| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2sqb.1 |
|- ( ph -> ( P e. Prime /\ P =/= 2 ) ) |
| 2 |
|
2sqb.2 |
|- ( ph -> ( X e. ZZ /\ Y e. ZZ ) ) |
| 3 |
|
2sqb.3 |
|- ( ph -> P = ( ( X ^ 2 ) + ( Y ^ 2 ) ) ) |
| 4 |
|
2sqb.4 |
|- ( ph -> A e. ZZ ) |
| 5 |
|
2sqb.5 |
|- ( ph -> B e. ZZ ) |
| 6 |
|
2sqb.6 |
|- ( ph -> ( P gcd Y ) = ( ( P x. A ) + ( Y x. B ) ) ) |
| 7 |
1
|
simpld |
|- ( ph -> P e. Prime ) |
| 8 |
|
nprmdvds1 |
|- ( P e. Prime -> -. P || 1 ) |
| 9 |
7 8
|
syl |
|- ( ph -> -. P || 1 ) |
| 10 |
|
prmz |
|- ( P e. Prime -> P e. ZZ ) |
| 11 |
7 10
|
syl |
|- ( ph -> P e. ZZ ) |
| 12 |
|
1z |
|- 1 e. ZZ |
| 13 |
|
dvdsnegb |
|- ( ( P e. ZZ /\ 1 e. ZZ ) -> ( P || 1 <-> P || -u 1 ) ) |
| 14 |
11 12 13
|
sylancl |
|- ( ph -> ( P || 1 <-> P || -u 1 ) ) |
| 15 |
9 14
|
mtbid |
|- ( ph -> -. P || -u 1 ) |
| 16 |
2
|
simpld |
|- ( ph -> X e. ZZ ) |
| 17 |
16 5
|
zmulcld |
|- ( ph -> ( X x. B ) e. ZZ ) |
| 18 |
|
zsqcl |
|- ( B e. ZZ -> ( B ^ 2 ) e. ZZ ) |
| 19 |
5 18
|
syl |
|- ( ph -> ( B ^ 2 ) e. ZZ ) |
| 20 |
|
dvdsmul1 |
|- ( ( P e. ZZ /\ ( B ^ 2 ) e. ZZ ) -> P || ( P x. ( B ^ 2 ) ) ) |
| 21 |
11 19 20
|
syl2anc |
|- ( ph -> P || ( P x. ( B ^ 2 ) ) ) |
| 22 |
2
|
simprd |
|- ( ph -> Y e. ZZ ) |
| 23 |
22 5
|
zmulcld |
|- ( ph -> ( Y x. B ) e. ZZ ) |
| 24 |
|
zsqcl |
|- ( ( Y x. B ) e. ZZ -> ( ( Y x. B ) ^ 2 ) e. ZZ ) |
| 25 |
23 24
|
syl |
|- ( ph -> ( ( Y x. B ) ^ 2 ) e. ZZ ) |
| 26 |
|
peano2zm |
|- ( ( ( Y x. B ) ^ 2 ) e. ZZ -> ( ( ( Y x. B ) ^ 2 ) - 1 ) e. ZZ ) |
| 27 |
25 26
|
syl |
|- ( ph -> ( ( ( Y x. B ) ^ 2 ) - 1 ) e. ZZ ) |
| 28 |
27
|
zcnd |
|- ( ph -> ( ( ( Y x. B ) ^ 2 ) - 1 ) e. CC ) |
| 29 |
|
zsqcl |
|- ( ( X x. B ) e. ZZ -> ( ( X x. B ) ^ 2 ) e. ZZ ) |
| 30 |
17 29
|
syl |
|- ( ph -> ( ( X x. B ) ^ 2 ) e. ZZ ) |
| 31 |
30
|
peano2zd |
|- ( ph -> ( ( ( X x. B ) ^ 2 ) + 1 ) e. ZZ ) |
| 32 |
31
|
zcnd |
|- ( ph -> ( ( ( X x. B ) ^ 2 ) + 1 ) e. CC ) |
| 33 |
28 32
|
addcomd |
|- ( ph -> ( ( ( ( Y x. B ) ^ 2 ) - 1 ) + ( ( ( X x. B ) ^ 2 ) + 1 ) ) = ( ( ( ( X x. B ) ^ 2 ) + 1 ) + ( ( ( Y x. B ) ^ 2 ) - 1 ) ) ) |
| 34 |
30
|
zcnd |
|- ( ph -> ( ( X x. B ) ^ 2 ) e. CC ) |
| 35 |
|
ax-1cn |
|- 1 e. CC |
| 36 |
35
|
a1i |
|- ( ph -> 1 e. CC ) |
| 37 |
25
|
zcnd |
|- ( ph -> ( ( Y x. B ) ^ 2 ) e. CC ) |
| 38 |
34 36 37
|
ppncand |
|- ( ph -> ( ( ( ( X x. B ) ^ 2 ) + 1 ) + ( ( ( Y x. B ) ^ 2 ) - 1 ) ) = ( ( ( X x. B ) ^ 2 ) + ( ( Y x. B ) ^ 2 ) ) ) |
| 39 |
|
zsqcl |
|- ( X e. ZZ -> ( X ^ 2 ) e. ZZ ) |
| 40 |
16 39
|
syl |
|- ( ph -> ( X ^ 2 ) e. ZZ ) |
| 41 |
40
|
zcnd |
|- ( ph -> ( X ^ 2 ) e. CC ) |
| 42 |
|
zsqcl |
|- ( Y e. ZZ -> ( Y ^ 2 ) e. ZZ ) |
| 43 |
22 42
|
syl |
|- ( ph -> ( Y ^ 2 ) e. ZZ ) |
| 44 |
43
|
zcnd |
|- ( ph -> ( Y ^ 2 ) e. CC ) |
| 45 |
19
|
zcnd |
|- ( ph -> ( B ^ 2 ) e. CC ) |
| 46 |
41 44 45
|
adddird |
|- ( ph -> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) x. ( B ^ 2 ) ) = ( ( ( X ^ 2 ) x. ( B ^ 2 ) ) + ( ( Y ^ 2 ) x. ( B ^ 2 ) ) ) ) |
| 47 |
3
|
oveq1d |
|- ( ph -> ( P x. ( B ^ 2 ) ) = ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) x. ( B ^ 2 ) ) ) |
| 48 |
16
|
zcnd |
|- ( ph -> X e. CC ) |
| 49 |
5
|
zcnd |
|- ( ph -> B e. CC ) |
| 50 |
48 49
|
sqmuld |
|- ( ph -> ( ( X x. B ) ^ 2 ) = ( ( X ^ 2 ) x. ( B ^ 2 ) ) ) |
| 51 |
22
|
zcnd |
|- ( ph -> Y e. CC ) |
| 52 |
51 49
|
sqmuld |
|- ( ph -> ( ( Y x. B ) ^ 2 ) = ( ( Y ^ 2 ) x. ( B ^ 2 ) ) ) |
| 53 |
50 52
|
oveq12d |
|- ( ph -> ( ( ( X x. B ) ^ 2 ) + ( ( Y x. B ) ^ 2 ) ) = ( ( ( X ^ 2 ) x. ( B ^ 2 ) ) + ( ( Y ^ 2 ) x. ( B ^ 2 ) ) ) ) |
| 54 |
46 47 53
|
3eqtr4rd |
|- ( ph -> ( ( ( X x. B ) ^ 2 ) + ( ( Y x. B ) ^ 2 ) ) = ( P x. ( B ^ 2 ) ) ) |
| 55 |
33 38 54
|
3eqtrd |
|- ( ph -> ( ( ( ( Y x. B ) ^ 2 ) - 1 ) + ( ( ( X x. B ) ^ 2 ) + 1 ) ) = ( P x. ( B ^ 2 ) ) ) |
| 56 |
21 55
|
breqtrrd |
|- ( ph -> P || ( ( ( ( Y x. B ) ^ 2 ) - 1 ) + ( ( ( X x. B ) ^ 2 ) + 1 ) ) ) |
| 57 |
|
dvdsmul1 |
|- ( ( P e. ZZ /\ A e. ZZ ) -> P || ( P x. A ) ) |
| 58 |
11 4 57
|
syl2anc |
|- ( ph -> P || ( P x. A ) ) |
| 59 |
11 4
|
zmulcld |
|- ( ph -> ( P x. A ) e. ZZ ) |
| 60 |
|
dvdsnegb |
|- ( ( P e. ZZ /\ ( P x. A ) e. ZZ ) -> ( P || ( P x. A ) <-> P || -u ( P x. A ) ) ) |
| 61 |
11 59 60
|
syl2anc |
|- ( ph -> ( P || ( P x. A ) <-> P || -u ( P x. A ) ) ) |
| 62 |
58 61
|
mpbid |
|- ( ph -> P || -u ( P x. A ) ) |
| 63 |
23
|
zcnd |
|- ( ph -> ( Y x. B ) e. CC ) |
| 64 |
|
negsubdi2 |
|- ( ( 1 e. CC /\ ( Y x. B ) e. CC ) -> -u ( 1 - ( Y x. B ) ) = ( ( Y x. B ) - 1 ) ) |
| 65 |
35 63 64
|
sylancr |
|- ( ph -> -u ( 1 - ( Y x. B ) ) = ( ( Y x. B ) - 1 ) ) |
| 66 |
59
|
zcnd |
|- ( ph -> ( P x. A ) e. CC ) |
| 67 |
22
|
zred |
|- ( ph -> Y e. RR ) |
| 68 |
|
absresq |
|- ( Y e. RR -> ( ( abs ` Y ) ^ 2 ) = ( Y ^ 2 ) ) |
| 69 |
67 68
|
syl |
|- ( ph -> ( ( abs ` Y ) ^ 2 ) = ( Y ^ 2 ) ) |
| 70 |
67
|
resqcld |
|- ( ph -> ( Y ^ 2 ) e. RR ) |
| 71 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 72 |
7 71
|
syl |
|- ( ph -> P e. NN ) |
| 73 |
72
|
nnred |
|- ( ph -> P e. RR ) |
| 74 |
73
|
resqcld |
|- ( ph -> ( P ^ 2 ) e. RR ) |
| 75 |
|
zsqcl2 |
|- ( X e. ZZ -> ( X ^ 2 ) e. NN0 ) |
| 76 |
16 75
|
syl |
|- ( ph -> ( X ^ 2 ) e. NN0 ) |
| 77 |
|
nn0addge2 |
|- ( ( ( Y ^ 2 ) e. RR /\ ( X ^ 2 ) e. NN0 ) -> ( Y ^ 2 ) <_ ( ( X ^ 2 ) + ( Y ^ 2 ) ) ) |
| 78 |
70 76 77
|
syl2anc |
|- ( ph -> ( Y ^ 2 ) <_ ( ( X ^ 2 ) + ( Y ^ 2 ) ) ) |
| 79 |
78 3
|
breqtrrd |
|- ( ph -> ( Y ^ 2 ) <_ P ) |
| 80 |
11
|
zcnd |
|- ( ph -> P e. CC ) |
| 81 |
80
|
exp1d |
|- ( ph -> ( P ^ 1 ) = P ) |
| 82 |
12
|
a1i |
|- ( ph -> 1 e. ZZ ) |
| 83 |
|
2z |
|- 2 e. ZZ |
| 84 |
83
|
a1i |
|- ( ph -> 2 e. ZZ ) |
| 85 |
|
prmuz2 |
|- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
| 86 |
7 85
|
syl |
|- ( ph -> P e. ( ZZ>= ` 2 ) ) |
| 87 |
|
eluz2gt1 |
|- ( P e. ( ZZ>= ` 2 ) -> 1 < P ) |
| 88 |
86 87
|
syl |
|- ( ph -> 1 < P ) |
| 89 |
|
1lt2 |
|- 1 < 2 |
| 90 |
89
|
a1i |
|- ( ph -> 1 < 2 ) |
| 91 |
|
ltexp2a |
|- ( ( ( P e. RR /\ 1 e. ZZ /\ 2 e. ZZ ) /\ ( 1 < P /\ 1 < 2 ) ) -> ( P ^ 1 ) < ( P ^ 2 ) ) |
| 92 |
73 82 84 88 90 91
|
syl32anc |
|- ( ph -> ( P ^ 1 ) < ( P ^ 2 ) ) |
| 93 |
81 92
|
eqbrtrrd |
|- ( ph -> P < ( P ^ 2 ) ) |
| 94 |
70 73 74 79 93
|
lelttrd |
|- ( ph -> ( Y ^ 2 ) < ( P ^ 2 ) ) |
| 95 |
69 94
|
eqbrtrd |
|- ( ph -> ( ( abs ` Y ) ^ 2 ) < ( P ^ 2 ) ) |
| 96 |
51
|
abscld |
|- ( ph -> ( abs ` Y ) e. RR ) |
| 97 |
51
|
absge0d |
|- ( ph -> 0 <_ ( abs ` Y ) ) |
| 98 |
72
|
nnnn0d |
|- ( ph -> P e. NN0 ) |
| 99 |
98
|
nn0ge0d |
|- ( ph -> 0 <_ P ) |
| 100 |
96 73 97 99
|
lt2sqd |
|- ( ph -> ( ( abs ` Y ) < P <-> ( ( abs ` Y ) ^ 2 ) < ( P ^ 2 ) ) ) |
| 101 |
95 100
|
mpbird |
|- ( ph -> ( abs ` Y ) < P ) |
| 102 |
11
|
zred |
|- ( ph -> P e. RR ) |
| 103 |
96 102
|
ltnled |
|- ( ph -> ( ( abs ` Y ) < P <-> -. P <_ ( abs ` Y ) ) ) |
| 104 |
101 103
|
mpbid |
|- ( ph -> -. P <_ ( abs ` Y ) ) |
| 105 |
|
sqnprm |
|- ( X e. ZZ -> -. ( X ^ 2 ) e. Prime ) |
| 106 |
16 105
|
syl |
|- ( ph -> -. ( X ^ 2 ) e. Prime ) |
| 107 |
51
|
abs00ad |
|- ( ph -> ( ( abs ` Y ) = 0 <-> Y = 0 ) ) |
| 108 |
3 7
|
eqeltrrd |
|- ( ph -> ( ( X ^ 2 ) + ( Y ^ 2 ) ) e. Prime ) |
| 109 |
|
sq0i |
|- ( Y = 0 -> ( Y ^ 2 ) = 0 ) |
| 110 |
109
|
oveq2d |
|- ( Y = 0 -> ( ( X ^ 2 ) + ( Y ^ 2 ) ) = ( ( X ^ 2 ) + 0 ) ) |
| 111 |
110
|
eleq1d |
|- ( Y = 0 -> ( ( ( X ^ 2 ) + ( Y ^ 2 ) ) e. Prime <-> ( ( X ^ 2 ) + 0 ) e. Prime ) ) |
| 112 |
108 111
|
syl5ibcom |
|- ( ph -> ( Y = 0 -> ( ( X ^ 2 ) + 0 ) e. Prime ) ) |
| 113 |
41
|
addridd |
|- ( ph -> ( ( X ^ 2 ) + 0 ) = ( X ^ 2 ) ) |
| 114 |
113
|
eleq1d |
|- ( ph -> ( ( ( X ^ 2 ) + 0 ) e. Prime <-> ( X ^ 2 ) e. Prime ) ) |
| 115 |
112 114
|
sylibd |
|- ( ph -> ( Y = 0 -> ( X ^ 2 ) e. Prime ) ) |
| 116 |
107 115
|
sylbid |
|- ( ph -> ( ( abs ` Y ) = 0 -> ( X ^ 2 ) e. Prime ) ) |
| 117 |
106 116
|
mtod |
|- ( ph -> -. ( abs ` Y ) = 0 ) |
| 118 |
|
nn0abscl |
|- ( Y e. ZZ -> ( abs ` Y ) e. NN0 ) |
| 119 |
22 118
|
syl |
|- ( ph -> ( abs ` Y ) e. NN0 ) |
| 120 |
|
elnn0 |
|- ( ( abs ` Y ) e. NN0 <-> ( ( abs ` Y ) e. NN \/ ( abs ` Y ) = 0 ) ) |
| 121 |
119 120
|
sylib |
|- ( ph -> ( ( abs ` Y ) e. NN \/ ( abs ` Y ) = 0 ) ) |
| 122 |
121
|
ord |
|- ( ph -> ( -. ( abs ` Y ) e. NN -> ( abs ` Y ) = 0 ) ) |
| 123 |
117 122
|
mt3d |
|- ( ph -> ( abs ` Y ) e. NN ) |
| 124 |
|
dvdsle |
|- ( ( P e. ZZ /\ ( abs ` Y ) e. NN ) -> ( P || ( abs ` Y ) -> P <_ ( abs ` Y ) ) ) |
| 125 |
11 123 124
|
syl2anc |
|- ( ph -> ( P || ( abs ` Y ) -> P <_ ( abs ` Y ) ) ) |
| 126 |
104 125
|
mtod |
|- ( ph -> -. P || ( abs ` Y ) ) |
| 127 |
|
dvdsabsb |
|- ( ( P e. ZZ /\ Y e. ZZ ) -> ( P || Y <-> P || ( abs ` Y ) ) ) |
| 128 |
11 22 127
|
syl2anc |
|- ( ph -> ( P || Y <-> P || ( abs ` Y ) ) ) |
| 129 |
126 128
|
mtbird |
|- ( ph -> -. P || Y ) |
| 130 |
|
coprm |
|- ( ( P e. Prime /\ Y e. ZZ ) -> ( -. P || Y <-> ( P gcd Y ) = 1 ) ) |
| 131 |
7 22 130
|
syl2anc |
|- ( ph -> ( -. P || Y <-> ( P gcd Y ) = 1 ) ) |
| 132 |
129 131
|
mpbid |
|- ( ph -> ( P gcd Y ) = 1 ) |
| 133 |
132 6
|
eqtr3d |
|- ( ph -> 1 = ( ( P x. A ) + ( Y x. B ) ) ) |
| 134 |
66 63 133
|
mvrraddd |
|- ( ph -> ( 1 - ( Y x. B ) ) = ( P x. A ) ) |
| 135 |
134
|
negeqd |
|- ( ph -> -u ( 1 - ( Y x. B ) ) = -u ( P x. A ) ) |
| 136 |
65 135
|
eqtr3d |
|- ( ph -> ( ( Y x. B ) - 1 ) = -u ( P x. A ) ) |
| 137 |
62 136
|
breqtrrd |
|- ( ph -> P || ( ( Y x. B ) - 1 ) ) |
| 138 |
23
|
peano2zd |
|- ( ph -> ( ( Y x. B ) + 1 ) e. ZZ ) |
| 139 |
|
peano2zm |
|- ( ( Y x. B ) e. ZZ -> ( ( Y x. B ) - 1 ) e. ZZ ) |
| 140 |
23 139
|
syl |
|- ( ph -> ( ( Y x. B ) - 1 ) e. ZZ ) |
| 141 |
|
dvdsmultr2 |
|- ( ( P e. ZZ /\ ( ( Y x. B ) + 1 ) e. ZZ /\ ( ( Y x. B ) - 1 ) e. ZZ ) -> ( P || ( ( Y x. B ) - 1 ) -> P || ( ( ( Y x. B ) + 1 ) x. ( ( Y x. B ) - 1 ) ) ) ) |
| 142 |
11 138 140 141
|
syl3anc |
|- ( ph -> ( P || ( ( Y x. B ) - 1 ) -> P || ( ( ( Y x. B ) + 1 ) x. ( ( Y x. B ) - 1 ) ) ) ) |
| 143 |
137 142
|
mpd |
|- ( ph -> P || ( ( ( Y x. B ) + 1 ) x. ( ( Y x. B ) - 1 ) ) ) |
| 144 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
| 145 |
144
|
oveq2i |
|- ( ( ( Y x. B ) ^ 2 ) - ( 1 ^ 2 ) ) = ( ( ( Y x. B ) ^ 2 ) - 1 ) |
| 146 |
|
subsq |
|- ( ( ( Y x. B ) e. CC /\ 1 e. CC ) -> ( ( ( Y x. B ) ^ 2 ) - ( 1 ^ 2 ) ) = ( ( ( Y x. B ) + 1 ) x. ( ( Y x. B ) - 1 ) ) ) |
| 147 |
63 35 146
|
sylancl |
|- ( ph -> ( ( ( Y x. B ) ^ 2 ) - ( 1 ^ 2 ) ) = ( ( ( Y x. B ) + 1 ) x. ( ( Y x. B ) - 1 ) ) ) |
| 148 |
145 147
|
eqtr3id |
|- ( ph -> ( ( ( Y x. B ) ^ 2 ) - 1 ) = ( ( ( Y x. B ) + 1 ) x. ( ( Y x. B ) - 1 ) ) ) |
| 149 |
143 148
|
breqtrrd |
|- ( ph -> P || ( ( ( Y x. B ) ^ 2 ) - 1 ) ) |
| 150 |
|
dvdsadd2b |
|- ( ( P e. ZZ /\ ( ( ( X x. B ) ^ 2 ) + 1 ) e. ZZ /\ ( ( ( ( Y x. B ) ^ 2 ) - 1 ) e. ZZ /\ P || ( ( ( Y x. B ) ^ 2 ) - 1 ) ) ) -> ( P || ( ( ( X x. B ) ^ 2 ) + 1 ) <-> P || ( ( ( ( Y x. B ) ^ 2 ) - 1 ) + ( ( ( X x. B ) ^ 2 ) + 1 ) ) ) ) |
| 151 |
11 31 27 149 150
|
syl112anc |
|- ( ph -> ( P || ( ( ( X x. B ) ^ 2 ) + 1 ) <-> P || ( ( ( ( Y x. B ) ^ 2 ) - 1 ) + ( ( ( X x. B ) ^ 2 ) + 1 ) ) ) ) |
| 152 |
56 151
|
mpbird |
|- ( ph -> P || ( ( ( X x. B ) ^ 2 ) + 1 ) ) |
| 153 |
|
subneg |
|- ( ( ( ( X x. B ) ^ 2 ) e. CC /\ 1 e. CC ) -> ( ( ( X x. B ) ^ 2 ) - -u 1 ) = ( ( ( X x. B ) ^ 2 ) + 1 ) ) |
| 154 |
34 35 153
|
sylancl |
|- ( ph -> ( ( ( X x. B ) ^ 2 ) - -u 1 ) = ( ( ( X x. B ) ^ 2 ) + 1 ) ) |
| 155 |
152 154
|
breqtrrd |
|- ( ph -> P || ( ( ( X x. B ) ^ 2 ) - -u 1 ) ) |
| 156 |
|
oveq1 |
|- ( x = ( X x. B ) -> ( x ^ 2 ) = ( ( X x. B ) ^ 2 ) ) |
| 157 |
156
|
oveq1d |
|- ( x = ( X x. B ) -> ( ( x ^ 2 ) - -u 1 ) = ( ( ( X x. B ) ^ 2 ) - -u 1 ) ) |
| 158 |
157
|
breq2d |
|- ( x = ( X x. B ) -> ( P || ( ( x ^ 2 ) - -u 1 ) <-> P || ( ( ( X x. B ) ^ 2 ) - -u 1 ) ) ) |
| 159 |
158
|
rspcev |
|- ( ( ( X x. B ) e. ZZ /\ P || ( ( ( X x. B ) ^ 2 ) - -u 1 ) ) -> E. x e. ZZ P || ( ( x ^ 2 ) - -u 1 ) ) |
| 160 |
17 155 159
|
syl2anc |
|- ( ph -> E. x e. ZZ P || ( ( x ^ 2 ) - -u 1 ) ) |
| 161 |
|
neg1z |
|- -u 1 e. ZZ |
| 162 |
|
eldifsn |
|- ( P e. ( Prime \ { 2 } ) <-> ( P e. Prime /\ P =/= 2 ) ) |
| 163 |
1 162
|
sylibr |
|- ( ph -> P e. ( Prime \ { 2 } ) ) |
| 164 |
|
lgsqr |
|- ( ( -u 1 e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( -u 1 /L P ) = 1 <-> ( -. P || -u 1 /\ E. x e. ZZ P || ( ( x ^ 2 ) - -u 1 ) ) ) ) |
| 165 |
161 163 164
|
sylancr |
|- ( ph -> ( ( -u 1 /L P ) = 1 <-> ( -. P || -u 1 /\ E. x e. ZZ P || ( ( x ^ 2 ) - -u 1 ) ) ) ) |
| 166 |
15 160 165
|
mpbir2and |
|- ( ph -> ( -u 1 /L P ) = 1 ) |
| 167 |
|
m1lgs |
|- ( P e. ( Prime \ { 2 } ) -> ( ( -u 1 /L P ) = 1 <-> ( P mod 4 ) = 1 ) ) |
| 168 |
163 167
|
syl |
|- ( ph -> ( ( -u 1 /L P ) = 1 <-> ( P mod 4 ) = 1 ) ) |
| 169 |
166 168
|
mpbid |
|- ( ph -> ( P mod 4 ) = 1 ) |