| Step | Hyp | Ref | Expression | 
						
							| 1 |  | axdc4uz.1 | ⊢ 𝑀  ∈  ℤ | 
						
							| 2 |  | axdc4uz.2 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 3 |  | axdc4uz.3 | ⊢ 𝐴  ∈  V | 
						
							| 4 |  | axdc4uz.4 | ⊢ 𝐺  =  ( rec ( ( 𝑦  ∈  V  ↦  ( 𝑦  +  1 ) ) ,  𝑀 )  ↾  ω ) | 
						
							| 5 |  | axdc4uz.5 | ⊢ 𝐻  =  ( 𝑛  ∈  ω ,  𝑥  ∈  𝐴  ↦  ( ( 𝐺 ‘ 𝑛 ) 𝐹 𝑥 ) ) | 
						
							| 6 | 1 4 | om2uzf1oi | ⊢ 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 𝑀 ) | 
						
							| 7 |  | f1oeq3 | ⊢ ( 𝑍  =  ( ℤ≥ ‘ 𝑀 )  →  ( 𝐺 : ω –1-1-onto→ 𝑍  ↔  𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 𝑀 ) ) ) | 
						
							| 8 | 2 7 | ax-mp | ⊢ ( 𝐺 : ω –1-1-onto→ 𝑍  ↔  𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 9 | 6 8 | mpbir | ⊢ 𝐺 : ω –1-1-onto→ 𝑍 | 
						
							| 10 |  | f1of | ⊢ ( 𝐺 : ω –1-1-onto→ 𝑍  →  𝐺 : ω ⟶ 𝑍 ) | 
						
							| 11 | 9 10 | ax-mp | ⊢ 𝐺 : ω ⟶ 𝑍 | 
						
							| 12 | 11 | ffvelcdmi | ⊢ ( 𝑛  ∈  ω  →  ( 𝐺 ‘ 𝑛 )  ∈  𝑍 ) | 
						
							| 13 |  | fovcdm | ⊢ ( ( 𝐹 : ( 𝑍  ×  𝐴 ) ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  ∧  ( 𝐺 ‘ 𝑛 )  ∈  𝑍  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐺 ‘ 𝑛 ) 𝐹 𝑥 )  ∈  ( 𝒫  𝐴  ∖  { ∅ } ) ) | 
						
							| 14 | 12 13 | syl3an2 | ⊢ ( ( 𝐹 : ( 𝑍  ×  𝐴 ) ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  ∧  𝑛  ∈  ω  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐺 ‘ 𝑛 ) 𝐹 𝑥 )  ∈  ( 𝒫  𝐴  ∖  { ∅ } ) ) | 
						
							| 15 | 14 | 3expb | ⊢ ( ( 𝐹 : ( 𝑍  ×  𝐴 ) ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  ∧  ( 𝑛  ∈  ω  ∧  𝑥  ∈  𝐴 ) )  →  ( ( 𝐺 ‘ 𝑛 ) 𝐹 𝑥 )  ∈  ( 𝒫  𝐴  ∖  { ∅ } ) ) | 
						
							| 16 | 15 | ralrimivva | ⊢ ( 𝐹 : ( 𝑍  ×  𝐴 ) ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  →  ∀ 𝑛  ∈  ω ∀ 𝑥  ∈  𝐴 ( ( 𝐺 ‘ 𝑛 ) 𝐹 𝑥 )  ∈  ( 𝒫  𝐴  ∖  { ∅ } ) ) | 
						
							| 17 | 5 | fmpo | ⊢ ( ∀ 𝑛  ∈  ω ∀ 𝑥  ∈  𝐴 ( ( 𝐺 ‘ 𝑛 ) 𝐹 𝑥 )  ∈  ( 𝒫  𝐴  ∖  { ∅ } )  ↔  𝐻 : ( ω  ×  𝐴 ) ⟶ ( 𝒫  𝐴  ∖  { ∅ } ) ) | 
						
							| 18 | 16 17 | sylib | ⊢ ( 𝐹 : ( 𝑍  ×  𝐴 ) ⟶ ( 𝒫  𝐴  ∖  { ∅ } )  →  𝐻 : ( ω  ×  𝐴 ) ⟶ ( 𝒫  𝐴  ∖  { ∅ } ) ) | 
						
							| 19 | 3 | axdc4 | ⊢ ( ( 𝐶  ∈  𝐴  ∧  𝐻 : ( ω  ×  𝐴 ) ⟶ ( 𝒫  𝐴  ∖  { ∅ } ) )  →  ∃ 𝑓 ( 𝑓 : ω ⟶ 𝐴  ∧  ( 𝑓 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑚  ∈  ω ( 𝑓 ‘ suc  𝑚 )  ∈  ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) ) ) | 
						
							| 20 | 18 19 | sylan2 | ⊢ ( ( 𝐶  ∈  𝐴  ∧  𝐹 : ( 𝑍  ×  𝐴 ) ⟶ ( 𝒫  𝐴  ∖  { ∅ } ) )  →  ∃ 𝑓 ( 𝑓 : ω ⟶ 𝐴  ∧  ( 𝑓 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑚  ∈  ω ( 𝑓 ‘ suc  𝑚 )  ∈  ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) ) ) | 
						
							| 21 |  | f1ocnv | ⊢ ( 𝐺 : ω –1-1-onto→ 𝑍  →  ◡ 𝐺 : 𝑍 –1-1-onto→ ω ) | 
						
							| 22 |  | f1of | ⊢ ( ◡ 𝐺 : 𝑍 –1-1-onto→ ω  →  ◡ 𝐺 : 𝑍 ⟶ ω ) | 
						
							| 23 | 9 21 22 | mp2b | ⊢ ◡ 𝐺 : 𝑍 ⟶ ω | 
						
							| 24 |  | fco | ⊢ ( ( 𝑓 : ω ⟶ 𝐴  ∧  ◡ 𝐺 : 𝑍 ⟶ ω )  →  ( 𝑓  ∘  ◡ 𝐺 ) : 𝑍 ⟶ 𝐴 ) | 
						
							| 25 | 23 24 | mpan2 | ⊢ ( 𝑓 : ω ⟶ 𝐴  →  ( 𝑓  ∘  ◡ 𝐺 ) : 𝑍 ⟶ 𝐴 ) | 
						
							| 26 | 25 | 3ad2ant1 | ⊢ ( ( 𝑓 : ω ⟶ 𝐴  ∧  ( 𝑓 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑚  ∈  ω ( 𝑓 ‘ suc  𝑚 )  ∈  ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) )  →  ( 𝑓  ∘  ◡ 𝐺 ) : 𝑍 ⟶ 𝐴 ) | 
						
							| 27 |  | uzid | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 28 | 1 27 | ax-mp | ⊢ 𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 29 | 28 2 | eleqtrri | ⊢ 𝑀  ∈  𝑍 | 
						
							| 30 |  | fvco3 | ⊢ ( ( ◡ 𝐺 : 𝑍 ⟶ ω  ∧  𝑀  ∈  𝑍 )  →  ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ 𝑀 )  =  ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑀 ) ) ) | 
						
							| 31 | 23 29 30 | mp2an | ⊢ ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ 𝑀 )  =  ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑀 ) ) | 
						
							| 32 | 1 4 | om2uz0i | ⊢ ( 𝐺 ‘ ∅ )  =  𝑀 | 
						
							| 33 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 34 |  | f1ocnvfv | ⊢ ( ( 𝐺 : ω –1-1-onto→ 𝑍  ∧  ∅  ∈  ω )  →  ( ( 𝐺 ‘ ∅ )  =  𝑀  →  ( ◡ 𝐺 ‘ 𝑀 )  =  ∅ ) ) | 
						
							| 35 | 9 33 34 | mp2an | ⊢ ( ( 𝐺 ‘ ∅ )  =  𝑀  →  ( ◡ 𝐺 ‘ 𝑀 )  =  ∅ ) | 
						
							| 36 | 32 35 | ax-mp | ⊢ ( ◡ 𝐺 ‘ 𝑀 )  =  ∅ | 
						
							| 37 | 36 | fveq2i | ⊢ ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑀 ) )  =  ( 𝑓 ‘ ∅ ) | 
						
							| 38 | 31 37 | eqtri | ⊢ ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ 𝑀 )  =  ( 𝑓 ‘ ∅ ) | 
						
							| 39 |  | simp2 | ⊢ ( ( 𝑓 : ω ⟶ 𝐴  ∧  ( 𝑓 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑚  ∈  ω ( 𝑓 ‘ suc  𝑚 )  ∈  ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) )  →  ( 𝑓 ‘ ∅ )  =  𝐶 ) | 
						
							| 40 | 38 39 | eqtrid | ⊢ ( ( 𝑓 : ω ⟶ 𝐴  ∧  ( 𝑓 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑚  ∈  ω ( 𝑓 ‘ suc  𝑚 )  ∈  ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) )  →  ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ 𝑀 )  =  𝐶 ) | 
						
							| 41 | 23 | ffvelcdmi | ⊢ ( 𝑘  ∈  𝑍  →  ( ◡ 𝐺 ‘ 𝑘 )  ∈  ω ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( 𝑓 : ω ⟶ 𝐴  ∧  𝑘  ∈  𝑍 )  →  ( ◡ 𝐺 ‘ 𝑘 )  ∈  ω ) | 
						
							| 43 |  | suceq | ⊢ ( 𝑚  =  ( ◡ 𝐺 ‘ 𝑘 )  →  suc  𝑚  =  suc  ( ◡ 𝐺 ‘ 𝑘 ) ) | 
						
							| 44 | 43 | fveq2d | ⊢ ( 𝑚  =  ( ◡ 𝐺 ‘ 𝑘 )  →  ( 𝑓 ‘ suc  𝑚 )  =  ( 𝑓 ‘ suc  ( ◡ 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 45 |  | id | ⊢ ( 𝑚  =  ( ◡ 𝐺 ‘ 𝑘 )  →  𝑚  =  ( ◡ 𝐺 ‘ 𝑘 ) ) | 
						
							| 46 |  | fveq2 | ⊢ ( 𝑚  =  ( ◡ 𝐺 ‘ 𝑘 )  →  ( 𝑓 ‘ 𝑚 )  =  ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 47 | 45 46 | oveq12d | ⊢ ( 𝑚  =  ( ◡ 𝐺 ‘ 𝑘 )  →  ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) )  =  ( ( ◡ 𝐺 ‘ 𝑘 ) 𝐻 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 48 | 44 47 | eleq12d | ⊢ ( 𝑚  =  ( ◡ 𝐺 ‘ 𝑘 )  →  ( ( 𝑓 ‘ suc  𝑚 )  ∈  ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) )  ↔  ( 𝑓 ‘ suc  ( ◡ 𝐺 ‘ 𝑘 ) )  ∈  ( ( ◡ 𝐺 ‘ 𝑘 ) 𝐻 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) ) | 
						
							| 49 | 48 | rspcv | ⊢ ( ( ◡ 𝐺 ‘ 𝑘 )  ∈  ω  →  ( ∀ 𝑚  ∈  ω ( 𝑓 ‘ suc  𝑚 )  ∈  ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) )  →  ( 𝑓 ‘ suc  ( ◡ 𝐺 ‘ 𝑘 ) )  ∈  ( ( ◡ 𝐺 ‘ 𝑘 ) 𝐻 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) ) | 
						
							| 50 | 42 49 | syl | ⊢ ( ( 𝑓 : ω ⟶ 𝐴  ∧  𝑘  ∈  𝑍 )  →  ( ∀ 𝑚  ∈  ω ( 𝑓 ‘ suc  𝑚 )  ∈  ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) )  →  ( 𝑓 ‘ suc  ( ◡ 𝐺 ‘ 𝑘 ) )  ∈  ( ( ◡ 𝐺 ‘ 𝑘 ) 𝐻 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) ) | 
						
							| 51 | 2 | peano2uzs | ⊢ ( 𝑘  ∈  𝑍  →  ( 𝑘  +  1 )  ∈  𝑍 ) | 
						
							| 52 |  | fvco3 | ⊢ ( ( ◡ 𝐺 : 𝑍 ⟶ ω  ∧  ( 𝑘  +  1 )  ∈  𝑍 )  →  ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ ( 𝑘  +  1 ) )  =  ( 𝑓 ‘ ( ◡ 𝐺 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 53 | 23 51 52 | sylancr | ⊢ ( 𝑘  ∈  𝑍  →  ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ ( 𝑘  +  1 ) )  =  ( 𝑓 ‘ ( ◡ 𝐺 ‘ ( 𝑘  +  1 ) ) ) ) | 
						
							| 54 | 1 4 | om2uzsuci | ⊢ ( ( ◡ 𝐺 ‘ 𝑘 )  ∈  ω  →  ( 𝐺 ‘ suc  ( ◡ 𝐺 ‘ 𝑘 ) )  =  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) )  +  1 ) ) | 
						
							| 55 | 41 54 | syl | ⊢ ( 𝑘  ∈  𝑍  →  ( 𝐺 ‘ suc  ( ◡ 𝐺 ‘ 𝑘 ) )  =  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) )  +  1 ) ) | 
						
							| 56 |  | f1ocnvfv2 | ⊢ ( ( 𝐺 : ω –1-1-onto→ 𝑍  ∧  𝑘  ∈  𝑍 )  →  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) )  =  𝑘 ) | 
						
							| 57 | 9 56 | mpan | ⊢ ( 𝑘  ∈  𝑍  →  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) )  =  𝑘 ) | 
						
							| 58 | 57 | oveq1d | ⊢ ( 𝑘  ∈  𝑍  →  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) )  +  1 )  =  ( 𝑘  +  1 ) ) | 
						
							| 59 | 55 58 | eqtrd | ⊢ ( 𝑘  ∈  𝑍  →  ( 𝐺 ‘ suc  ( ◡ 𝐺 ‘ 𝑘 ) )  =  ( 𝑘  +  1 ) ) | 
						
							| 60 |  | peano2 | ⊢ ( ( ◡ 𝐺 ‘ 𝑘 )  ∈  ω  →  suc  ( ◡ 𝐺 ‘ 𝑘 )  ∈  ω ) | 
						
							| 61 | 41 60 | syl | ⊢ ( 𝑘  ∈  𝑍  →  suc  ( ◡ 𝐺 ‘ 𝑘 )  ∈  ω ) | 
						
							| 62 |  | f1ocnvfv | ⊢ ( ( 𝐺 : ω –1-1-onto→ 𝑍  ∧  suc  ( ◡ 𝐺 ‘ 𝑘 )  ∈  ω )  →  ( ( 𝐺 ‘ suc  ( ◡ 𝐺 ‘ 𝑘 ) )  =  ( 𝑘  +  1 )  →  ( ◡ 𝐺 ‘ ( 𝑘  +  1 ) )  =  suc  ( ◡ 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 63 | 9 61 62 | sylancr | ⊢ ( 𝑘  ∈  𝑍  →  ( ( 𝐺 ‘ suc  ( ◡ 𝐺 ‘ 𝑘 ) )  =  ( 𝑘  +  1 )  →  ( ◡ 𝐺 ‘ ( 𝑘  +  1 ) )  =  suc  ( ◡ 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 64 | 59 63 | mpd | ⊢ ( 𝑘  ∈  𝑍  →  ( ◡ 𝐺 ‘ ( 𝑘  +  1 ) )  =  suc  ( ◡ 𝐺 ‘ 𝑘 ) ) | 
						
							| 65 | 64 | fveq2d | ⊢ ( 𝑘  ∈  𝑍  →  ( 𝑓 ‘ ( ◡ 𝐺 ‘ ( 𝑘  +  1 ) ) )  =  ( 𝑓 ‘ suc  ( ◡ 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 66 | 53 65 | eqtr2d | ⊢ ( 𝑘  ∈  𝑍  →  ( 𝑓 ‘ suc  ( ◡ 𝐺 ‘ 𝑘 ) )  =  ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 67 | 66 | adantl | ⊢ ( ( 𝑓 : ω ⟶ 𝐴  ∧  𝑘  ∈  𝑍 )  →  ( 𝑓 ‘ suc  ( ◡ 𝐺 ‘ 𝑘 ) )  =  ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 68 |  | ffvelcdm | ⊢ ( ( 𝑓 : ω ⟶ 𝐴  ∧  ( ◡ 𝐺 ‘ 𝑘 )  ∈  ω )  →  ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) )  ∈  𝐴 ) | 
						
							| 69 | 41 68 | sylan2 | ⊢ ( ( 𝑓 : ω ⟶ 𝐴  ∧  𝑘  ∈  𝑍 )  →  ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) )  ∈  𝐴 ) | 
						
							| 70 |  | fveq2 | ⊢ ( 𝑛  =  ( ◡ 𝐺 ‘ 𝑘 )  →  ( 𝐺 ‘ 𝑛 )  =  ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 71 | 70 | oveq1d | ⊢ ( 𝑛  =  ( ◡ 𝐺 ‘ 𝑘 )  →  ( ( 𝐺 ‘ 𝑛 ) 𝐹 𝑥 )  =  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) 𝐹 𝑥 ) ) | 
						
							| 72 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) )  →  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) 𝐹 𝑥 )  =  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) 𝐹 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 73 |  | ovex | ⊢ ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) 𝐹 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) )  ∈  V | 
						
							| 74 | 71 72 5 73 | ovmpo | ⊢ ( ( ( ◡ 𝐺 ‘ 𝑘 )  ∈  ω  ∧  ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) )  ∈  𝐴 )  →  ( ( ◡ 𝐺 ‘ 𝑘 ) 𝐻 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) )  =  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) 𝐹 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 75 | 42 69 74 | syl2anc | ⊢ ( ( 𝑓 : ω ⟶ 𝐴  ∧  𝑘  ∈  𝑍 )  →  ( ( ◡ 𝐺 ‘ 𝑘 ) 𝐻 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) )  =  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) 𝐹 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) ) | 
						
							| 76 |  | fvco3 | ⊢ ( ( ◡ 𝐺 : 𝑍 ⟶ ω  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ 𝑘 )  =  ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 77 | 23 76 | mpan | ⊢ ( 𝑘  ∈  𝑍  →  ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ 𝑘 )  =  ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) ) | 
						
							| 78 | 77 | eqcomd | ⊢ ( 𝑘  ∈  𝑍  →  ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) )  =  ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ 𝑘 ) ) | 
						
							| 79 | 57 78 | oveq12d | ⊢ ( 𝑘  ∈  𝑍  →  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) 𝐹 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) )  =  ( 𝑘 𝐹 ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ 𝑘 ) ) ) | 
						
							| 80 | 79 | adantl | ⊢ ( ( 𝑓 : ω ⟶ 𝐴  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) 𝐹 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) )  =  ( 𝑘 𝐹 ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ 𝑘 ) ) ) | 
						
							| 81 | 75 80 | eqtrd | ⊢ ( ( 𝑓 : ω ⟶ 𝐴  ∧  𝑘  ∈  𝑍 )  →  ( ( ◡ 𝐺 ‘ 𝑘 ) 𝐻 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) )  =  ( 𝑘 𝐹 ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ 𝑘 ) ) ) | 
						
							| 82 | 67 81 | eleq12d | ⊢ ( ( 𝑓 : ω ⟶ 𝐴  ∧  𝑘  ∈  𝑍 )  →  ( ( 𝑓 ‘ suc  ( ◡ 𝐺 ‘ 𝑘 ) )  ∈  ( ( ◡ 𝐺 ‘ 𝑘 ) 𝐻 ( 𝑓 ‘ ( ◡ 𝐺 ‘ 𝑘 ) ) )  ↔  ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ ( 𝑘  +  1 ) )  ∈  ( 𝑘 𝐹 ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ 𝑘 ) ) ) ) | 
						
							| 83 | 50 82 | sylibd | ⊢ ( ( 𝑓 : ω ⟶ 𝐴  ∧  𝑘  ∈  𝑍 )  →  ( ∀ 𝑚  ∈  ω ( 𝑓 ‘ suc  𝑚 )  ∈  ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) )  →  ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ ( 𝑘  +  1 ) )  ∈  ( 𝑘 𝐹 ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ 𝑘 ) ) ) ) | 
						
							| 84 | 83 | impancom | ⊢ ( ( 𝑓 : ω ⟶ 𝐴  ∧  ∀ 𝑚  ∈  ω ( 𝑓 ‘ suc  𝑚 )  ∈  ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) )  →  ( 𝑘  ∈  𝑍  →  ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ ( 𝑘  +  1 ) )  ∈  ( 𝑘 𝐹 ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ 𝑘 ) ) ) ) | 
						
							| 85 | 84 | ralrimiv | ⊢ ( ( 𝑓 : ω ⟶ 𝐴  ∧  ∀ 𝑚  ∈  ω ( 𝑓 ‘ suc  𝑚 )  ∈  ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) )  →  ∀ 𝑘  ∈  𝑍 ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ ( 𝑘  +  1 ) )  ∈  ( 𝑘 𝐹 ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ 𝑘 ) ) ) | 
						
							| 86 | 85 | 3adant2 | ⊢ ( ( 𝑓 : ω ⟶ 𝐴  ∧  ( 𝑓 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑚  ∈  ω ( 𝑓 ‘ suc  𝑚 )  ∈  ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) )  →  ∀ 𝑘  ∈  𝑍 ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ ( 𝑘  +  1 ) )  ∈  ( 𝑘 𝐹 ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ 𝑘 ) ) ) | 
						
							| 87 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 88 |  | rdgfun | ⊢ Fun  rec ( ( 𝑦  ∈  V  ↦  ( 𝑦  +  1 ) ) ,  𝑀 ) | 
						
							| 89 |  | omex | ⊢ ω  ∈  V | 
						
							| 90 |  | resfunexg | ⊢ ( ( Fun  rec ( ( 𝑦  ∈  V  ↦  ( 𝑦  +  1 ) ) ,  𝑀 )  ∧  ω  ∈  V )  →  ( rec ( ( 𝑦  ∈  V  ↦  ( 𝑦  +  1 ) ) ,  𝑀 )  ↾  ω )  ∈  V ) | 
						
							| 91 | 88 89 90 | mp2an | ⊢ ( rec ( ( 𝑦  ∈  V  ↦  ( 𝑦  +  1 ) ) ,  𝑀 )  ↾  ω )  ∈  V | 
						
							| 92 | 4 91 | eqeltri | ⊢ 𝐺  ∈  V | 
						
							| 93 | 92 | cnvex | ⊢ ◡ 𝐺  ∈  V | 
						
							| 94 | 87 93 | coex | ⊢ ( 𝑓  ∘  ◡ 𝐺 )  ∈  V | 
						
							| 95 |  | feq1 | ⊢ ( 𝑔  =  ( 𝑓  ∘  ◡ 𝐺 )  →  ( 𝑔 : 𝑍 ⟶ 𝐴  ↔  ( 𝑓  ∘  ◡ 𝐺 ) : 𝑍 ⟶ 𝐴 ) ) | 
						
							| 96 |  | fveq1 | ⊢ ( 𝑔  =  ( 𝑓  ∘  ◡ 𝐺 )  →  ( 𝑔 ‘ 𝑀 )  =  ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ 𝑀 ) ) | 
						
							| 97 | 96 | eqeq1d | ⊢ ( 𝑔  =  ( 𝑓  ∘  ◡ 𝐺 )  →  ( ( 𝑔 ‘ 𝑀 )  =  𝐶  ↔  ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ 𝑀 )  =  𝐶 ) ) | 
						
							| 98 |  | fveq1 | ⊢ ( 𝑔  =  ( 𝑓  ∘  ◡ 𝐺 )  →  ( 𝑔 ‘ ( 𝑘  +  1 ) )  =  ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 99 |  | fveq1 | ⊢ ( 𝑔  =  ( 𝑓  ∘  ◡ 𝐺 )  →  ( 𝑔 ‘ 𝑘 )  =  ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ 𝑘 ) ) | 
						
							| 100 | 99 | oveq2d | ⊢ ( 𝑔  =  ( 𝑓  ∘  ◡ 𝐺 )  →  ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) )  =  ( 𝑘 𝐹 ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ 𝑘 ) ) ) | 
						
							| 101 | 98 100 | eleq12d | ⊢ ( 𝑔  =  ( 𝑓  ∘  ◡ 𝐺 )  →  ( ( 𝑔 ‘ ( 𝑘  +  1 ) )  ∈  ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) )  ↔  ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ ( 𝑘  +  1 ) )  ∈  ( 𝑘 𝐹 ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ 𝑘 ) ) ) ) | 
						
							| 102 | 101 | ralbidv | ⊢ ( 𝑔  =  ( 𝑓  ∘  ◡ 𝐺 )  →  ( ∀ 𝑘  ∈  𝑍 ( 𝑔 ‘ ( 𝑘  +  1 ) )  ∈  ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) )  ↔  ∀ 𝑘  ∈  𝑍 ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ ( 𝑘  +  1 ) )  ∈  ( 𝑘 𝐹 ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ 𝑘 ) ) ) ) | 
						
							| 103 | 95 97 102 | 3anbi123d | ⊢ ( 𝑔  =  ( 𝑓  ∘  ◡ 𝐺 )  →  ( ( 𝑔 : 𝑍 ⟶ 𝐴  ∧  ( 𝑔 ‘ 𝑀 )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑍 ( 𝑔 ‘ ( 𝑘  +  1 ) )  ∈  ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) )  ↔  ( ( 𝑓  ∘  ◡ 𝐺 ) : 𝑍 ⟶ 𝐴  ∧  ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ 𝑀 )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑍 ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ ( 𝑘  +  1 ) )  ∈  ( 𝑘 𝐹 ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ 𝑘 ) ) ) ) ) | 
						
							| 104 | 94 103 | spcev | ⊢ ( ( ( 𝑓  ∘  ◡ 𝐺 ) : 𝑍 ⟶ 𝐴  ∧  ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ 𝑀 )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑍 ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ ( 𝑘  +  1 ) )  ∈  ( 𝑘 𝐹 ( ( 𝑓  ∘  ◡ 𝐺 ) ‘ 𝑘 ) ) )  →  ∃ 𝑔 ( 𝑔 : 𝑍 ⟶ 𝐴  ∧  ( 𝑔 ‘ 𝑀 )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑍 ( 𝑔 ‘ ( 𝑘  +  1 ) )  ∈  ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) | 
						
							| 105 | 26 40 86 104 | syl3anc | ⊢ ( ( 𝑓 : ω ⟶ 𝐴  ∧  ( 𝑓 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑚  ∈  ω ( 𝑓 ‘ suc  𝑚 )  ∈  ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) )  →  ∃ 𝑔 ( 𝑔 : 𝑍 ⟶ 𝐴  ∧  ( 𝑔 ‘ 𝑀 )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑍 ( 𝑔 ‘ ( 𝑘  +  1 ) )  ∈  ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) | 
						
							| 106 | 105 | exlimiv | ⊢ ( ∃ 𝑓 ( 𝑓 : ω ⟶ 𝐴  ∧  ( 𝑓 ‘ ∅ )  =  𝐶  ∧  ∀ 𝑚  ∈  ω ( 𝑓 ‘ suc  𝑚 )  ∈  ( 𝑚 𝐻 ( 𝑓 ‘ 𝑚 ) ) )  →  ∃ 𝑔 ( 𝑔 : 𝑍 ⟶ 𝐴  ∧  ( 𝑔 ‘ 𝑀 )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑍 ( 𝑔 ‘ ( 𝑘  +  1 ) )  ∈  ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) | 
						
							| 107 | 20 106 | syl | ⊢ ( ( 𝐶  ∈  𝐴  ∧  𝐹 : ( 𝑍  ×  𝐴 ) ⟶ ( 𝒫  𝐴  ∖  { ∅ } ) )  →  ∃ 𝑔 ( 𝑔 : 𝑍 ⟶ 𝐴  ∧  ( 𝑔 ‘ 𝑀 )  =  𝐶  ∧  ∀ 𝑘  ∈  𝑍 ( 𝑔 ‘ ( 𝑘  +  1 ) )  ∈  ( 𝑘 𝐹 ( 𝑔 ‘ 𝑘 ) ) ) ) |