Metamath Proof Explorer


Theorem bposlem2

Description: There are no odd primes in the range ( 2 N / 3 , N ] dividing the N -th central binomial coefficient. (Contributed by Mario Carneiro, 12-Mar-2014)

Ref Expression
Hypotheses bposlem2.1 φN
bposlem2.2 φP
bposlem2.3 φ2<P
bposlem2.4 φ2 N3<P
bposlem2.5 φPN
Assertion bposlem2 φPpCnt(2 NN)=0

Proof

Step Hyp Ref Expression
1 bposlem2.1 φN
2 bposlem2.2 φP
3 bposlem2.3 φ2<P
4 bposlem2.4 φ2 N3<P
5 bposlem2.5 φPN
6 pcbcctr NPPpCnt(2 NN)=k=12 N2 NPk2NPk
7 1 2 6 syl2anc φPpCnt(2 NN)=k=12 N2 NPk2NPk
8 elfznn k12 Nk
9 elnn1uz2 kk=1k2
10 8 9 sylib k12 Nk=1k2
11 oveq2 k=1Pk=P1
12 prmnn PP
13 2 12 syl φP
14 13 nncnd φP
15 14 exp1d φP1=P
16 11 15 sylan9eqr φk=1Pk=P
17 16 oveq2d φk=12 NPk=2 NP
18 17 fveq2d φk=12 NPk=2 NP
19 2t1e2 21=2
20 14 mullidd φ1P=P
21 20 5 eqbrtrd φ1PN
22 1red φ1
23 1 nnred φN
24 13 nnred φP
25 13 nngt0d φ0<P
26 lemuldiv 1NP0<P1PN1NP
27 22 23 24 25 26 syl112anc φ1PN1NP
28 21 27 mpbid φ1NP
29 23 13 nndivred φNP
30 1re 1
31 2re 2
32 2pos 0<2
33 31 32 pm3.2i 20<2
34 lemul2 1NP20<21NP212NP
35 30 33 34 mp3an13 NP1NP212NP
36 29 35 syl φ1NP212NP
37 28 36 mpbid φ212NP
38 19 37 eqbrtrrid φ22NP
39 2cnd φ2
40 1 nncnd φN
41 13 nnne0d φP0
42 39 40 14 41 divassd φ2 NP=2NP
43 38 42 breqtrrd φ22 NP
44 2nn 2
45 nnmulcl 2N2 N
46 44 1 45 sylancr φ2 N
47 46 nnred φ2 N
48 3re 3
49 3pos 0<3
50 48 49 pm3.2i 30<3
51 ltdiv23 2 N30<3P0<P2 N3<P2 NP<3
52 50 51 mp3an2 2 NP0<P2 N3<P2 NP<3
53 47 24 25 52 syl12anc φ2 N3<P2 NP<3
54 4 53 mpbid φ2 NP<3
55 df-3 3=2+1
56 54 55 breqtrdi φ2 NP<2+1
57 47 13 nndivred φ2 NP
58 2z 2
59 flbi 2 NP22 NP=222 NP2 NP<2+1
60 57 58 59 sylancl φ2 NP=222 NP2 NP<2+1
61 43 56 60 mpbir2and φ2 NP=2
62 61 adantr φk=12 NP=2
63 18 62 eqtrd φk=12 NPk=2
64 16 oveq2d φk=1NPk=NP
65 64 fveq2d φk=1NPk=NP
66 remulcl 2NP2NP
67 31 29 66 sylancr φ2NP
68 48 a1i φ3
69 4re 4
70 69 a1i φ4
71 42 54 eqbrtrrd φ2NP<3
72 3lt4 3<4
73 72 a1i φ3<4
74 67 68 70 71 73 lttrd φ2NP<4
75 2t2e4 22=4
76 74 75 breqtrrdi φ2NP<22
77 ltmul2 NP220<2NP<22NP<22
78 31 33 77 mp3an23 NPNP<22NP<22
79 29 78 syl φNP<22NP<22
80 76 79 mpbird φNP<2
81 df-2 2=1+1
82 80 81 breqtrdi φNP<1+1
83 1z 1
84 flbi NP1NP=11NPNP<1+1
85 29 83 84 sylancl φNP=11NPNP<1+1
86 28 82 85 mpbir2and φNP=1
87 86 adantr φk=1NP=1
88 65 87 eqtrd φk=1NPk=1
89 88 oveq2d φk=12NPk=21
90 89 19 eqtrdi φk=12NPk=2
91 63 90 oveq12d φk=12 NPk2NPk=22
92 2cn 2
93 92 subidi 22=0
94 91 93 eqtrdi φk=12 NPk2NPk=0
95 46 nnrpd φ2 N+
96 95 adantr φk22 N+
97 eluzge2nn0 k2k0
98 nnexpcl Pk0Pk
99 13 97 98 syl2an φk2Pk
100 99 nnrpd φk2Pk+
101 96 100 rpdivcld φk22 NPk+
102 101 rpge0d φk202 NPk
103 47 adantr φk22 N
104 remulcl 3P3P
105 48 24 104 sylancr φ3P
106 105 adantr φk23P
107 99 nnred φk2Pk
108 ltdivmul 2 NP30<32 N3<P2 N<3P
109 50 108 mp3an3 2 NP2 N3<P2 N<3P
110 47 24 109 syl2anc φ2 N3<P2 N<3P
111 4 110 mpbid φ2 N<3P
112 111 adantr φk22 N<3P
113 24 24 remulcld φPP
114 113 adantr φk2PP
115 nnltp1le 2P2<P2+1P
116 44 13 115 sylancr φ2<P2+1P
117 3 116 mpbid φ2+1P
118 55 117 eqbrtrid φ3P
119 lemul1 3PP0<P3P3PPP
120 48 119 mp3an1 PP0<P3P3PPP
121 24 24 25 120 syl12anc φ3P3PPP
122 118 121 mpbid φ3PPP
123 122 adantr φk23PPP
124 14 sqvald φP2=PP
125 124 adantr φk2P2=PP
126 24 adantr φk2P
127 13 nnge1d φ1P
128 127 adantr φk21P
129 simpr φk2k2
130 126 128 129 leexp2ad φk2P2Pk
131 125 130 eqbrtrrd φk2PPPk
132 106 114 107 123 131 letrd φk23PPk
133 103 106 107 112 132 ltletrd φk22 N<Pk
134 99 nncnd φk2Pk
135 134 mulridd φk2Pk1=Pk
136 133 135 breqtrrd φk22 N<Pk1
137 1red φk21
138 103 137 100 ltdivmuld φk22 NPk<12 N<Pk1
139 136 138 mpbird φk22 NPk<1
140 1e0p1 1=0+1
141 139 140 breqtrdi φk22 NPk<0+1
142 101 rpred φk22 NPk
143 0z 0
144 flbi 2 NPk02 NPk=002 NPk2 NPk<0+1
145 142 143 144 sylancl φk22 NPk=002 NPk2 NPk<0+1
146 102 141 145 mpbir2and φk22 NPk=0
147 1 nnrpd φN+
148 147 adantr φk2N+
149 148 100 rpdivcld φk2NPk+
150 149 rpge0d φk20NPk
151 23 adantr φk2N
152 23 147 ltaddrpd φN<N+N
153 40 2timesd φ2 N=N+N
154 152 153 breqtrrd φN<2 N
155 154 adantr φk2N<2 N
156 151 103 107 155 133 lttrd φk2N<Pk
157 156 135 breqtrrd φk2N<Pk1
158 151 137 100 ltdivmuld φk2NPk<1N<Pk1
159 157 158 mpbird φk2NPk<1
160 159 140 breqtrdi φk2NPk<0+1
161 149 rpred φk2NPk
162 flbi NPk0NPk=00NPkNPk<0+1
163 161 143 162 sylancl φk2NPk=00NPkNPk<0+1
164 150 160 163 mpbir2and φk2NPk=0
165 164 oveq2d φk22NPk=20
166 2t0e0 20=0
167 165 166 eqtrdi φk22NPk=0
168 146 167 oveq12d φk22 NPk2NPk=00
169 0m0e0 00=0
170 168 169 eqtrdi φk22 NPk2NPk=0
171 94 170 jaodan φk=1k22 NPk2NPk=0
172 10 171 sylan2 φk12 N2 NPk2NPk=0
173 172 sumeq2dv φk=12 N2 NPk2NPk=k=12 N0
174 fzfid φ12 NFin
175 sumz 12 N112 NFink=12 N0=0
176 175 olcs 12 NFink=12 N0=0
177 174 176 syl φk=12 N0=0
178 173 177 eqtrd φk=12 N2 NPk2NPk=0
179 7 178 eqtrd φPpCnt(2 NN)=0