| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cayhamlem1.a |  |-  A = ( N Mat R ) | 
						
							| 2 |  | cayhamlem1.b |  |-  B = ( Base ` A ) | 
						
							| 3 |  | cayhamlem1.p |  |-  P = ( Poly1 ` R ) | 
						
							| 4 |  | cayhamlem1.y |  |-  Y = ( N Mat P ) | 
						
							| 5 |  | cayhamlem1.r |  |-  .X. = ( .r ` Y ) | 
						
							| 6 |  | cayhamlem1.s |  |-  .- = ( -g ` Y ) | 
						
							| 7 |  | cayhamlem1.0 |  |-  .0. = ( 0g ` Y ) | 
						
							| 8 |  | cayhamlem1.t |  |-  T = ( N matToPolyMat R ) | 
						
							| 9 |  | cayhamlem1.g |  |-  G = ( n e. NN0 |-> if ( n = 0 , ( .0. .- ( ( T ` M ) .X. ( T ` ( b ` 0 ) ) ) ) , if ( n = ( s + 1 ) , ( T ` ( b ` s ) ) , if ( ( s + 1 ) < n , .0. , ( ( T ` ( b ` ( n - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` n ) ) ) ) ) ) ) ) | 
						
							| 10 |  | cayhamlem1.e |  |-  .^ = ( .g ` ( mulGrp ` Y ) ) | 
						
							| 11 |  | eluz2 |  |-  ( K e. ( ZZ>= ` ( s + 2 ) ) <-> ( ( s + 2 ) e. ZZ /\ K e. ZZ /\ ( s + 2 ) <_ K ) ) | 
						
							| 12 |  | simpll |  |-  ( ( ( K e. ZZ /\ s e. NN ) /\ ( s + 2 ) <_ K ) -> K e. ZZ ) | 
						
							| 13 |  | nngt0 |  |-  ( s e. NN -> 0 < s ) | 
						
							| 14 |  | nnre |  |-  ( s e. NN -> s e. RR ) | 
						
							| 15 | 14 | adantl |  |-  ( ( K e. ZZ /\ s e. NN ) -> s e. RR ) | 
						
							| 16 |  | 2rp |  |-  2 e. RR+ | 
						
							| 17 | 16 | a1i |  |-  ( ( K e. ZZ /\ s e. NN ) -> 2 e. RR+ ) | 
						
							| 18 | 15 17 | ltaddrpd |  |-  ( ( K e. ZZ /\ s e. NN ) -> s < ( s + 2 ) ) | 
						
							| 19 |  | 0red |  |-  ( ( K e. ZZ /\ s e. NN ) -> 0 e. RR ) | 
						
							| 20 |  | 2re |  |-  2 e. RR | 
						
							| 21 | 20 | a1i |  |-  ( ( K e. ZZ /\ s e. NN ) -> 2 e. RR ) | 
						
							| 22 | 15 21 | readdcld |  |-  ( ( K e. ZZ /\ s e. NN ) -> ( s + 2 ) e. RR ) | 
						
							| 23 |  | lttr |  |-  ( ( 0 e. RR /\ s e. RR /\ ( s + 2 ) e. RR ) -> ( ( 0 < s /\ s < ( s + 2 ) ) -> 0 < ( s + 2 ) ) ) | 
						
							| 24 | 19 15 22 23 | syl3anc |  |-  ( ( K e. ZZ /\ s e. NN ) -> ( ( 0 < s /\ s < ( s + 2 ) ) -> 0 < ( s + 2 ) ) ) | 
						
							| 25 | 18 24 | mpan2d |  |-  ( ( K e. ZZ /\ s e. NN ) -> ( 0 < s -> 0 < ( s + 2 ) ) ) | 
						
							| 26 | 25 | ex |  |-  ( K e. ZZ -> ( s e. NN -> ( 0 < s -> 0 < ( s + 2 ) ) ) ) | 
						
							| 27 | 26 | com13 |  |-  ( 0 < s -> ( s e. NN -> ( K e. ZZ -> 0 < ( s + 2 ) ) ) ) | 
						
							| 28 | 13 27 | mpcom |  |-  ( s e. NN -> ( K e. ZZ -> 0 < ( s + 2 ) ) ) | 
						
							| 29 | 28 | impcom |  |-  ( ( K e. ZZ /\ s e. NN ) -> 0 < ( s + 2 ) ) | 
						
							| 30 |  | zre |  |-  ( K e. ZZ -> K e. RR ) | 
						
							| 31 | 30 | adantr |  |-  ( ( K e. ZZ /\ s e. NN ) -> K e. RR ) | 
						
							| 32 |  | ltleletr |  |-  ( ( 0 e. RR /\ ( s + 2 ) e. RR /\ K e. RR ) -> ( ( 0 < ( s + 2 ) /\ ( s + 2 ) <_ K ) -> 0 <_ K ) ) | 
						
							| 33 | 19 22 31 32 | syl3anc |  |-  ( ( K e. ZZ /\ s e. NN ) -> ( ( 0 < ( s + 2 ) /\ ( s + 2 ) <_ K ) -> 0 <_ K ) ) | 
						
							| 34 | 29 33 | mpand |  |-  ( ( K e. ZZ /\ s e. NN ) -> ( ( s + 2 ) <_ K -> 0 <_ K ) ) | 
						
							| 35 | 34 | imp |  |-  ( ( ( K e. ZZ /\ s e. NN ) /\ ( s + 2 ) <_ K ) -> 0 <_ K ) | 
						
							| 36 |  | elnn0z |  |-  ( K e. NN0 <-> ( K e. ZZ /\ 0 <_ K ) ) | 
						
							| 37 | 12 35 36 | sylanbrc |  |-  ( ( ( K e. ZZ /\ s e. NN ) /\ ( s + 2 ) <_ K ) -> K e. NN0 ) | 
						
							| 38 |  | nncn |  |-  ( s e. NN -> s e. CC ) | 
						
							| 39 |  | add1p1 |  |-  ( s e. CC -> ( ( s + 1 ) + 1 ) = ( s + 2 ) ) | 
						
							| 40 | 38 39 | syl |  |-  ( s e. NN -> ( ( s + 1 ) + 1 ) = ( s + 2 ) ) | 
						
							| 41 | 40 | adantl |  |-  ( ( K e. ZZ /\ s e. NN ) -> ( ( s + 1 ) + 1 ) = ( s + 2 ) ) | 
						
							| 42 | 41 | eqcomd |  |-  ( ( K e. ZZ /\ s e. NN ) -> ( s + 2 ) = ( ( s + 1 ) + 1 ) ) | 
						
							| 43 | 42 | breq1d |  |-  ( ( K e. ZZ /\ s e. NN ) -> ( ( s + 2 ) <_ K <-> ( ( s + 1 ) + 1 ) <_ K ) ) | 
						
							| 44 |  | nnz |  |-  ( s e. NN -> s e. ZZ ) | 
						
							| 45 | 44 | peano2zd |  |-  ( s e. NN -> ( s + 1 ) e. ZZ ) | 
						
							| 46 | 45 | anim2i |  |-  ( ( K e. ZZ /\ s e. NN ) -> ( K e. ZZ /\ ( s + 1 ) e. ZZ ) ) | 
						
							| 47 | 46 | ancomd |  |-  ( ( K e. ZZ /\ s e. NN ) -> ( ( s + 1 ) e. ZZ /\ K e. ZZ ) ) | 
						
							| 48 |  | zltp1le |  |-  ( ( ( s + 1 ) e. ZZ /\ K e. ZZ ) -> ( ( s + 1 ) < K <-> ( ( s + 1 ) + 1 ) <_ K ) ) | 
						
							| 49 | 48 | bicomd |  |-  ( ( ( s + 1 ) e. ZZ /\ K e. ZZ ) -> ( ( ( s + 1 ) + 1 ) <_ K <-> ( s + 1 ) < K ) ) | 
						
							| 50 | 47 49 | syl |  |-  ( ( K e. ZZ /\ s e. NN ) -> ( ( ( s + 1 ) + 1 ) <_ K <-> ( s + 1 ) < K ) ) | 
						
							| 51 | 43 50 | bitrd |  |-  ( ( K e. ZZ /\ s e. NN ) -> ( ( s + 2 ) <_ K <-> ( s + 1 ) < K ) ) | 
						
							| 52 | 51 | biimpa |  |-  ( ( ( K e. ZZ /\ s e. NN ) /\ ( s + 2 ) <_ K ) -> ( s + 1 ) < K ) | 
						
							| 53 | 37 52 | jca |  |-  ( ( ( K e. ZZ /\ s e. NN ) /\ ( s + 2 ) <_ K ) -> ( K e. NN0 /\ ( s + 1 ) < K ) ) | 
						
							| 54 | 53 | ex |  |-  ( ( K e. ZZ /\ s e. NN ) -> ( ( s + 2 ) <_ K -> ( K e. NN0 /\ ( s + 1 ) < K ) ) ) | 
						
							| 55 | 54 | impancom |  |-  ( ( K e. ZZ /\ ( s + 2 ) <_ K ) -> ( s e. NN -> ( K e. NN0 /\ ( s + 1 ) < K ) ) ) | 
						
							| 56 | 55 | 3adant1 |  |-  ( ( ( s + 2 ) e. ZZ /\ K e. ZZ /\ ( s + 2 ) <_ K ) -> ( s e. NN -> ( K e. NN0 /\ ( s + 1 ) < K ) ) ) | 
						
							| 57 | 56 | com12 |  |-  ( s e. NN -> ( ( ( s + 2 ) e. ZZ /\ K e. ZZ /\ ( s + 2 ) <_ K ) -> ( K e. NN0 /\ ( s + 1 ) < K ) ) ) | 
						
							| 58 | 11 57 | biimtrid |  |-  ( s e. NN -> ( K e. ( ZZ>= ` ( s + 2 ) ) -> ( K e. NN0 /\ ( s + 1 ) < K ) ) ) | 
						
							| 59 | 58 | adantr |  |-  ( ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) -> ( K e. ( ZZ>= ` ( s + 2 ) ) -> ( K e. NN0 /\ ( s + 1 ) < K ) ) ) | 
						
							| 60 | 59 | adantl |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( K e. ( ZZ>= ` ( s + 2 ) ) -> ( K e. NN0 /\ ( s + 1 ) < K ) ) ) | 
						
							| 61 |  | 0red |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) -> 0 e. RR ) | 
						
							| 62 |  | peano2re |  |-  ( s e. RR -> ( s + 1 ) e. RR ) | 
						
							| 63 | 14 62 | syl |  |-  ( s e. NN -> ( s + 1 ) e. RR ) | 
						
							| 64 | 63 | adantr |  |-  ( ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) -> ( s + 1 ) e. RR ) | 
						
							| 65 | 64 | adantl |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( s + 1 ) e. RR ) | 
						
							| 66 | 65 | ad2antrr |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) -> ( s + 1 ) e. RR ) | 
						
							| 67 |  | nn0re |  |-  ( K e. NN0 -> K e. RR ) | 
						
							| 68 | 67 | ad2antlr |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) -> K e. RR ) | 
						
							| 69 |  | nnnn0 |  |-  ( s e. NN -> s e. NN0 ) | 
						
							| 70 | 69 | adantr |  |-  ( ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) -> s e. NN0 ) | 
						
							| 71 | 70 | ad2antlr |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) -> s e. NN0 ) | 
						
							| 72 |  | nn0p1gt0 |  |-  ( s e. NN0 -> 0 < ( s + 1 ) ) | 
						
							| 73 | 71 72 | syl |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) -> 0 < ( s + 1 ) ) | 
						
							| 74 | 73 | adantr |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) -> 0 < ( s + 1 ) ) | 
						
							| 75 |  | simpr |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) -> ( s + 1 ) < K ) | 
						
							| 76 | 61 66 68 74 75 | lttrd |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) -> 0 < K ) | 
						
							| 77 | 76 | gt0ne0d |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) -> K =/= 0 ) | 
						
							| 78 | 77 | neneqd |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) -> -. K = 0 ) | 
						
							| 79 | 78 | adantr |  |-  ( ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) /\ n = K ) -> -. K = 0 ) | 
						
							| 80 |  | eqeq1 |  |-  ( n = K -> ( n = 0 <-> K = 0 ) ) | 
						
							| 81 | 80 | notbid |  |-  ( n = K -> ( -. n = 0 <-> -. K = 0 ) ) | 
						
							| 82 | 81 | adantl |  |-  ( ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) /\ n = K ) -> ( -. n = 0 <-> -. K = 0 ) ) | 
						
							| 83 | 79 82 | mpbird |  |-  ( ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) /\ n = K ) -> -. n = 0 ) | 
						
							| 84 | 83 | iffalsed |  |-  ( ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) /\ n = K ) -> if ( n = 0 , ( .0. .- ( ( T ` M ) .X. ( T ` ( b ` 0 ) ) ) ) , if ( n = ( s + 1 ) , ( T ` ( b ` s ) ) , if ( ( s + 1 ) < n , .0. , ( ( T ` ( b ` ( n - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` n ) ) ) ) ) ) ) = if ( n = ( s + 1 ) , ( T ` ( b ` s ) ) , if ( ( s + 1 ) < n , .0. , ( ( T ` ( b ` ( n - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` n ) ) ) ) ) ) ) | 
						
							| 85 | 64 | ad2antlr |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) -> ( s + 1 ) e. RR ) | 
						
							| 86 |  | ltne |  |-  ( ( ( s + 1 ) e. RR /\ ( s + 1 ) < K ) -> K =/= ( s + 1 ) ) | 
						
							| 87 | 85 86 | sylan |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) -> K =/= ( s + 1 ) ) | 
						
							| 88 | 87 | neneqd |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) -> -. K = ( s + 1 ) ) | 
						
							| 89 | 88 | adantr |  |-  ( ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) /\ n = K ) -> -. K = ( s + 1 ) ) | 
						
							| 90 |  | eqeq1 |  |-  ( n = K -> ( n = ( s + 1 ) <-> K = ( s + 1 ) ) ) | 
						
							| 91 | 90 | notbid |  |-  ( n = K -> ( -. n = ( s + 1 ) <-> -. K = ( s + 1 ) ) ) | 
						
							| 92 | 91 | adantl |  |-  ( ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) /\ n = K ) -> ( -. n = ( s + 1 ) <-> -. K = ( s + 1 ) ) ) | 
						
							| 93 | 89 92 | mpbird |  |-  ( ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) /\ n = K ) -> -. n = ( s + 1 ) ) | 
						
							| 94 | 93 | iffalsed |  |-  ( ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) /\ n = K ) -> if ( n = ( s + 1 ) , ( T ` ( b ` s ) ) , if ( ( s + 1 ) < n , .0. , ( ( T ` ( b ` ( n - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` n ) ) ) ) ) ) = if ( ( s + 1 ) < n , .0. , ( ( T ` ( b ` ( n - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` n ) ) ) ) ) ) | 
						
							| 95 |  | simplr |  |-  ( ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) /\ n = K ) -> ( s + 1 ) < K ) | 
						
							| 96 |  | breq2 |  |-  ( n = K -> ( ( s + 1 ) < n <-> ( s + 1 ) < K ) ) | 
						
							| 97 | 96 | adantl |  |-  ( ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) /\ n = K ) -> ( ( s + 1 ) < n <-> ( s + 1 ) < K ) ) | 
						
							| 98 | 95 97 | mpbird |  |-  ( ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) /\ n = K ) -> ( s + 1 ) < n ) | 
						
							| 99 | 98 | iftrued |  |-  ( ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) /\ n = K ) -> if ( ( s + 1 ) < n , .0. , ( ( T ` ( b ` ( n - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` n ) ) ) ) ) = .0. ) | 
						
							| 100 | 84 94 99 | 3eqtrd |  |-  ( ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) /\ n = K ) -> if ( n = 0 , ( .0. .- ( ( T ` M ) .X. ( T ` ( b ` 0 ) ) ) ) , if ( n = ( s + 1 ) , ( T ` ( b ` s ) ) , if ( ( s + 1 ) < n , .0. , ( ( T ` ( b ` ( n - 1 ) ) ) .- ( ( T ` M ) .X. ( T ` ( b ` n ) ) ) ) ) ) ) = .0. ) | 
						
							| 101 |  | simplr |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) -> K e. NN0 ) | 
						
							| 102 | 7 | fvexi |  |-  .0. e. _V | 
						
							| 103 | 102 | a1i |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) -> .0. e. _V ) | 
						
							| 104 | 9 100 101 103 | fvmptd2 |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) -> ( G ` K ) = .0. ) | 
						
							| 105 | 104 | oveq2d |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) -> ( ( K .^ ( T ` M ) ) .X. ( G ` K ) ) = ( ( K .^ ( T ` M ) ) .X. .0. ) ) | 
						
							| 106 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 107 | 3 4 | pmatring |  |-  ( ( N e. Fin /\ R e. Ring ) -> Y e. Ring ) | 
						
							| 108 | 106 107 | sylan2 |  |-  ( ( N e. Fin /\ R e. CRing ) -> Y e. Ring ) | 
						
							| 109 | 108 | 3adant3 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> Y e. Ring ) | 
						
							| 110 | 109 | adantr |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> Y e. Ring ) | 
						
							| 111 | 110 | ad2antrr |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) -> Y e. Ring ) | 
						
							| 112 |  | eqid |  |-  ( mulGrp ` Y ) = ( mulGrp ` Y ) | 
						
							| 113 |  | eqid |  |-  ( Base ` Y ) = ( Base ` Y ) | 
						
							| 114 | 112 113 | mgpbas |  |-  ( Base ` Y ) = ( Base ` ( mulGrp ` Y ) ) | 
						
							| 115 | 112 | ringmgp |  |-  ( Y e. Ring -> ( mulGrp ` Y ) e. Mnd ) | 
						
							| 116 | 109 115 | syl |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( mulGrp ` Y ) e. Mnd ) | 
						
							| 117 | 116 | ad2antrr |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) -> ( mulGrp ` Y ) e. Mnd ) | 
						
							| 118 |  | simpr |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) -> K e. NN0 ) | 
						
							| 119 | 8 1 2 3 4 | mat2pmatbas |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( T ` M ) e. ( Base ` Y ) ) | 
						
							| 120 | 106 119 | syl3an2 |  |-  ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( T ` M ) e. ( Base ` Y ) ) | 
						
							| 121 | 120 | ad2antrr |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) -> ( T ` M ) e. ( Base ` Y ) ) | 
						
							| 122 | 114 10 117 118 121 | mulgnn0cld |  |-  ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) -> ( K .^ ( T ` M ) ) e. ( Base ` Y ) ) | 
						
							| 123 | 122 | adantr |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) -> ( K .^ ( T ` M ) ) e. ( Base ` Y ) ) | 
						
							| 124 | 113 5 7 | ringrz |  |-  ( ( Y e. Ring /\ ( K .^ ( T ` M ) ) e. ( Base ` Y ) ) -> ( ( K .^ ( T ` M ) ) .X. .0. ) = .0. ) | 
						
							| 125 | 111 123 124 | syl2anc |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) -> ( ( K .^ ( T ` M ) ) .X. .0. ) = .0. ) | 
						
							| 126 | 105 125 | eqtrd |  |-  ( ( ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) /\ K e. NN0 ) /\ ( s + 1 ) < K ) -> ( ( K .^ ( T ` M ) ) .X. ( G ` K ) ) = .0. ) | 
						
							| 127 | 126 | expl |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( ( K e. NN0 /\ ( s + 1 ) < K ) -> ( ( K .^ ( T ` M ) ) .X. ( G ` K ) ) = .0. ) ) | 
						
							| 128 | 60 127 | syld |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) ) -> ( K e. ( ZZ>= ` ( s + 2 ) ) -> ( ( K .^ ( T ` M ) ) .X. ( G ` K ) ) = .0. ) ) | 
						
							| 129 | 128 | 3impia |  |-  ( ( ( N e. Fin /\ R e. CRing /\ M e. B ) /\ ( s e. NN /\ b e. ( B ^m ( 0 ... s ) ) ) /\ K e. ( ZZ>= ` ( s + 2 ) ) ) -> ( ( K .^ ( T ` M ) ) .X. ( G ` K ) ) = .0. ) |