| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bposlem2.1 |
|- ( ph -> N e. NN ) |
| 2 |
|
bposlem2.2 |
|- ( ph -> P e. Prime ) |
| 3 |
|
bposlem2.3 |
|- ( ph -> 2 < P ) |
| 4 |
|
bposlem2.4 |
|- ( ph -> ( ( 2 x. N ) / 3 ) < P ) |
| 5 |
|
bposlem2.5 |
|- ( ph -> P <_ N ) |
| 6 |
|
pcbcctr |
|- ( ( N e. NN /\ P e. Prime ) -> ( P pCnt ( ( 2 x. N ) _C N ) ) = sum_ k e. ( 1 ... ( 2 x. N ) ) ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) ) ) |
| 7 |
1 2 6
|
syl2anc |
|- ( ph -> ( P pCnt ( ( 2 x. N ) _C N ) ) = sum_ k e. ( 1 ... ( 2 x. N ) ) ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) ) ) |
| 8 |
|
elfznn |
|- ( k e. ( 1 ... ( 2 x. N ) ) -> k e. NN ) |
| 9 |
|
elnn1uz2 |
|- ( k e. NN <-> ( k = 1 \/ k e. ( ZZ>= ` 2 ) ) ) |
| 10 |
8 9
|
sylib |
|- ( k e. ( 1 ... ( 2 x. N ) ) -> ( k = 1 \/ k e. ( ZZ>= ` 2 ) ) ) |
| 11 |
|
oveq2 |
|- ( k = 1 -> ( P ^ k ) = ( P ^ 1 ) ) |
| 12 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 13 |
2 12
|
syl |
|- ( ph -> P e. NN ) |
| 14 |
13
|
nncnd |
|- ( ph -> P e. CC ) |
| 15 |
14
|
exp1d |
|- ( ph -> ( P ^ 1 ) = P ) |
| 16 |
11 15
|
sylan9eqr |
|- ( ( ph /\ k = 1 ) -> ( P ^ k ) = P ) |
| 17 |
16
|
oveq2d |
|- ( ( ph /\ k = 1 ) -> ( ( 2 x. N ) / ( P ^ k ) ) = ( ( 2 x. N ) / P ) ) |
| 18 |
17
|
fveq2d |
|- ( ( ph /\ k = 1 ) -> ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) = ( |_ ` ( ( 2 x. N ) / P ) ) ) |
| 19 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
| 20 |
14
|
mullidd |
|- ( ph -> ( 1 x. P ) = P ) |
| 21 |
20 5
|
eqbrtrd |
|- ( ph -> ( 1 x. P ) <_ N ) |
| 22 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 23 |
1
|
nnred |
|- ( ph -> N e. RR ) |
| 24 |
13
|
nnred |
|- ( ph -> P e. RR ) |
| 25 |
13
|
nngt0d |
|- ( ph -> 0 < P ) |
| 26 |
|
lemuldiv |
|- ( ( 1 e. RR /\ N e. RR /\ ( P e. RR /\ 0 < P ) ) -> ( ( 1 x. P ) <_ N <-> 1 <_ ( N / P ) ) ) |
| 27 |
22 23 24 25 26
|
syl112anc |
|- ( ph -> ( ( 1 x. P ) <_ N <-> 1 <_ ( N / P ) ) ) |
| 28 |
21 27
|
mpbid |
|- ( ph -> 1 <_ ( N / P ) ) |
| 29 |
23 13
|
nndivred |
|- ( ph -> ( N / P ) e. RR ) |
| 30 |
|
1re |
|- 1 e. RR |
| 31 |
|
2re |
|- 2 e. RR |
| 32 |
|
2pos |
|- 0 < 2 |
| 33 |
31 32
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
| 34 |
|
lemul2 |
|- ( ( 1 e. RR /\ ( N / P ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( 1 <_ ( N / P ) <-> ( 2 x. 1 ) <_ ( 2 x. ( N / P ) ) ) ) |
| 35 |
30 33 34
|
mp3an13 |
|- ( ( N / P ) e. RR -> ( 1 <_ ( N / P ) <-> ( 2 x. 1 ) <_ ( 2 x. ( N / P ) ) ) ) |
| 36 |
29 35
|
syl |
|- ( ph -> ( 1 <_ ( N / P ) <-> ( 2 x. 1 ) <_ ( 2 x. ( N / P ) ) ) ) |
| 37 |
28 36
|
mpbid |
|- ( ph -> ( 2 x. 1 ) <_ ( 2 x. ( N / P ) ) ) |
| 38 |
19 37
|
eqbrtrrid |
|- ( ph -> 2 <_ ( 2 x. ( N / P ) ) ) |
| 39 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
| 40 |
1
|
nncnd |
|- ( ph -> N e. CC ) |
| 41 |
13
|
nnne0d |
|- ( ph -> P =/= 0 ) |
| 42 |
39 40 14 41
|
divassd |
|- ( ph -> ( ( 2 x. N ) / P ) = ( 2 x. ( N / P ) ) ) |
| 43 |
38 42
|
breqtrrd |
|- ( ph -> 2 <_ ( ( 2 x. N ) / P ) ) |
| 44 |
|
2nn |
|- 2 e. NN |
| 45 |
|
nnmulcl |
|- ( ( 2 e. NN /\ N e. NN ) -> ( 2 x. N ) e. NN ) |
| 46 |
44 1 45
|
sylancr |
|- ( ph -> ( 2 x. N ) e. NN ) |
| 47 |
46
|
nnred |
|- ( ph -> ( 2 x. N ) e. RR ) |
| 48 |
|
3re |
|- 3 e. RR |
| 49 |
|
3pos |
|- 0 < 3 |
| 50 |
48 49
|
pm3.2i |
|- ( 3 e. RR /\ 0 < 3 ) |
| 51 |
|
ltdiv23 |
|- ( ( ( 2 x. N ) e. RR /\ ( 3 e. RR /\ 0 < 3 ) /\ ( P e. RR /\ 0 < P ) ) -> ( ( ( 2 x. N ) / 3 ) < P <-> ( ( 2 x. N ) / P ) < 3 ) ) |
| 52 |
50 51
|
mp3an2 |
|- ( ( ( 2 x. N ) e. RR /\ ( P e. RR /\ 0 < P ) ) -> ( ( ( 2 x. N ) / 3 ) < P <-> ( ( 2 x. N ) / P ) < 3 ) ) |
| 53 |
47 24 25 52
|
syl12anc |
|- ( ph -> ( ( ( 2 x. N ) / 3 ) < P <-> ( ( 2 x. N ) / P ) < 3 ) ) |
| 54 |
4 53
|
mpbid |
|- ( ph -> ( ( 2 x. N ) / P ) < 3 ) |
| 55 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
| 56 |
54 55
|
breqtrdi |
|- ( ph -> ( ( 2 x. N ) / P ) < ( 2 + 1 ) ) |
| 57 |
47 13
|
nndivred |
|- ( ph -> ( ( 2 x. N ) / P ) e. RR ) |
| 58 |
|
2z |
|- 2 e. ZZ |
| 59 |
|
flbi |
|- ( ( ( ( 2 x. N ) / P ) e. RR /\ 2 e. ZZ ) -> ( ( |_ ` ( ( 2 x. N ) / P ) ) = 2 <-> ( 2 <_ ( ( 2 x. N ) / P ) /\ ( ( 2 x. N ) / P ) < ( 2 + 1 ) ) ) ) |
| 60 |
57 58 59
|
sylancl |
|- ( ph -> ( ( |_ ` ( ( 2 x. N ) / P ) ) = 2 <-> ( 2 <_ ( ( 2 x. N ) / P ) /\ ( ( 2 x. N ) / P ) < ( 2 + 1 ) ) ) ) |
| 61 |
43 56 60
|
mpbir2and |
|- ( ph -> ( |_ ` ( ( 2 x. N ) / P ) ) = 2 ) |
| 62 |
61
|
adantr |
|- ( ( ph /\ k = 1 ) -> ( |_ ` ( ( 2 x. N ) / P ) ) = 2 ) |
| 63 |
18 62
|
eqtrd |
|- ( ( ph /\ k = 1 ) -> ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) = 2 ) |
| 64 |
16
|
oveq2d |
|- ( ( ph /\ k = 1 ) -> ( N / ( P ^ k ) ) = ( N / P ) ) |
| 65 |
64
|
fveq2d |
|- ( ( ph /\ k = 1 ) -> ( |_ ` ( N / ( P ^ k ) ) ) = ( |_ ` ( N / P ) ) ) |
| 66 |
|
remulcl |
|- ( ( 2 e. RR /\ ( N / P ) e. RR ) -> ( 2 x. ( N / P ) ) e. RR ) |
| 67 |
31 29 66
|
sylancr |
|- ( ph -> ( 2 x. ( N / P ) ) e. RR ) |
| 68 |
48
|
a1i |
|- ( ph -> 3 e. RR ) |
| 69 |
|
4re |
|- 4 e. RR |
| 70 |
69
|
a1i |
|- ( ph -> 4 e. RR ) |
| 71 |
42 54
|
eqbrtrrd |
|- ( ph -> ( 2 x. ( N / P ) ) < 3 ) |
| 72 |
|
3lt4 |
|- 3 < 4 |
| 73 |
72
|
a1i |
|- ( ph -> 3 < 4 ) |
| 74 |
67 68 70 71 73
|
lttrd |
|- ( ph -> ( 2 x. ( N / P ) ) < 4 ) |
| 75 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
| 76 |
74 75
|
breqtrrdi |
|- ( ph -> ( 2 x. ( N / P ) ) < ( 2 x. 2 ) ) |
| 77 |
|
ltmul2 |
|- ( ( ( N / P ) e. RR /\ 2 e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( N / P ) < 2 <-> ( 2 x. ( N / P ) ) < ( 2 x. 2 ) ) ) |
| 78 |
31 33 77
|
mp3an23 |
|- ( ( N / P ) e. RR -> ( ( N / P ) < 2 <-> ( 2 x. ( N / P ) ) < ( 2 x. 2 ) ) ) |
| 79 |
29 78
|
syl |
|- ( ph -> ( ( N / P ) < 2 <-> ( 2 x. ( N / P ) ) < ( 2 x. 2 ) ) ) |
| 80 |
76 79
|
mpbird |
|- ( ph -> ( N / P ) < 2 ) |
| 81 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 82 |
80 81
|
breqtrdi |
|- ( ph -> ( N / P ) < ( 1 + 1 ) ) |
| 83 |
|
1z |
|- 1 e. ZZ |
| 84 |
|
flbi |
|- ( ( ( N / P ) e. RR /\ 1 e. ZZ ) -> ( ( |_ ` ( N / P ) ) = 1 <-> ( 1 <_ ( N / P ) /\ ( N / P ) < ( 1 + 1 ) ) ) ) |
| 85 |
29 83 84
|
sylancl |
|- ( ph -> ( ( |_ ` ( N / P ) ) = 1 <-> ( 1 <_ ( N / P ) /\ ( N / P ) < ( 1 + 1 ) ) ) ) |
| 86 |
28 82 85
|
mpbir2and |
|- ( ph -> ( |_ ` ( N / P ) ) = 1 ) |
| 87 |
86
|
adantr |
|- ( ( ph /\ k = 1 ) -> ( |_ ` ( N / P ) ) = 1 ) |
| 88 |
65 87
|
eqtrd |
|- ( ( ph /\ k = 1 ) -> ( |_ ` ( N / ( P ^ k ) ) ) = 1 ) |
| 89 |
88
|
oveq2d |
|- ( ( ph /\ k = 1 ) -> ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) = ( 2 x. 1 ) ) |
| 90 |
89 19
|
eqtrdi |
|- ( ( ph /\ k = 1 ) -> ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) = 2 ) |
| 91 |
63 90
|
oveq12d |
|- ( ( ph /\ k = 1 ) -> ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) ) = ( 2 - 2 ) ) |
| 92 |
|
2cn |
|- 2 e. CC |
| 93 |
92
|
subidi |
|- ( 2 - 2 ) = 0 |
| 94 |
91 93
|
eqtrdi |
|- ( ( ph /\ k = 1 ) -> ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) ) = 0 ) |
| 95 |
46
|
nnrpd |
|- ( ph -> ( 2 x. N ) e. RR+ ) |
| 96 |
95
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( 2 x. N ) e. RR+ ) |
| 97 |
|
eluzge2nn0 |
|- ( k e. ( ZZ>= ` 2 ) -> k e. NN0 ) |
| 98 |
|
nnexpcl |
|- ( ( P e. NN /\ k e. NN0 ) -> ( P ^ k ) e. NN ) |
| 99 |
13 97 98
|
syl2an |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( P ^ k ) e. NN ) |
| 100 |
99
|
nnrpd |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( P ^ k ) e. RR+ ) |
| 101 |
96 100
|
rpdivcld |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( ( 2 x. N ) / ( P ^ k ) ) e. RR+ ) |
| 102 |
101
|
rpge0d |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> 0 <_ ( ( 2 x. N ) / ( P ^ k ) ) ) |
| 103 |
47
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( 2 x. N ) e. RR ) |
| 104 |
|
remulcl |
|- ( ( 3 e. RR /\ P e. RR ) -> ( 3 x. P ) e. RR ) |
| 105 |
48 24 104
|
sylancr |
|- ( ph -> ( 3 x. P ) e. RR ) |
| 106 |
105
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( 3 x. P ) e. RR ) |
| 107 |
99
|
nnred |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( P ^ k ) e. RR ) |
| 108 |
|
ltdivmul |
|- ( ( ( 2 x. N ) e. RR /\ P e. RR /\ ( 3 e. RR /\ 0 < 3 ) ) -> ( ( ( 2 x. N ) / 3 ) < P <-> ( 2 x. N ) < ( 3 x. P ) ) ) |
| 109 |
50 108
|
mp3an3 |
|- ( ( ( 2 x. N ) e. RR /\ P e. RR ) -> ( ( ( 2 x. N ) / 3 ) < P <-> ( 2 x. N ) < ( 3 x. P ) ) ) |
| 110 |
47 24 109
|
syl2anc |
|- ( ph -> ( ( ( 2 x. N ) / 3 ) < P <-> ( 2 x. N ) < ( 3 x. P ) ) ) |
| 111 |
4 110
|
mpbid |
|- ( ph -> ( 2 x. N ) < ( 3 x. P ) ) |
| 112 |
111
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( 2 x. N ) < ( 3 x. P ) ) |
| 113 |
24 24
|
remulcld |
|- ( ph -> ( P x. P ) e. RR ) |
| 114 |
113
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( P x. P ) e. RR ) |
| 115 |
|
nnltp1le |
|- ( ( 2 e. NN /\ P e. NN ) -> ( 2 < P <-> ( 2 + 1 ) <_ P ) ) |
| 116 |
44 13 115
|
sylancr |
|- ( ph -> ( 2 < P <-> ( 2 + 1 ) <_ P ) ) |
| 117 |
3 116
|
mpbid |
|- ( ph -> ( 2 + 1 ) <_ P ) |
| 118 |
55 117
|
eqbrtrid |
|- ( ph -> 3 <_ P ) |
| 119 |
|
lemul1 |
|- ( ( 3 e. RR /\ P e. RR /\ ( P e. RR /\ 0 < P ) ) -> ( 3 <_ P <-> ( 3 x. P ) <_ ( P x. P ) ) ) |
| 120 |
48 119
|
mp3an1 |
|- ( ( P e. RR /\ ( P e. RR /\ 0 < P ) ) -> ( 3 <_ P <-> ( 3 x. P ) <_ ( P x. P ) ) ) |
| 121 |
24 24 25 120
|
syl12anc |
|- ( ph -> ( 3 <_ P <-> ( 3 x. P ) <_ ( P x. P ) ) ) |
| 122 |
118 121
|
mpbid |
|- ( ph -> ( 3 x. P ) <_ ( P x. P ) ) |
| 123 |
122
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( 3 x. P ) <_ ( P x. P ) ) |
| 124 |
14
|
sqvald |
|- ( ph -> ( P ^ 2 ) = ( P x. P ) ) |
| 125 |
124
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( P ^ 2 ) = ( P x. P ) ) |
| 126 |
24
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> P e. RR ) |
| 127 |
13
|
nnge1d |
|- ( ph -> 1 <_ P ) |
| 128 |
127
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> 1 <_ P ) |
| 129 |
|
simpr |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> k e. ( ZZ>= ` 2 ) ) |
| 130 |
126 128 129
|
leexp2ad |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( P ^ 2 ) <_ ( P ^ k ) ) |
| 131 |
125 130
|
eqbrtrrd |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( P x. P ) <_ ( P ^ k ) ) |
| 132 |
106 114 107 123 131
|
letrd |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( 3 x. P ) <_ ( P ^ k ) ) |
| 133 |
103 106 107 112 132
|
ltletrd |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( 2 x. N ) < ( P ^ k ) ) |
| 134 |
99
|
nncnd |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( P ^ k ) e. CC ) |
| 135 |
134
|
mulridd |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( ( P ^ k ) x. 1 ) = ( P ^ k ) ) |
| 136 |
133 135
|
breqtrrd |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( 2 x. N ) < ( ( P ^ k ) x. 1 ) ) |
| 137 |
|
1red |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> 1 e. RR ) |
| 138 |
103 137 100
|
ltdivmuld |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( ( ( 2 x. N ) / ( P ^ k ) ) < 1 <-> ( 2 x. N ) < ( ( P ^ k ) x. 1 ) ) ) |
| 139 |
136 138
|
mpbird |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( ( 2 x. N ) / ( P ^ k ) ) < 1 ) |
| 140 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
| 141 |
139 140
|
breqtrdi |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( ( 2 x. N ) / ( P ^ k ) ) < ( 0 + 1 ) ) |
| 142 |
101
|
rpred |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( ( 2 x. N ) / ( P ^ k ) ) e. RR ) |
| 143 |
|
0z |
|- 0 e. ZZ |
| 144 |
|
flbi |
|- ( ( ( ( 2 x. N ) / ( P ^ k ) ) e. RR /\ 0 e. ZZ ) -> ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) = 0 <-> ( 0 <_ ( ( 2 x. N ) / ( P ^ k ) ) /\ ( ( 2 x. N ) / ( P ^ k ) ) < ( 0 + 1 ) ) ) ) |
| 145 |
142 143 144
|
sylancl |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) = 0 <-> ( 0 <_ ( ( 2 x. N ) / ( P ^ k ) ) /\ ( ( 2 x. N ) / ( P ^ k ) ) < ( 0 + 1 ) ) ) ) |
| 146 |
102 141 145
|
mpbir2and |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) = 0 ) |
| 147 |
1
|
nnrpd |
|- ( ph -> N e. RR+ ) |
| 148 |
147
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> N e. RR+ ) |
| 149 |
148 100
|
rpdivcld |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( N / ( P ^ k ) ) e. RR+ ) |
| 150 |
149
|
rpge0d |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> 0 <_ ( N / ( P ^ k ) ) ) |
| 151 |
23
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> N e. RR ) |
| 152 |
23 147
|
ltaddrpd |
|- ( ph -> N < ( N + N ) ) |
| 153 |
40
|
2timesd |
|- ( ph -> ( 2 x. N ) = ( N + N ) ) |
| 154 |
152 153
|
breqtrrd |
|- ( ph -> N < ( 2 x. N ) ) |
| 155 |
154
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> N < ( 2 x. N ) ) |
| 156 |
151 103 107 155 133
|
lttrd |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> N < ( P ^ k ) ) |
| 157 |
156 135
|
breqtrrd |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> N < ( ( P ^ k ) x. 1 ) ) |
| 158 |
151 137 100
|
ltdivmuld |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( ( N / ( P ^ k ) ) < 1 <-> N < ( ( P ^ k ) x. 1 ) ) ) |
| 159 |
157 158
|
mpbird |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( N / ( P ^ k ) ) < 1 ) |
| 160 |
159 140
|
breqtrdi |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( N / ( P ^ k ) ) < ( 0 + 1 ) ) |
| 161 |
149
|
rpred |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( N / ( P ^ k ) ) e. RR ) |
| 162 |
|
flbi |
|- ( ( ( N / ( P ^ k ) ) e. RR /\ 0 e. ZZ ) -> ( ( |_ ` ( N / ( P ^ k ) ) ) = 0 <-> ( 0 <_ ( N / ( P ^ k ) ) /\ ( N / ( P ^ k ) ) < ( 0 + 1 ) ) ) ) |
| 163 |
161 143 162
|
sylancl |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( ( |_ ` ( N / ( P ^ k ) ) ) = 0 <-> ( 0 <_ ( N / ( P ^ k ) ) /\ ( N / ( P ^ k ) ) < ( 0 + 1 ) ) ) ) |
| 164 |
150 160 163
|
mpbir2and |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( |_ ` ( N / ( P ^ k ) ) ) = 0 ) |
| 165 |
164
|
oveq2d |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) = ( 2 x. 0 ) ) |
| 166 |
|
2t0e0 |
|- ( 2 x. 0 ) = 0 |
| 167 |
165 166
|
eqtrdi |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) = 0 ) |
| 168 |
146 167
|
oveq12d |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) ) = ( 0 - 0 ) ) |
| 169 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
| 170 |
168 169
|
eqtrdi |
|- ( ( ph /\ k e. ( ZZ>= ` 2 ) ) -> ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) ) = 0 ) |
| 171 |
94 170
|
jaodan |
|- ( ( ph /\ ( k = 1 \/ k e. ( ZZ>= ` 2 ) ) ) -> ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) ) = 0 ) |
| 172 |
10 171
|
sylan2 |
|- ( ( ph /\ k e. ( 1 ... ( 2 x. N ) ) ) -> ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) ) = 0 ) |
| 173 |
172
|
sumeq2dv |
|- ( ph -> sum_ k e. ( 1 ... ( 2 x. N ) ) ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) ) = sum_ k e. ( 1 ... ( 2 x. N ) ) 0 ) |
| 174 |
|
fzfid |
|- ( ph -> ( 1 ... ( 2 x. N ) ) e. Fin ) |
| 175 |
|
sumz |
|- ( ( ( 1 ... ( 2 x. N ) ) C_ ( ZZ>= ` 1 ) \/ ( 1 ... ( 2 x. N ) ) e. Fin ) -> sum_ k e. ( 1 ... ( 2 x. N ) ) 0 = 0 ) |
| 176 |
175
|
olcs |
|- ( ( 1 ... ( 2 x. N ) ) e. Fin -> sum_ k e. ( 1 ... ( 2 x. N ) ) 0 = 0 ) |
| 177 |
174 176
|
syl |
|- ( ph -> sum_ k e. ( 1 ... ( 2 x. N ) ) 0 = 0 ) |
| 178 |
173 177
|
eqtrd |
|- ( ph -> sum_ k e. ( 1 ... ( 2 x. N ) ) ( ( |_ ` ( ( 2 x. N ) / ( P ^ k ) ) ) - ( 2 x. ( |_ ` ( N / ( P ^ k ) ) ) ) ) = 0 ) |
| 179 |
7 178
|
eqtrd |
|- ( ph -> ( P pCnt ( ( 2 x. N ) _C N ) ) = 0 ) |