| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bpos.1 |
|- ( ph -> N e. ( ZZ>= ` 5 ) ) |
| 2 |
|
bpos.2 |
|- ( ph -> -. E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) |
| 3 |
|
bpos.3 |
|- F = ( n e. NN |-> if ( n e. Prime , ( n ^ ( n pCnt ( ( 2 x. N ) _C N ) ) ) , 1 ) ) |
| 4 |
|
bpos.4 |
|- K = ( |_ ` ( ( 2 x. N ) / 3 ) ) |
| 5 |
|
simpr |
|- ( ( ph /\ n e. Prime ) -> n e. Prime ) |
| 6 |
|
5nn |
|- 5 e. NN |
| 7 |
|
eluznn |
|- ( ( 5 e. NN /\ N e. ( ZZ>= ` 5 ) ) -> N e. NN ) |
| 8 |
6 1 7
|
sylancr |
|- ( ph -> N e. NN ) |
| 9 |
8
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 10 |
|
fzctr |
|- ( N e. NN0 -> N e. ( 0 ... ( 2 x. N ) ) ) |
| 11 |
|
bccl2 |
|- ( N e. ( 0 ... ( 2 x. N ) ) -> ( ( 2 x. N ) _C N ) e. NN ) |
| 12 |
9 10 11
|
3syl |
|- ( ph -> ( ( 2 x. N ) _C N ) e. NN ) |
| 13 |
12
|
adantr |
|- ( ( ph /\ n e. Prime ) -> ( ( 2 x. N ) _C N ) e. NN ) |
| 14 |
5 13
|
pccld |
|- ( ( ph /\ n e. Prime ) -> ( n pCnt ( ( 2 x. N ) _C N ) ) e. NN0 ) |
| 15 |
14
|
ralrimiva |
|- ( ph -> A. n e. Prime ( n pCnt ( ( 2 x. N ) _C N ) ) e. NN0 ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ p e. Prime ) -> A. n e. Prime ( n pCnt ( ( 2 x. N ) _C N ) ) e. NN0 ) |
| 17 |
|
2nn |
|- 2 e. NN |
| 18 |
|
nnmulcl |
|- ( ( 2 e. NN /\ N e. NN ) -> ( 2 x. N ) e. NN ) |
| 19 |
17 8 18
|
sylancr |
|- ( ph -> ( 2 x. N ) e. NN ) |
| 20 |
19
|
nnred |
|- ( ph -> ( 2 x. N ) e. RR ) |
| 21 |
|
3nn |
|- 3 e. NN |
| 22 |
|
nndivre |
|- ( ( ( 2 x. N ) e. RR /\ 3 e. NN ) -> ( ( 2 x. N ) / 3 ) e. RR ) |
| 23 |
20 21 22
|
sylancl |
|- ( ph -> ( ( 2 x. N ) / 3 ) e. RR ) |
| 24 |
23
|
flcld |
|- ( ph -> ( |_ ` ( ( 2 x. N ) / 3 ) ) e. ZZ ) |
| 25 |
4 24
|
eqeltrid |
|- ( ph -> K e. ZZ ) |
| 26 |
|
3re |
|- 3 e. RR |
| 27 |
26
|
a1i |
|- ( ph -> 3 e. RR ) |
| 28 |
|
5re |
|- 5 e. RR |
| 29 |
28
|
a1i |
|- ( ph -> 5 e. RR ) |
| 30 |
8
|
nnred |
|- ( ph -> N e. RR ) |
| 31 |
|
3lt5 |
|- 3 < 5 |
| 32 |
26 28 31
|
ltleii |
|- 3 <_ 5 |
| 33 |
32
|
a1i |
|- ( ph -> 3 <_ 5 ) |
| 34 |
|
eluzle |
|- ( N e. ( ZZ>= ` 5 ) -> 5 <_ N ) |
| 35 |
1 34
|
syl |
|- ( ph -> 5 <_ N ) |
| 36 |
27 29 30 33 35
|
letrd |
|- ( ph -> 3 <_ N ) |
| 37 |
|
2re |
|- 2 e. RR |
| 38 |
|
2pos |
|- 0 < 2 |
| 39 |
37 38
|
pm3.2i |
|- ( 2 e. RR /\ 0 < 2 ) |
| 40 |
|
lemul2 |
|- ( ( 3 e. RR /\ N e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( 3 <_ N <-> ( 2 x. 3 ) <_ ( 2 x. N ) ) ) |
| 41 |
26 39 40
|
mp3an13 |
|- ( N e. RR -> ( 3 <_ N <-> ( 2 x. 3 ) <_ ( 2 x. N ) ) ) |
| 42 |
30 41
|
syl |
|- ( ph -> ( 3 <_ N <-> ( 2 x. 3 ) <_ ( 2 x. N ) ) ) |
| 43 |
36 42
|
mpbid |
|- ( ph -> ( 2 x. 3 ) <_ ( 2 x. N ) ) |
| 44 |
|
3pos |
|- 0 < 3 |
| 45 |
26 44
|
pm3.2i |
|- ( 3 e. RR /\ 0 < 3 ) |
| 46 |
|
lemuldiv |
|- ( ( 2 e. RR /\ ( 2 x. N ) e. RR /\ ( 3 e. RR /\ 0 < 3 ) ) -> ( ( 2 x. 3 ) <_ ( 2 x. N ) <-> 2 <_ ( ( 2 x. N ) / 3 ) ) ) |
| 47 |
37 45 46
|
mp3an13 |
|- ( ( 2 x. N ) e. RR -> ( ( 2 x. 3 ) <_ ( 2 x. N ) <-> 2 <_ ( ( 2 x. N ) / 3 ) ) ) |
| 48 |
20 47
|
syl |
|- ( ph -> ( ( 2 x. 3 ) <_ ( 2 x. N ) <-> 2 <_ ( ( 2 x. N ) / 3 ) ) ) |
| 49 |
43 48
|
mpbid |
|- ( ph -> 2 <_ ( ( 2 x. N ) / 3 ) ) |
| 50 |
|
2z |
|- 2 e. ZZ |
| 51 |
|
flge |
|- ( ( ( ( 2 x. N ) / 3 ) e. RR /\ 2 e. ZZ ) -> ( 2 <_ ( ( 2 x. N ) / 3 ) <-> 2 <_ ( |_ ` ( ( 2 x. N ) / 3 ) ) ) ) |
| 52 |
23 50 51
|
sylancl |
|- ( ph -> ( 2 <_ ( ( 2 x. N ) / 3 ) <-> 2 <_ ( |_ ` ( ( 2 x. N ) / 3 ) ) ) ) |
| 53 |
49 52
|
mpbid |
|- ( ph -> 2 <_ ( |_ ` ( ( 2 x. N ) / 3 ) ) ) |
| 54 |
53 4
|
breqtrrdi |
|- ( ph -> 2 <_ K ) |
| 55 |
50
|
eluz1i |
|- ( K e. ( ZZ>= ` 2 ) <-> ( K e. ZZ /\ 2 <_ K ) ) |
| 56 |
25 54 55
|
sylanbrc |
|- ( ph -> K e. ( ZZ>= ` 2 ) ) |
| 57 |
|
eluz2nn |
|- ( K e. ( ZZ>= ` 2 ) -> K e. NN ) |
| 58 |
56 57
|
syl |
|- ( ph -> K e. NN ) |
| 59 |
58
|
adantr |
|- ( ( ph /\ p e. Prime ) -> K e. NN ) |
| 60 |
|
simpr |
|- ( ( ph /\ p e. Prime ) -> p e. Prime ) |
| 61 |
|
oveq1 |
|- ( n = p -> ( n pCnt ( ( 2 x. N ) _C N ) ) = ( p pCnt ( ( 2 x. N ) _C N ) ) ) |
| 62 |
3 16 59 60 61
|
pcmpt |
|- ( ( ph /\ p e. Prime ) -> ( p pCnt ( seq 1 ( x. , F ) ` K ) ) = if ( p <_ K , ( p pCnt ( ( 2 x. N ) _C N ) ) , 0 ) ) |
| 63 |
|
iftrue |
|- ( p <_ K -> if ( p <_ K , ( p pCnt ( ( 2 x. N ) _C N ) ) , 0 ) = ( p pCnt ( ( 2 x. N ) _C N ) ) ) |
| 64 |
63
|
adantl |
|- ( ( ( ph /\ p e. Prime ) /\ p <_ K ) -> if ( p <_ K , ( p pCnt ( ( 2 x. N ) _C N ) ) , 0 ) = ( p pCnt ( ( 2 x. N ) _C N ) ) ) |
| 65 |
|
iffalse |
|- ( -. p <_ K -> if ( p <_ K , ( p pCnt ( ( 2 x. N ) _C N ) ) , 0 ) = 0 ) |
| 66 |
65
|
adantl |
|- ( ( ( ph /\ p e. Prime ) /\ -. p <_ K ) -> if ( p <_ K , ( p pCnt ( ( 2 x. N ) _C N ) ) , 0 ) = 0 ) |
| 67 |
25
|
zred |
|- ( ph -> K e. RR ) |
| 68 |
|
prmz |
|- ( p e. Prime -> p e. ZZ ) |
| 69 |
68
|
zred |
|- ( p e. Prime -> p e. RR ) |
| 70 |
|
ltnle |
|- ( ( K e. RR /\ p e. RR ) -> ( K < p <-> -. p <_ K ) ) |
| 71 |
67 69 70
|
syl2an |
|- ( ( ph /\ p e. Prime ) -> ( K < p <-> -. p <_ K ) ) |
| 72 |
71
|
biimpar |
|- ( ( ( ph /\ p e. Prime ) /\ -. p <_ K ) -> K < p ) |
| 73 |
8
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ ( K < p /\ p <_ N ) ) -> N e. NN ) |
| 74 |
|
simplr |
|- ( ( ( ph /\ p e. Prime ) /\ ( K < p /\ p <_ N ) ) -> p e. Prime ) |
| 75 |
37
|
a1i |
|- ( ( ( ph /\ p e. Prime ) /\ ( K < p /\ p <_ N ) ) -> 2 e. RR ) |
| 76 |
67
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ ( K < p /\ p <_ N ) ) -> K e. RR ) |
| 77 |
68
|
ad2antlr |
|- ( ( ( ph /\ p e. Prime ) /\ ( K < p /\ p <_ N ) ) -> p e. ZZ ) |
| 78 |
77
|
zred |
|- ( ( ( ph /\ p e. Prime ) /\ ( K < p /\ p <_ N ) ) -> p e. RR ) |
| 79 |
54
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ ( K < p /\ p <_ N ) ) -> 2 <_ K ) |
| 80 |
|
simprl |
|- ( ( ( ph /\ p e. Prime ) /\ ( K < p /\ p <_ N ) ) -> K < p ) |
| 81 |
75 76 78 79 80
|
lelttrd |
|- ( ( ( ph /\ p e. Prime ) /\ ( K < p /\ p <_ N ) ) -> 2 < p ) |
| 82 |
4 80
|
eqbrtrrid |
|- ( ( ( ph /\ p e. Prime ) /\ ( K < p /\ p <_ N ) ) -> ( |_ ` ( ( 2 x. N ) / 3 ) ) < p ) |
| 83 |
23
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ ( K < p /\ p <_ N ) ) -> ( ( 2 x. N ) / 3 ) e. RR ) |
| 84 |
|
fllt |
|- ( ( ( ( 2 x. N ) / 3 ) e. RR /\ p e. ZZ ) -> ( ( ( 2 x. N ) / 3 ) < p <-> ( |_ ` ( ( 2 x. N ) / 3 ) ) < p ) ) |
| 85 |
83 77 84
|
syl2anc |
|- ( ( ( ph /\ p e. Prime ) /\ ( K < p /\ p <_ N ) ) -> ( ( ( 2 x. N ) / 3 ) < p <-> ( |_ ` ( ( 2 x. N ) / 3 ) ) < p ) ) |
| 86 |
82 85
|
mpbird |
|- ( ( ( ph /\ p e. Prime ) /\ ( K < p /\ p <_ N ) ) -> ( ( 2 x. N ) / 3 ) < p ) |
| 87 |
|
simprr |
|- ( ( ( ph /\ p e. Prime ) /\ ( K < p /\ p <_ N ) ) -> p <_ N ) |
| 88 |
73 74 81 86 87
|
bposlem2 |
|- ( ( ( ph /\ p e. Prime ) /\ ( K < p /\ p <_ N ) ) -> ( p pCnt ( ( 2 x. N ) _C N ) ) = 0 ) |
| 89 |
88
|
expr |
|- ( ( ( ph /\ p e. Prime ) /\ K < p ) -> ( p <_ N -> ( p pCnt ( ( 2 x. N ) _C N ) ) = 0 ) ) |
| 90 |
|
rspe |
|- ( ( p e. Prime /\ ( N < p /\ p <_ ( 2 x. N ) ) ) -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) |
| 91 |
90
|
adantll |
|- ( ( ( ph /\ p e. Prime ) /\ ( N < p /\ p <_ ( 2 x. N ) ) ) -> E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) |
| 92 |
2
|
ad2antrr |
|- ( ( ( ph /\ p e. Prime ) /\ ( N < p /\ p <_ ( 2 x. N ) ) ) -> -. E. p e. Prime ( N < p /\ p <_ ( 2 x. N ) ) ) |
| 93 |
91 92
|
pm2.21dd |
|- ( ( ( ph /\ p e. Prime ) /\ ( N < p /\ p <_ ( 2 x. N ) ) ) -> ( p pCnt ( ( 2 x. N ) _C N ) ) = 0 ) |
| 94 |
93
|
expr |
|- ( ( ( ph /\ p e. Prime ) /\ N < p ) -> ( p <_ ( 2 x. N ) -> ( p pCnt ( ( 2 x. N ) _C N ) ) = 0 ) ) |
| 95 |
12
|
nnzd |
|- ( ph -> ( ( 2 x. N ) _C N ) e. ZZ ) |
| 96 |
9
|
faccld |
|- ( ph -> ( ! ` N ) e. NN ) |
| 97 |
96 96
|
nnmulcld |
|- ( ph -> ( ( ! ` N ) x. ( ! ` N ) ) e. NN ) |
| 98 |
97
|
nnzd |
|- ( ph -> ( ( ! ` N ) x. ( ! ` N ) ) e. ZZ ) |
| 99 |
|
dvdsmul1 |
|- ( ( ( ( 2 x. N ) _C N ) e. ZZ /\ ( ( ! ` N ) x. ( ! ` N ) ) e. ZZ ) -> ( ( 2 x. N ) _C N ) || ( ( ( 2 x. N ) _C N ) x. ( ( ! ` N ) x. ( ! ` N ) ) ) ) |
| 100 |
95 98 99
|
syl2anc |
|- ( ph -> ( ( 2 x. N ) _C N ) || ( ( ( 2 x. N ) _C N ) x. ( ( ! ` N ) x. ( ! ` N ) ) ) ) |
| 101 |
|
bcctr |
|- ( N e. NN0 -> ( ( 2 x. N ) _C N ) = ( ( ! ` ( 2 x. N ) ) / ( ( ! ` N ) x. ( ! ` N ) ) ) ) |
| 102 |
9 101
|
syl |
|- ( ph -> ( ( 2 x. N ) _C N ) = ( ( ! ` ( 2 x. N ) ) / ( ( ! ` N ) x. ( ! ` N ) ) ) ) |
| 103 |
102
|
oveq1d |
|- ( ph -> ( ( ( 2 x. N ) _C N ) x. ( ( ! ` N ) x. ( ! ` N ) ) ) = ( ( ( ! ` ( 2 x. N ) ) / ( ( ! ` N ) x. ( ! ` N ) ) ) x. ( ( ! ` N ) x. ( ! ` N ) ) ) ) |
| 104 |
19
|
nnnn0d |
|- ( ph -> ( 2 x. N ) e. NN0 ) |
| 105 |
104
|
faccld |
|- ( ph -> ( ! ` ( 2 x. N ) ) e. NN ) |
| 106 |
105
|
nncnd |
|- ( ph -> ( ! ` ( 2 x. N ) ) e. CC ) |
| 107 |
97
|
nncnd |
|- ( ph -> ( ( ! ` N ) x. ( ! ` N ) ) e. CC ) |
| 108 |
97
|
nnne0d |
|- ( ph -> ( ( ! ` N ) x. ( ! ` N ) ) =/= 0 ) |
| 109 |
106 107 108
|
divcan1d |
|- ( ph -> ( ( ( ! ` ( 2 x. N ) ) / ( ( ! ` N ) x. ( ! ` N ) ) ) x. ( ( ! ` N ) x. ( ! ` N ) ) ) = ( ! ` ( 2 x. N ) ) ) |
| 110 |
103 109
|
eqtrd |
|- ( ph -> ( ( ( 2 x. N ) _C N ) x. ( ( ! ` N ) x. ( ! ` N ) ) ) = ( ! ` ( 2 x. N ) ) ) |
| 111 |
100 110
|
breqtrd |
|- ( ph -> ( ( 2 x. N ) _C N ) || ( ! ` ( 2 x. N ) ) ) |
| 112 |
111
|
adantr |
|- ( ( ph /\ p e. Prime ) -> ( ( 2 x. N ) _C N ) || ( ! ` ( 2 x. N ) ) ) |
| 113 |
68
|
adantl |
|- ( ( ph /\ p e. Prime ) -> p e. ZZ ) |
| 114 |
95
|
adantr |
|- ( ( ph /\ p e. Prime ) -> ( ( 2 x. N ) _C N ) e. ZZ ) |
| 115 |
105
|
nnzd |
|- ( ph -> ( ! ` ( 2 x. N ) ) e. ZZ ) |
| 116 |
115
|
adantr |
|- ( ( ph /\ p e. Prime ) -> ( ! ` ( 2 x. N ) ) e. ZZ ) |
| 117 |
|
dvdstr |
|- ( ( p e. ZZ /\ ( ( 2 x. N ) _C N ) e. ZZ /\ ( ! ` ( 2 x. N ) ) e. ZZ ) -> ( ( p || ( ( 2 x. N ) _C N ) /\ ( ( 2 x. N ) _C N ) || ( ! ` ( 2 x. N ) ) ) -> p || ( ! ` ( 2 x. N ) ) ) ) |
| 118 |
113 114 116 117
|
syl3anc |
|- ( ( ph /\ p e. Prime ) -> ( ( p || ( ( 2 x. N ) _C N ) /\ ( ( 2 x. N ) _C N ) || ( ! ` ( 2 x. N ) ) ) -> p || ( ! ` ( 2 x. N ) ) ) ) |
| 119 |
112 118
|
mpan2d |
|- ( ( ph /\ p e. Prime ) -> ( p || ( ( 2 x. N ) _C N ) -> p || ( ! ` ( 2 x. N ) ) ) ) |
| 120 |
|
prmfac1 |
|- ( ( ( 2 x. N ) e. NN0 /\ p e. Prime /\ p || ( ! ` ( 2 x. N ) ) ) -> p <_ ( 2 x. N ) ) |
| 121 |
120
|
3expia |
|- ( ( ( 2 x. N ) e. NN0 /\ p e. Prime ) -> ( p || ( ! ` ( 2 x. N ) ) -> p <_ ( 2 x. N ) ) ) |
| 122 |
104 121
|
sylan |
|- ( ( ph /\ p e. Prime ) -> ( p || ( ! ` ( 2 x. N ) ) -> p <_ ( 2 x. N ) ) ) |
| 123 |
119 122
|
syld |
|- ( ( ph /\ p e. Prime ) -> ( p || ( ( 2 x. N ) _C N ) -> p <_ ( 2 x. N ) ) ) |
| 124 |
123
|
con3d |
|- ( ( ph /\ p e. Prime ) -> ( -. p <_ ( 2 x. N ) -> -. p || ( ( 2 x. N ) _C N ) ) ) |
| 125 |
|
id |
|- ( p e. Prime -> p e. Prime ) |
| 126 |
|
pceq0 |
|- ( ( p e. Prime /\ ( ( 2 x. N ) _C N ) e. NN ) -> ( ( p pCnt ( ( 2 x. N ) _C N ) ) = 0 <-> -. p || ( ( 2 x. N ) _C N ) ) ) |
| 127 |
125 12 126
|
syl2anr |
|- ( ( ph /\ p e. Prime ) -> ( ( p pCnt ( ( 2 x. N ) _C N ) ) = 0 <-> -. p || ( ( 2 x. N ) _C N ) ) ) |
| 128 |
124 127
|
sylibrd |
|- ( ( ph /\ p e. Prime ) -> ( -. p <_ ( 2 x. N ) -> ( p pCnt ( ( 2 x. N ) _C N ) ) = 0 ) ) |
| 129 |
128
|
adantr |
|- ( ( ( ph /\ p e. Prime ) /\ N < p ) -> ( -. p <_ ( 2 x. N ) -> ( p pCnt ( ( 2 x. N ) _C N ) ) = 0 ) ) |
| 130 |
94 129
|
pm2.61d |
|- ( ( ( ph /\ p e. Prime ) /\ N < p ) -> ( p pCnt ( ( 2 x. N ) _C N ) ) = 0 ) |
| 131 |
130
|
ex |
|- ( ( ph /\ p e. Prime ) -> ( N < p -> ( p pCnt ( ( 2 x. N ) _C N ) ) = 0 ) ) |
| 132 |
131
|
adantr |
|- ( ( ( ph /\ p e. Prime ) /\ K < p ) -> ( N < p -> ( p pCnt ( ( 2 x. N ) _C N ) ) = 0 ) ) |
| 133 |
|
lelttric |
|- ( ( p e. RR /\ N e. RR ) -> ( p <_ N \/ N < p ) ) |
| 134 |
69 30 133
|
syl2anr |
|- ( ( ph /\ p e. Prime ) -> ( p <_ N \/ N < p ) ) |
| 135 |
134
|
adantr |
|- ( ( ( ph /\ p e. Prime ) /\ K < p ) -> ( p <_ N \/ N < p ) ) |
| 136 |
89 132 135
|
mpjaod |
|- ( ( ( ph /\ p e. Prime ) /\ K < p ) -> ( p pCnt ( ( 2 x. N ) _C N ) ) = 0 ) |
| 137 |
72 136
|
syldan |
|- ( ( ( ph /\ p e. Prime ) /\ -. p <_ K ) -> ( p pCnt ( ( 2 x. N ) _C N ) ) = 0 ) |
| 138 |
66 137
|
eqtr4d |
|- ( ( ( ph /\ p e. Prime ) /\ -. p <_ K ) -> if ( p <_ K , ( p pCnt ( ( 2 x. N ) _C N ) ) , 0 ) = ( p pCnt ( ( 2 x. N ) _C N ) ) ) |
| 139 |
64 138
|
pm2.61dan |
|- ( ( ph /\ p e. Prime ) -> if ( p <_ K , ( p pCnt ( ( 2 x. N ) _C N ) ) , 0 ) = ( p pCnt ( ( 2 x. N ) _C N ) ) ) |
| 140 |
62 139
|
eqtrd |
|- ( ( ph /\ p e. Prime ) -> ( p pCnt ( seq 1 ( x. , F ) ` K ) ) = ( p pCnt ( ( 2 x. N ) _C N ) ) ) |
| 141 |
140
|
ralrimiva |
|- ( ph -> A. p e. Prime ( p pCnt ( seq 1 ( x. , F ) ` K ) ) = ( p pCnt ( ( 2 x. N ) _C N ) ) ) |
| 142 |
3 15
|
pcmptcl |
|- ( ph -> ( F : NN --> NN /\ seq 1 ( x. , F ) : NN --> NN ) ) |
| 143 |
142
|
simprd |
|- ( ph -> seq 1 ( x. , F ) : NN --> NN ) |
| 144 |
143 58
|
ffvelcdmd |
|- ( ph -> ( seq 1 ( x. , F ) ` K ) e. NN ) |
| 145 |
144
|
nnnn0d |
|- ( ph -> ( seq 1 ( x. , F ) ` K ) e. NN0 ) |
| 146 |
12
|
nnnn0d |
|- ( ph -> ( ( 2 x. N ) _C N ) e. NN0 ) |
| 147 |
|
pc11 |
|- ( ( ( seq 1 ( x. , F ) ` K ) e. NN0 /\ ( ( 2 x. N ) _C N ) e. NN0 ) -> ( ( seq 1 ( x. , F ) ` K ) = ( ( 2 x. N ) _C N ) <-> A. p e. Prime ( p pCnt ( seq 1 ( x. , F ) ` K ) ) = ( p pCnt ( ( 2 x. N ) _C N ) ) ) ) |
| 148 |
145 146 147
|
syl2anc |
|- ( ph -> ( ( seq 1 ( x. , F ) ` K ) = ( ( 2 x. N ) _C N ) <-> A. p e. Prime ( p pCnt ( seq 1 ( x. , F ) ` K ) ) = ( p pCnt ( ( 2 x. N ) _C N ) ) ) ) |
| 149 |
141 148
|
mpbird |
|- ( ph -> ( seq 1 ( x. , F ) ` K ) = ( ( 2 x. N ) _C N ) ) |