| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axdc4uz.1 |  |-  M e. ZZ | 
						
							| 2 |  | axdc4uz.2 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 3 |  | axdc4uz.3 |  |-  A e. _V | 
						
							| 4 |  | axdc4uz.4 |  |-  G = ( rec ( ( y e. _V |-> ( y + 1 ) ) , M ) |` _om ) | 
						
							| 5 |  | axdc4uz.5 |  |-  H = ( n e. _om , x e. A |-> ( ( G ` n ) F x ) ) | 
						
							| 6 | 1 4 | om2uzf1oi |  |-  G : _om -1-1-onto-> ( ZZ>= ` M ) | 
						
							| 7 |  | f1oeq3 |  |-  ( Z = ( ZZ>= ` M ) -> ( G : _om -1-1-onto-> Z <-> G : _om -1-1-onto-> ( ZZ>= ` M ) ) ) | 
						
							| 8 | 2 7 | ax-mp |  |-  ( G : _om -1-1-onto-> Z <-> G : _om -1-1-onto-> ( ZZ>= ` M ) ) | 
						
							| 9 | 6 8 | mpbir |  |-  G : _om -1-1-onto-> Z | 
						
							| 10 |  | f1of |  |-  ( G : _om -1-1-onto-> Z -> G : _om --> Z ) | 
						
							| 11 | 9 10 | ax-mp |  |-  G : _om --> Z | 
						
							| 12 | 11 | ffvelcdmi |  |-  ( n e. _om -> ( G ` n ) e. Z ) | 
						
							| 13 |  | fovcdm |  |-  ( ( F : ( Z X. A ) --> ( ~P A \ { (/) } ) /\ ( G ` n ) e. Z /\ x e. A ) -> ( ( G ` n ) F x ) e. ( ~P A \ { (/) } ) ) | 
						
							| 14 | 12 13 | syl3an2 |  |-  ( ( F : ( Z X. A ) --> ( ~P A \ { (/) } ) /\ n e. _om /\ x e. A ) -> ( ( G ` n ) F x ) e. ( ~P A \ { (/) } ) ) | 
						
							| 15 | 14 | 3expb |  |-  ( ( F : ( Z X. A ) --> ( ~P A \ { (/) } ) /\ ( n e. _om /\ x e. A ) ) -> ( ( G ` n ) F x ) e. ( ~P A \ { (/) } ) ) | 
						
							| 16 | 15 | ralrimivva |  |-  ( F : ( Z X. A ) --> ( ~P A \ { (/) } ) -> A. n e. _om A. x e. A ( ( G ` n ) F x ) e. ( ~P A \ { (/) } ) ) | 
						
							| 17 | 5 | fmpo |  |-  ( A. n e. _om A. x e. A ( ( G ` n ) F x ) e. ( ~P A \ { (/) } ) <-> H : ( _om X. A ) --> ( ~P A \ { (/) } ) ) | 
						
							| 18 | 16 17 | sylib |  |-  ( F : ( Z X. A ) --> ( ~P A \ { (/) } ) -> H : ( _om X. A ) --> ( ~P A \ { (/) } ) ) | 
						
							| 19 | 3 | axdc4 |  |-  ( ( C e. A /\ H : ( _om X. A ) --> ( ~P A \ { (/) } ) ) -> E. f ( f : _om --> A /\ ( f ` (/) ) = C /\ A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) ) ) | 
						
							| 20 | 18 19 | sylan2 |  |-  ( ( C e. A /\ F : ( Z X. A ) --> ( ~P A \ { (/) } ) ) -> E. f ( f : _om --> A /\ ( f ` (/) ) = C /\ A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) ) ) | 
						
							| 21 |  | f1ocnv |  |-  ( G : _om -1-1-onto-> Z -> `' G : Z -1-1-onto-> _om ) | 
						
							| 22 |  | f1of |  |-  ( `' G : Z -1-1-onto-> _om -> `' G : Z --> _om ) | 
						
							| 23 | 9 21 22 | mp2b |  |-  `' G : Z --> _om | 
						
							| 24 |  | fco |  |-  ( ( f : _om --> A /\ `' G : Z --> _om ) -> ( f o. `' G ) : Z --> A ) | 
						
							| 25 | 23 24 | mpan2 |  |-  ( f : _om --> A -> ( f o. `' G ) : Z --> A ) | 
						
							| 26 | 25 | 3ad2ant1 |  |-  ( ( f : _om --> A /\ ( f ` (/) ) = C /\ A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) ) -> ( f o. `' G ) : Z --> A ) | 
						
							| 27 |  | uzid |  |-  ( M e. ZZ -> M e. ( ZZ>= ` M ) ) | 
						
							| 28 | 1 27 | ax-mp |  |-  M e. ( ZZ>= ` M ) | 
						
							| 29 | 28 2 | eleqtrri |  |-  M e. Z | 
						
							| 30 |  | fvco3 |  |-  ( ( `' G : Z --> _om /\ M e. Z ) -> ( ( f o. `' G ) ` M ) = ( f ` ( `' G ` M ) ) ) | 
						
							| 31 | 23 29 30 | mp2an |  |-  ( ( f o. `' G ) ` M ) = ( f ` ( `' G ` M ) ) | 
						
							| 32 | 1 4 | om2uz0i |  |-  ( G ` (/) ) = M | 
						
							| 33 |  | peano1 |  |-  (/) e. _om | 
						
							| 34 |  | f1ocnvfv |  |-  ( ( G : _om -1-1-onto-> Z /\ (/) e. _om ) -> ( ( G ` (/) ) = M -> ( `' G ` M ) = (/) ) ) | 
						
							| 35 | 9 33 34 | mp2an |  |-  ( ( G ` (/) ) = M -> ( `' G ` M ) = (/) ) | 
						
							| 36 | 32 35 | ax-mp |  |-  ( `' G ` M ) = (/) | 
						
							| 37 | 36 | fveq2i |  |-  ( f ` ( `' G ` M ) ) = ( f ` (/) ) | 
						
							| 38 | 31 37 | eqtri |  |-  ( ( f o. `' G ) ` M ) = ( f ` (/) ) | 
						
							| 39 |  | simp2 |  |-  ( ( f : _om --> A /\ ( f ` (/) ) = C /\ A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) ) -> ( f ` (/) ) = C ) | 
						
							| 40 | 38 39 | eqtrid |  |-  ( ( f : _om --> A /\ ( f ` (/) ) = C /\ A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) ) -> ( ( f o. `' G ) ` M ) = C ) | 
						
							| 41 | 23 | ffvelcdmi |  |-  ( k e. Z -> ( `' G ` k ) e. _om ) | 
						
							| 42 | 41 | adantl |  |-  ( ( f : _om --> A /\ k e. Z ) -> ( `' G ` k ) e. _om ) | 
						
							| 43 |  | suceq |  |-  ( m = ( `' G ` k ) -> suc m = suc ( `' G ` k ) ) | 
						
							| 44 | 43 | fveq2d |  |-  ( m = ( `' G ` k ) -> ( f ` suc m ) = ( f ` suc ( `' G ` k ) ) ) | 
						
							| 45 |  | id |  |-  ( m = ( `' G ` k ) -> m = ( `' G ` k ) ) | 
						
							| 46 |  | fveq2 |  |-  ( m = ( `' G ` k ) -> ( f ` m ) = ( f ` ( `' G ` k ) ) ) | 
						
							| 47 | 45 46 | oveq12d |  |-  ( m = ( `' G ` k ) -> ( m H ( f ` m ) ) = ( ( `' G ` k ) H ( f ` ( `' G ` k ) ) ) ) | 
						
							| 48 | 44 47 | eleq12d |  |-  ( m = ( `' G ` k ) -> ( ( f ` suc m ) e. ( m H ( f ` m ) ) <-> ( f ` suc ( `' G ` k ) ) e. ( ( `' G ` k ) H ( f ` ( `' G ` k ) ) ) ) ) | 
						
							| 49 | 48 | rspcv |  |-  ( ( `' G ` k ) e. _om -> ( A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) -> ( f ` suc ( `' G ` k ) ) e. ( ( `' G ` k ) H ( f ` ( `' G ` k ) ) ) ) ) | 
						
							| 50 | 42 49 | syl |  |-  ( ( f : _om --> A /\ k e. Z ) -> ( A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) -> ( f ` suc ( `' G ` k ) ) e. ( ( `' G ` k ) H ( f ` ( `' G ` k ) ) ) ) ) | 
						
							| 51 | 2 | peano2uzs |  |-  ( k e. Z -> ( k + 1 ) e. Z ) | 
						
							| 52 |  | fvco3 |  |-  ( ( `' G : Z --> _om /\ ( k + 1 ) e. Z ) -> ( ( f o. `' G ) ` ( k + 1 ) ) = ( f ` ( `' G ` ( k + 1 ) ) ) ) | 
						
							| 53 | 23 51 52 | sylancr |  |-  ( k e. Z -> ( ( f o. `' G ) ` ( k + 1 ) ) = ( f ` ( `' G ` ( k + 1 ) ) ) ) | 
						
							| 54 | 1 4 | om2uzsuci |  |-  ( ( `' G ` k ) e. _om -> ( G ` suc ( `' G ` k ) ) = ( ( G ` ( `' G ` k ) ) + 1 ) ) | 
						
							| 55 | 41 54 | syl |  |-  ( k e. Z -> ( G ` suc ( `' G ` k ) ) = ( ( G ` ( `' G ` k ) ) + 1 ) ) | 
						
							| 56 |  | f1ocnvfv2 |  |-  ( ( G : _om -1-1-onto-> Z /\ k e. Z ) -> ( G ` ( `' G ` k ) ) = k ) | 
						
							| 57 | 9 56 | mpan |  |-  ( k e. Z -> ( G ` ( `' G ` k ) ) = k ) | 
						
							| 58 | 57 | oveq1d |  |-  ( k e. Z -> ( ( G ` ( `' G ` k ) ) + 1 ) = ( k + 1 ) ) | 
						
							| 59 | 55 58 | eqtrd |  |-  ( k e. Z -> ( G ` suc ( `' G ` k ) ) = ( k + 1 ) ) | 
						
							| 60 |  | peano2 |  |-  ( ( `' G ` k ) e. _om -> suc ( `' G ` k ) e. _om ) | 
						
							| 61 | 41 60 | syl |  |-  ( k e. Z -> suc ( `' G ` k ) e. _om ) | 
						
							| 62 |  | f1ocnvfv |  |-  ( ( G : _om -1-1-onto-> Z /\ suc ( `' G ` k ) e. _om ) -> ( ( G ` suc ( `' G ` k ) ) = ( k + 1 ) -> ( `' G ` ( k + 1 ) ) = suc ( `' G ` k ) ) ) | 
						
							| 63 | 9 61 62 | sylancr |  |-  ( k e. Z -> ( ( G ` suc ( `' G ` k ) ) = ( k + 1 ) -> ( `' G ` ( k + 1 ) ) = suc ( `' G ` k ) ) ) | 
						
							| 64 | 59 63 | mpd |  |-  ( k e. Z -> ( `' G ` ( k + 1 ) ) = suc ( `' G ` k ) ) | 
						
							| 65 | 64 | fveq2d |  |-  ( k e. Z -> ( f ` ( `' G ` ( k + 1 ) ) ) = ( f ` suc ( `' G ` k ) ) ) | 
						
							| 66 | 53 65 | eqtr2d |  |-  ( k e. Z -> ( f ` suc ( `' G ` k ) ) = ( ( f o. `' G ) ` ( k + 1 ) ) ) | 
						
							| 67 | 66 | adantl |  |-  ( ( f : _om --> A /\ k e. Z ) -> ( f ` suc ( `' G ` k ) ) = ( ( f o. `' G ) ` ( k + 1 ) ) ) | 
						
							| 68 |  | ffvelcdm |  |-  ( ( f : _om --> A /\ ( `' G ` k ) e. _om ) -> ( f ` ( `' G ` k ) ) e. A ) | 
						
							| 69 | 41 68 | sylan2 |  |-  ( ( f : _om --> A /\ k e. Z ) -> ( f ` ( `' G ` k ) ) e. A ) | 
						
							| 70 |  | fveq2 |  |-  ( n = ( `' G ` k ) -> ( G ` n ) = ( G ` ( `' G ` k ) ) ) | 
						
							| 71 | 70 | oveq1d |  |-  ( n = ( `' G ` k ) -> ( ( G ` n ) F x ) = ( ( G ` ( `' G ` k ) ) F x ) ) | 
						
							| 72 |  | oveq2 |  |-  ( x = ( f ` ( `' G ` k ) ) -> ( ( G ` ( `' G ` k ) ) F x ) = ( ( G ` ( `' G ` k ) ) F ( f ` ( `' G ` k ) ) ) ) | 
						
							| 73 |  | ovex |  |-  ( ( G ` ( `' G ` k ) ) F ( f ` ( `' G ` k ) ) ) e. _V | 
						
							| 74 | 71 72 5 73 | ovmpo |  |-  ( ( ( `' G ` k ) e. _om /\ ( f ` ( `' G ` k ) ) e. A ) -> ( ( `' G ` k ) H ( f ` ( `' G ` k ) ) ) = ( ( G ` ( `' G ` k ) ) F ( f ` ( `' G ` k ) ) ) ) | 
						
							| 75 | 42 69 74 | syl2anc |  |-  ( ( f : _om --> A /\ k e. Z ) -> ( ( `' G ` k ) H ( f ` ( `' G ` k ) ) ) = ( ( G ` ( `' G ` k ) ) F ( f ` ( `' G ` k ) ) ) ) | 
						
							| 76 |  | fvco3 |  |-  ( ( `' G : Z --> _om /\ k e. Z ) -> ( ( f o. `' G ) ` k ) = ( f ` ( `' G ` k ) ) ) | 
						
							| 77 | 23 76 | mpan |  |-  ( k e. Z -> ( ( f o. `' G ) ` k ) = ( f ` ( `' G ` k ) ) ) | 
						
							| 78 | 77 | eqcomd |  |-  ( k e. Z -> ( f ` ( `' G ` k ) ) = ( ( f o. `' G ) ` k ) ) | 
						
							| 79 | 57 78 | oveq12d |  |-  ( k e. Z -> ( ( G ` ( `' G ` k ) ) F ( f ` ( `' G ` k ) ) ) = ( k F ( ( f o. `' G ) ` k ) ) ) | 
						
							| 80 | 79 | adantl |  |-  ( ( f : _om --> A /\ k e. Z ) -> ( ( G ` ( `' G ` k ) ) F ( f ` ( `' G ` k ) ) ) = ( k F ( ( f o. `' G ) ` k ) ) ) | 
						
							| 81 | 75 80 | eqtrd |  |-  ( ( f : _om --> A /\ k e. Z ) -> ( ( `' G ` k ) H ( f ` ( `' G ` k ) ) ) = ( k F ( ( f o. `' G ) ` k ) ) ) | 
						
							| 82 | 67 81 | eleq12d |  |-  ( ( f : _om --> A /\ k e. Z ) -> ( ( f ` suc ( `' G ` k ) ) e. ( ( `' G ` k ) H ( f ` ( `' G ` k ) ) ) <-> ( ( f o. `' G ) ` ( k + 1 ) ) e. ( k F ( ( f o. `' G ) ` k ) ) ) ) | 
						
							| 83 | 50 82 | sylibd |  |-  ( ( f : _om --> A /\ k e. Z ) -> ( A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) -> ( ( f o. `' G ) ` ( k + 1 ) ) e. ( k F ( ( f o. `' G ) ` k ) ) ) ) | 
						
							| 84 | 83 | impancom |  |-  ( ( f : _om --> A /\ A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) ) -> ( k e. Z -> ( ( f o. `' G ) ` ( k + 1 ) ) e. ( k F ( ( f o. `' G ) ` k ) ) ) ) | 
						
							| 85 | 84 | ralrimiv |  |-  ( ( f : _om --> A /\ A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) ) -> A. k e. Z ( ( f o. `' G ) ` ( k + 1 ) ) e. ( k F ( ( f o. `' G ) ` k ) ) ) | 
						
							| 86 | 85 | 3adant2 |  |-  ( ( f : _om --> A /\ ( f ` (/) ) = C /\ A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) ) -> A. k e. Z ( ( f o. `' G ) ` ( k + 1 ) ) e. ( k F ( ( f o. `' G ) ` k ) ) ) | 
						
							| 87 |  | vex |  |-  f e. _V | 
						
							| 88 |  | rdgfun |  |-  Fun rec ( ( y e. _V |-> ( y + 1 ) ) , M ) | 
						
							| 89 |  | omex |  |-  _om e. _V | 
						
							| 90 |  | resfunexg |  |-  ( ( Fun rec ( ( y e. _V |-> ( y + 1 ) ) , M ) /\ _om e. _V ) -> ( rec ( ( y e. _V |-> ( y + 1 ) ) , M ) |` _om ) e. _V ) | 
						
							| 91 | 88 89 90 | mp2an |  |-  ( rec ( ( y e. _V |-> ( y + 1 ) ) , M ) |` _om ) e. _V | 
						
							| 92 | 4 91 | eqeltri |  |-  G e. _V | 
						
							| 93 | 92 | cnvex |  |-  `' G e. _V | 
						
							| 94 | 87 93 | coex |  |-  ( f o. `' G ) e. _V | 
						
							| 95 |  | feq1 |  |-  ( g = ( f o. `' G ) -> ( g : Z --> A <-> ( f o. `' G ) : Z --> A ) ) | 
						
							| 96 |  | fveq1 |  |-  ( g = ( f o. `' G ) -> ( g ` M ) = ( ( f o. `' G ) ` M ) ) | 
						
							| 97 | 96 | eqeq1d |  |-  ( g = ( f o. `' G ) -> ( ( g ` M ) = C <-> ( ( f o. `' G ) ` M ) = C ) ) | 
						
							| 98 |  | fveq1 |  |-  ( g = ( f o. `' G ) -> ( g ` ( k + 1 ) ) = ( ( f o. `' G ) ` ( k + 1 ) ) ) | 
						
							| 99 |  | fveq1 |  |-  ( g = ( f o. `' G ) -> ( g ` k ) = ( ( f o. `' G ) ` k ) ) | 
						
							| 100 | 99 | oveq2d |  |-  ( g = ( f o. `' G ) -> ( k F ( g ` k ) ) = ( k F ( ( f o. `' G ) ` k ) ) ) | 
						
							| 101 | 98 100 | eleq12d |  |-  ( g = ( f o. `' G ) -> ( ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) <-> ( ( f o. `' G ) ` ( k + 1 ) ) e. ( k F ( ( f o. `' G ) ` k ) ) ) ) | 
						
							| 102 | 101 | ralbidv |  |-  ( g = ( f o. `' G ) -> ( A. k e. Z ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) <-> A. k e. Z ( ( f o. `' G ) ` ( k + 1 ) ) e. ( k F ( ( f o. `' G ) ` k ) ) ) ) | 
						
							| 103 | 95 97 102 | 3anbi123d |  |-  ( g = ( f o. `' G ) -> ( ( g : Z --> A /\ ( g ` M ) = C /\ A. k e. Z ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) <-> ( ( f o. `' G ) : Z --> A /\ ( ( f o. `' G ) ` M ) = C /\ A. k e. Z ( ( f o. `' G ) ` ( k + 1 ) ) e. ( k F ( ( f o. `' G ) ` k ) ) ) ) ) | 
						
							| 104 | 94 103 | spcev |  |-  ( ( ( f o. `' G ) : Z --> A /\ ( ( f o. `' G ) ` M ) = C /\ A. k e. Z ( ( f o. `' G ) ` ( k + 1 ) ) e. ( k F ( ( f o. `' G ) ` k ) ) ) -> E. g ( g : Z --> A /\ ( g ` M ) = C /\ A. k e. Z ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) ) | 
						
							| 105 | 26 40 86 104 | syl3anc |  |-  ( ( f : _om --> A /\ ( f ` (/) ) = C /\ A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) ) -> E. g ( g : Z --> A /\ ( g ` M ) = C /\ A. k e. Z ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) ) | 
						
							| 106 | 105 | exlimiv |  |-  ( E. f ( f : _om --> A /\ ( f ` (/) ) = C /\ A. m e. _om ( f ` suc m ) e. ( m H ( f ` m ) ) ) -> E. g ( g : Z --> A /\ ( g ` M ) = C /\ A. k e. Z ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) ) | 
						
							| 107 | 20 106 | syl |  |-  ( ( C e. A /\ F : ( Z X. A ) --> ( ~P A \ { (/) } ) ) -> E. g ( g : Z --> A /\ ( g ` M ) = C /\ A. k e. Z ( g ` ( k + 1 ) ) e. ( k F ( g ` k ) ) ) ) |