈ ℝ ) |
22 |
|
rpgt0 |
⊢ ( 𝑏 ∈ ℝ+ → 0 < 𝑏 ) |
23 |
22
|
adantl |
⊢ ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) → 0 < 𝑏 ) |
24 |
|
lemul1 |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ∧ ( 𝑏 ∈ ℝ ∧ 0 < 𝑏 ) ) → ( 𝑎 ≤ 𝑏 ↔ ( 𝑎 · 𝑏 ) ≤ ( 𝑏 · 𝑏 ) ) ) |
25 |
19 21 21 23 24
|
syl112anc |
⊢ ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) → ( 𝑎 ≤ 𝑏 ↔ ( 𝑎 · 𝑏 ) ≤ ( 𝑏 · 𝑏 ) ) ) |
26 |
13 17 25
|
syl2an |
⊢ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) → ( 𝑎 ≤ 𝑏 ↔ ( 𝑎 · 𝑏 ) ≤ ( 𝑏 · 𝑏 ) ) ) |
27 |
17
|
rpcnd |
⊢ ( 𝑏 ∈ 𝑆 → 𝑏 ∈ ℂ ) |
28 |
27
|
sqvald |
⊢ ( 𝑏 ∈ 𝑆 → ( 𝑏 ↑ 2 ) = ( 𝑏 · 𝑏 ) ) |
29 |
28
|
breq2d |
⊢ ( 𝑏 ∈ 𝑆 → ( ( 𝑎 · 𝑏 ) ≤ ( 𝑏 ↑ 2 ) ↔ ( 𝑎 · 𝑏 ) ≤ ( 𝑏 · 𝑏 ) ) ) |
30 |
29
|
adantl |
⊢ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) → ( ( 𝑎 · 𝑏 ) ≤ ( 𝑏 ↑ 2 ) ↔ ( 𝑎 · 𝑏 ) ≤ ( 𝑏 · 𝑏 ) ) ) |
31 |
26 30
|
bitr4d |
⊢ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) → ( 𝑎 ≤ 𝑏 ↔ ( 𝑎 · 𝑏 ) ≤ ( 𝑏 ↑ 2 ) ) ) |
32 |
31
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑎 ≤ 𝑏 ↔ ( 𝑎 · 𝑏 ) ≤ ( 𝑏 ↑ 2 ) ) ) |
33 |
16
|
simprbi |
⊢ ( 𝑏 ∈ 𝑆 → ( 𝑏 ↑ 2 ) ≤ 𝐴 ) |
34 |
33
|
ad2antll |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑏 ↑ 2 ) ≤ 𝐴 ) |
35 |
13
|
rpred |
⊢ ( 𝑎 ∈ 𝑆 → 𝑎 ∈ ℝ ) |
36 |
17
|
rpred |
⊢ ( 𝑏 ∈ 𝑆 → 𝑏 ∈ ℝ ) |
37 |
|
remulcl |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝑎 · 𝑏 ) ∈ ℝ ) |
38 |
35 36 37
|
syl2an |
⊢ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) → ( 𝑎 · 𝑏 ) ∈ ℝ ) |
39 |
38
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑎 · 𝑏 ) ∈ ℝ ) |
40 |
36
|
resqcld |
⊢ ( 𝑏 ∈ 𝑆 → ( 𝑏 ↑ 2 ) ∈ ℝ ) |
41 |
40
|
ad2antll |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑏 ↑ 2 ) ∈ ℝ ) |
42 |
|
rpre |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) |
43 |
42
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → 𝐴 ∈ ℝ ) |
44 |
|
letr |
⊢ ( ( ( 𝑎 · 𝑏 ) ∈ ℝ ∧ ( 𝑏 ↑ 2 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( ( 𝑎 · 𝑏 ) ≤ ( 𝑏 ↑ 2 ) ∧ ( 𝑏 ↑ 2 ) ≤ 𝐴 ) → ( 𝑎 · 𝑏 ) ≤ 𝐴 ) ) |
45 |
39 41 43 44
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( ( ( 𝑎 · 𝑏 ) ≤ ( 𝑏 ↑ 2 ) ∧ ( 𝑏 ↑ 2 ) ≤ 𝐴 ) → ( 𝑎 · 𝑏 ) ≤ 𝐴 ) ) |
46 |
34 45
|
mpan2d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( ( 𝑎 · 𝑏 ) ≤ ( 𝑏 ↑ 2 ) → ( 𝑎 · 𝑏 ) ≤ 𝐴 ) ) |
47 |
32 46
|
sylbid |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑎 ≤ 𝑏 → ( 𝑎 · 𝑏 ) ≤ 𝐴 ) ) |
48 |
|
rpgt0 |
⊢ ( 𝑎 ∈ ℝ+ → 0 < 𝑎 ) |
49 |
48
|
adantr |
⊢ ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) → 0 < 𝑎 ) |
50 |
|
lemul2 |
⊢ ( ( 𝑏 ∈ ℝ ∧ 𝑎 ∈ ℝ ∧ ( 𝑎 ∈ ℝ ∧ 0 < 𝑎 ) ) → ( 𝑏 ≤ 𝑎 ↔ ( 𝑎 · 𝑏 ) ≤ ( 𝑎 · 𝑎 ) ) ) |
51 |
21 19 19 49 50
|
syl112anc |
⊢ ( ( 𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) → ( 𝑏 ≤ 𝑎 ↔ ( 𝑎 · 𝑏 ) ≤ ( 𝑎 · 𝑎 ) ) ) |
52 |
13 17 51
|
syl2an |
⊢ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) → ( 𝑏 ≤ 𝑎 ↔ ( 𝑎 · 𝑏 ) ≤ ( 𝑎 · 𝑎 ) ) ) |
53 |
13
|
rpcnd |
⊢ ( 𝑎 ∈ 𝑆 → 𝑎 ∈ ℂ ) |
54 |
53
|
sqvald |
⊢ ( 𝑎 ∈ 𝑆 → ( 𝑎 ↑ 2 ) = ( 𝑎 · 𝑎 ) ) |
55 |
54
|
breq2d |
⊢ ( 𝑎 ∈ 𝑆 → ( ( 𝑎 · 𝑏 ) ≤ ( 𝑎 ↑ 2 ) ↔ ( 𝑎 · 𝑏 ) ≤ ( 𝑎 · 𝑎 ) ) ) |
56 |
55
|
adantr |
⊢ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) → ( ( 𝑎 · 𝑏 ) ≤ ( 𝑎 ↑ 2 ) ↔ ( 𝑎 · 𝑏 ) ≤ ( 𝑎 · 𝑎 ) ) ) |
57 |
52 56
|
bitr4d |
⊢ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) → ( 𝑏 ≤ 𝑎 ↔ ( 𝑎 · 𝑏 ) ≤ ( 𝑎 ↑ 2 ) ) ) |
58 |
57
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑏 ≤ 𝑎 ↔ ( 𝑎 · 𝑏 ) ≤ ( 𝑎 ↑ 2 ) ) ) |
59 |
12
|
simprbi |
⊢ ( 𝑎 ∈ 𝑆 → ( 𝑎 ↑ 2 ) ≤ 𝐴 ) |
60 |
59
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑎 ↑ 2 ) ≤ 𝐴 ) |
61 |
35
|
resqcld |
⊢ ( 𝑎 ∈ 𝑆 → ( 𝑎 ↑ 2 ) ∈ ℝ ) |
62 |
61
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑎 ↑ 2 ) ∈ ℝ ) |
63 |
|
letr |
⊢ ( ( ( 𝑎 · 𝑏 ) ∈ ℝ ∧ ( 𝑎 ↑ 2 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( ( 𝑎 · 𝑏 ) ≤ ( 𝑎 ↑ 2 ) ∧ ( 𝑎 ↑ 2 ) ≤ 𝐴 ) → ( 𝑎 · 𝑏 ) ≤ 𝐴 ) ) |
64 |
39 62 43 63
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( ( ( 𝑎 · 𝑏 ) ≤ ( 𝑎 ↑ 2 ) ∧ ( 𝑎 ↑ 2 ) ≤ 𝐴 ) → ( 𝑎 · 𝑏 ) ≤ 𝐴 ) ) |
65 |
60 64
|
mpan2d |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( ( 𝑎 · 𝑏 ) ≤ ( 𝑎 ↑ 2 ) → ( 𝑎 · 𝑏 ) ≤ 𝐴 ) ) |
66 |
58 65
|
sylbid |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑏 ≤ 𝑎 → ( 𝑎 · 𝑏 ) ≤ 𝐴 ) ) |
67 |
1 2
|
sqrlem3 |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑣 ∈ 𝑆 𝑣 ≤ 𝑦 ) ) |
68 |
67
|
simp1d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → 𝑆 ⊆ ℝ ) |
69 |
68
|
sseld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝑎 ∈ 𝑆 → 𝑎 ∈ ℝ ) ) |
70 |
68
|
sseld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝑏 ∈ 𝑆 → 𝑏 ∈ ℝ ) ) |
71 |
69 70
|
anim12d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) → ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) ) |
72 |
71
|
imp |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) |
73 |
|
letric |
⊢ ( ( 𝑎 ∈ ℝ ∧ 𝑏 ∈ ℝ ) → ( 𝑎 ≤ 𝑏 ∨ 𝑏 ≤ 𝑎 ) ) |
74 |
72 73
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑎 ≤ 𝑏 ∨ 𝑏 ≤ 𝑎 ) ) |
75 |
47 66 74
|
mpjaod |
⊢ ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑎 · 𝑏 ) ≤ 𝐴 ) |
76 |
75
|
ex |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) → ( 𝑎 · 𝑏 ) ≤ 𝐴 ) ) |
77 |
|
breq1 |
⊢ ( 𝑣 = ( 𝑎 · 𝑏 ) → ( 𝑣 ≤ 𝐴 ↔ ( 𝑎 · 𝑏 ) ≤ 𝐴 ) ) |
78 |
77
|
biimprcd |
⊢ ( ( 𝑎 · 𝑏 ) ≤ 𝐴 → ( 𝑣 = ( 𝑎 · 𝑏 ) → 𝑣 ≤ 𝐴 ) ) |
79 |
76 78
|
syl6 |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) → ( 𝑣 = ( 𝑎 · 𝑏 ) → 𝑣 ≤ 𝐴 ) ) ) |
80 |
79
|
rexlimdvv |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( ∃ 𝑎 ∈ 𝑆 ∃ 𝑏 ∈ 𝑆 𝑣 = ( 𝑎 · 𝑏 ) → 𝑣 ≤ 𝐴 ) ) |
81 |
9 80
|
syl5bi |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝑣 ∈ 𝑇 → 𝑣 ≤ 𝐴 ) ) |
82 |
81
|
ralrimiv |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ∀ 𝑣 ∈ 𝑇 𝑣 ≤ 𝐴 ) |
83 |
4
|
simpld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑢 ∈ 𝑇 𝑢 ≤ 𝑣 ) ) |
84 |
42
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → 𝐴 ∈ ℝ ) |
85 |
|
suprleub |
⊢ ( ( ( 𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃ 𝑣 ∈ ℝ ∀ 𝑢 ∈ 𝑇 𝑢 ≤ 𝑣 ) ∧ 𝐴 ∈ ℝ ) → ( sup ( 𝑇 , ℝ , < ) ≤ 𝐴 ↔ ∀ 𝑣 ∈ 𝑇 𝑣 ≤ 𝐴 ) ) |
86 |
83 84 85
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( sup ( 𝑇 , ℝ , < ) ≤ 𝐴 ↔ ∀ 𝑣 ∈ 𝑇 𝑣 ≤ 𝐴 ) ) |
87 |
82 86
|
mpbird |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → sup ( 𝑇 , ℝ , < ) ≤ 𝐴 ) |
88 |
5 87
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐴 ≤ 1 ) → ( 𝐵 ↑ 2 ) ≤ 𝐴 ) |