Step |
Hyp |
Ref |
Expression |
1 |
|
dchrabs.g |
|- G = ( DChr ` N ) |
2 |
|
dchrabs.d |
|- D = ( Base ` G ) |
3 |
|
dchrabs.x |
|- ( ph -> X e. D ) |
4 |
|
dchrinv.i |
|- I = ( invg ` G ) |
5 |
|
eqid |
|- ( Z/nZ ` N ) = ( Z/nZ ` N ) |
6 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
7 |
|
cjf |
|- * : CC --> CC |
8 |
|
eqid |
|- ( Base ` ( Z/nZ ` N ) ) = ( Base ` ( Z/nZ ` N ) ) |
9 |
1 5 2 8 3
|
dchrf |
|- ( ph -> X : ( Base ` ( Z/nZ ` N ) ) --> CC ) |
10 |
|
fco |
|- ( ( * : CC --> CC /\ X : ( Base ` ( Z/nZ ` N ) ) --> CC ) -> ( * o. X ) : ( Base ` ( Z/nZ ` N ) ) --> CC ) |
11 |
7 9 10
|
sylancr |
|- ( ph -> ( * o. X ) : ( Base ` ( Z/nZ ` N ) ) --> CC ) |
12 |
|
eqid |
|- ( Unit ` ( Z/nZ ` N ) ) = ( Unit ` ( Z/nZ ` N ) ) |
13 |
1 2
|
dchrrcl |
|- ( X e. D -> N e. NN ) |
14 |
3 13
|
syl |
|- ( ph -> N e. NN ) |
15 |
1 5 8 12 14 2
|
dchrelbas3 |
|- ( ph -> ( X e. D <-> ( X : ( Base ` ( Z/nZ ` N ) ) --> CC /\ ( A. x e. ( Unit ` ( Z/nZ ` N ) ) A. y e. ( Unit ` ( Z/nZ ` N ) ) ( X ` ( x ( .r ` ( Z/nZ ` N ) ) y ) ) = ( ( X ` x ) x. ( X ` y ) ) /\ ( X ` ( 1r ` ( Z/nZ ` N ) ) ) = 1 /\ A. x e. ( Base ` ( Z/nZ ` N ) ) ( ( X ` x ) =/= 0 -> x e. ( Unit ` ( Z/nZ ` N ) ) ) ) ) ) ) |
16 |
3 15
|
mpbid |
|- ( ph -> ( X : ( Base ` ( Z/nZ ` N ) ) --> CC /\ ( A. x e. ( Unit ` ( Z/nZ ` N ) ) A. y e. ( Unit ` ( Z/nZ ` N ) ) ( X ` ( x ( .r ` ( Z/nZ ` N ) ) y ) ) = ( ( X ` x ) x. ( X ` y ) ) /\ ( X ` ( 1r ` ( Z/nZ ` N ) ) ) = 1 /\ A. x e. ( Base ` ( Z/nZ ` N ) ) ( ( X ` x ) =/= 0 -> x e. ( Unit ` ( Z/nZ ` N ) ) ) ) ) ) |
17 |
16
|
simprd |
|- ( ph -> ( A. x e. ( Unit ` ( Z/nZ ` N ) ) A. y e. ( Unit ` ( Z/nZ ` N ) ) ( X ` ( x ( .r ` ( Z/nZ ` N ) ) y ) ) = ( ( X ` x ) x. ( X ` y ) ) /\ ( X ` ( 1r ` ( Z/nZ ` N ) ) ) = 1 /\ A. x e. ( Base ` ( Z/nZ ` N ) ) ( ( X ` x ) =/= 0 -> x e. ( Unit ` ( Z/nZ ` N ) ) ) ) ) |
18 |
17
|
simp1d |
|- ( ph -> A. x e. ( Unit ` ( Z/nZ ` N ) ) A. y e. ( Unit ` ( Z/nZ ` N ) ) ( X ` ( x ( .r ` ( Z/nZ ` N ) ) y ) ) = ( ( X ` x ) x. ( X ` y ) ) ) |
19 |
18
|
r19.21bi |
|- ( ( ph /\ x e. ( Unit ` ( Z/nZ ` N ) ) ) -> A. y e. ( Unit ` ( Z/nZ ` N ) ) ( X ` ( x ( .r ` ( Z/nZ ` N ) ) y ) ) = ( ( X ` x ) x. ( X ` y ) ) ) |
20 |
19
|
r19.21bi |
|- ( ( ( ph /\ x e. ( Unit ` ( Z/nZ ` N ) ) ) /\ y e. ( Unit ` ( Z/nZ ` N ) ) ) -> ( X ` ( x ( .r ` ( Z/nZ ` N ) ) y ) ) = ( ( X ` x ) x. ( X ` y ) ) ) |
21 |
20
|
anasss |
|- ( ( ph /\ ( x e. ( Unit ` ( Z/nZ ` N ) ) /\ y e. ( Unit ` ( Z/nZ ` N ) ) ) ) -> ( X ` ( x ( .r ` ( Z/nZ ` N ) ) y ) ) = ( ( X ` x ) x. ( X ` y ) ) ) |
22 |
21
|
fveq2d |
|- ( ( ph /\ ( x e. ( Unit ` ( Z/nZ ` N ) ) /\ y e. ( Unit ` ( Z/nZ ` N ) ) ) ) -> ( * ` ( X ` ( x ( .r ` ( Z/nZ ` N ) ) y ) ) ) = ( * ` ( ( X ` x ) x. ( X ` y ) ) ) ) |
23 |
9
|
adantr |
|- ( ( ph /\ ( x e. ( Unit ` ( Z/nZ ` N ) ) /\ y e. ( Unit ` ( Z/nZ ` N ) ) ) ) -> X : ( Base ` ( Z/nZ ` N ) ) --> CC ) |
24 |
8 12
|
unitss |
|- ( Unit ` ( Z/nZ ` N ) ) C_ ( Base ` ( Z/nZ ` N ) ) |
25 |
|
simprl |
|- ( ( ph /\ ( x e. ( Unit ` ( Z/nZ ` N ) ) /\ y e. ( Unit ` ( Z/nZ ` N ) ) ) ) -> x e. ( Unit ` ( Z/nZ ` N ) ) ) |
26 |
24 25
|
sselid |
|- ( ( ph /\ ( x e. ( Unit ` ( Z/nZ ` N ) ) /\ y e. ( Unit ` ( Z/nZ ` N ) ) ) ) -> x e. ( Base ` ( Z/nZ ` N ) ) ) |
27 |
23 26
|
ffvelrnd |
|- ( ( ph /\ ( x e. ( Unit ` ( Z/nZ ` N ) ) /\ y e. ( Unit ` ( Z/nZ ` N ) ) ) ) -> ( X ` x ) e. CC ) |
28 |
|
simprr |
|- ( ( ph /\ ( x e. ( Unit ` ( Z/nZ ` N ) ) /\ y e. ( Unit ` ( Z/nZ ` N ) ) ) ) -> y e. ( Unit ` ( Z/nZ ` N ) ) ) |
29 |
24 28
|
sselid |
|- ( ( ph /\ ( x e. ( Unit ` ( Z/nZ ` N ) ) /\ y e. ( Unit ` ( Z/nZ ` N ) ) ) ) -> y e. ( Base ` ( Z/nZ ` N ) ) ) |
30 |
23 29
|
ffvelrnd |
|- ( ( ph /\ ( x e. ( Unit ` ( Z/nZ ` N ) ) /\ y e. ( Unit ` ( Z/nZ ` N ) ) ) ) -> ( X ` y ) e. CC ) |
31 |
27 30
|
cjmuld |
|- ( ( ph /\ ( x e. ( Unit ` ( Z/nZ ` N ) ) /\ y e. ( Unit ` ( Z/nZ ` N ) ) ) ) -> ( * ` ( ( X ` x ) x. ( X ` y ) ) ) = ( ( * ` ( X ` x ) ) x. ( * ` ( X ` y ) ) ) ) |
32 |
22 31
|
eqtrd |
|- ( ( ph /\ ( x e. ( Unit ` ( Z/nZ ` N ) ) /\ y e. ( Unit ` ( Z/nZ ` N ) ) ) ) -> ( * ` ( X ` ( x ( .r ` ( Z/nZ ` N ) ) y ) ) ) = ( ( * ` ( X ` x ) ) x. ( * ` ( X ` y ) ) ) ) |
33 |
14
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
34 |
5
|
zncrng |
|- ( N e. NN0 -> ( Z/nZ ` N ) e. CRing ) |
35 |
|
crngring |
|- ( ( Z/nZ ` N ) e. CRing -> ( Z/nZ ` N ) e. Ring ) |
36 |
33 34 35
|
3syl |
|- ( ph -> ( Z/nZ ` N ) e. Ring ) |
37 |
36
|
adantr |
|- ( ( ph /\ ( x e. ( Unit ` ( Z/nZ ` N ) ) /\ y e. ( Unit ` ( Z/nZ ` N ) ) ) ) -> ( Z/nZ ` N ) e. Ring ) |
38 |
|
eqid |
|- ( .r ` ( Z/nZ ` N ) ) = ( .r ` ( Z/nZ ` N ) ) |
39 |
8 38
|
ringcl |
|- ( ( ( Z/nZ ` N ) e. Ring /\ x e. ( Base ` ( Z/nZ ` N ) ) /\ y e. ( Base ` ( Z/nZ ` N ) ) ) -> ( x ( .r ` ( Z/nZ ` N ) ) y ) e. ( Base ` ( Z/nZ ` N ) ) ) |
40 |
37 26 29 39
|
syl3anc |
|- ( ( ph /\ ( x e. ( Unit ` ( Z/nZ ` N ) ) /\ y e. ( Unit ` ( Z/nZ ` N ) ) ) ) -> ( x ( .r ` ( Z/nZ ` N ) ) y ) e. ( Base ` ( Z/nZ ` N ) ) ) |
41 |
|
fvco3 |
|- ( ( X : ( Base ` ( Z/nZ ` N ) ) --> CC /\ ( x ( .r ` ( Z/nZ ` N ) ) y ) e. ( Base ` ( Z/nZ ` N ) ) ) -> ( ( * o. X ) ` ( x ( .r ` ( Z/nZ ` N ) ) y ) ) = ( * ` ( X ` ( x ( .r ` ( Z/nZ ` N ) ) y ) ) ) ) |
42 |
23 40 41
|
syl2anc |
|- ( ( ph /\ ( x e. ( Unit ` ( Z/nZ ` N ) ) /\ y e. ( Unit ` ( Z/nZ ` N ) ) ) ) -> ( ( * o. X ) ` ( x ( .r ` ( Z/nZ ` N ) ) y ) ) = ( * ` ( X ` ( x ( .r ` ( Z/nZ ` N ) ) y ) ) ) ) |
43 |
|
fvco3 |
|- ( ( X : ( Base ` ( Z/nZ ` N ) ) --> CC /\ x e. ( Base ` ( Z/nZ ` N ) ) ) -> ( ( * o. X ) ` x ) = ( * ` ( X ` x ) ) ) |
44 |
23 26 43
|
syl2anc |
|- ( ( ph /\ ( x e. ( Unit ` ( Z/nZ ` N ) ) /\ y e. ( Unit ` ( Z/nZ ` N ) ) ) ) -> ( ( * o. X ) ` x ) = ( * ` ( X ` x ) ) ) |
45 |
|
fvco3 |
|- ( ( X : ( Base ` ( Z/nZ ` N ) ) --> CC /\ y e. ( Base ` ( Z/nZ ` N ) ) ) -> ( ( * o. X ) ` y ) = ( * ` ( X ` y ) ) ) |
46 |
23 29 45
|
syl2anc |
|- ( ( ph /\ ( x e. ( Unit ` ( Z/nZ ` N ) ) /\ y e. ( Unit ` ( Z/nZ ` N ) ) ) ) -> ( ( * o. X ) ` y ) = ( * ` ( X ` y ) ) ) |
47 |
44 46
|
oveq12d |
|- ( ( ph /\ ( x e. ( Unit ` ( Z/nZ ` N ) ) /\ y e. ( Unit ` ( Z/nZ ` N ) ) ) ) -> ( ( ( * o. X ) ` x ) x. ( ( * o. X ) ` y ) ) = ( ( * ` ( X ` x ) ) x. ( * ` ( X ` y ) ) ) ) |
48 |
32 42 47
|
3eqtr4d |
|- ( ( ph /\ ( x e. ( Unit ` ( Z/nZ ` N ) ) /\ y e. ( Unit ` ( Z/nZ ` N ) ) ) ) -> ( ( * o. X ) ` ( x ( .r ` ( Z/nZ ` N ) ) y ) ) = ( ( ( * o. X ) ` x ) x. ( ( * o. X ) ` y ) ) ) |
49 |
48
|
ralrimivva |
|- ( ph -> A. x e. ( Unit ` ( Z/nZ ` N ) ) A. y e. ( Unit ` ( Z/nZ ` N ) ) ( ( * o. X ) ` ( x ( .r ` ( Z/nZ ` N ) ) y ) ) = ( ( ( * o. X ) ` x ) x. ( ( * o. X ) ` y ) ) ) |
50 |
|
eqid |
|- ( 1r ` ( Z/nZ ` N ) ) = ( 1r ` ( Z/nZ ` N ) ) |
51 |
8 50
|
ringidcl |
|- ( ( Z/nZ ` N ) e. Ring -> ( 1r ` ( Z/nZ ` N ) ) e. ( Base ` ( Z/nZ ` N ) ) ) |
52 |
36 51
|
syl |
|- ( ph -> ( 1r ` ( Z/nZ ` N ) ) e. ( Base ` ( Z/nZ ` N ) ) ) |
53 |
|
fvco3 |
|- ( ( X : ( Base ` ( Z/nZ ` N ) ) --> CC /\ ( 1r ` ( Z/nZ ` N ) ) e. ( Base ` ( Z/nZ ` N ) ) ) -> ( ( * o. X ) ` ( 1r ` ( Z/nZ ` N ) ) ) = ( * ` ( X ` ( 1r ` ( Z/nZ ` N ) ) ) ) ) |
54 |
9 52 53
|
syl2anc |
|- ( ph -> ( ( * o. X ) ` ( 1r ` ( Z/nZ ` N ) ) ) = ( * ` ( X ` ( 1r ` ( Z/nZ ` N ) ) ) ) ) |
55 |
17
|
simp2d |
|- ( ph -> ( X ` ( 1r ` ( Z/nZ ` N ) ) ) = 1 ) |
56 |
55
|
fveq2d |
|- ( ph -> ( * ` ( X ` ( 1r ` ( Z/nZ ` N ) ) ) ) = ( * ` 1 ) ) |
57 |
|
1re |
|- 1 e. RR |
58 |
|
cjre |
|- ( 1 e. RR -> ( * ` 1 ) = 1 ) |
59 |
57 58
|
ax-mp |
|- ( * ` 1 ) = 1 |
60 |
56 59
|
eqtrdi |
|- ( ph -> ( * ` ( X ` ( 1r ` ( Z/nZ ` N ) ) ) ) = 1 ) |
61 |
54 60
|
eqtrd |
|- ( ph -> ( ( * o. X ) ` ( 1r ` ( Z/nZ ` N ) ) ) = 1 ) |
62 |
17
|
simp3d |
|- ( ph -> A. x e. ( Base ` ( Z/nZ ` N ) ) ( ( X ` x ) =/= 0 -> x e. ( Unit ` ( Z/nZ ` N ) ) ) ) |
63 |
9 43
|
sylan |
|- ( ( ph /\ x e. ( Base ` ( Z/nZ ` N ) ) ) -> ( ( * o. X ) ` x ) = ( * ` ( X ` x ) ) ) |
64 |
|
cj0 |
|- ( * ` 0 ) = 0 |
65 |
64
|
eqcomi |
|- 0 = ( * ` 0 ) |
66 |
65
|
a1i |
|- ( ( ph /\ x e. ( Base ` ( Z/nZ ` N ) ) ) -> 0 = ( * ` 0 ) ) |
67 |
63 66
|
eqeq12d |
|- ( ( ph /\ x e. ( Base ` ( Z/nZ ` N ) ) ) -> ( ( ( * o. X ) ` x ) = 0 <-> ( * ` ( X ` x ) ) = ( * ` 0 ) ) ) |
68 |
9
|
ffvelrnda |
|- ( ( ph /\ x e. ( Base ` ( Z/nZ ` N ) ) ) -> ( X ` x ) e. CC ) |
69 |
|
0cn |
|- 0 e. CC |
70 |
|
cj11 |
|- ( ( ( X ` x ) e. CC /\ 0 e. CC ) -> ( ( * ` ( X ` x ) ) = ( * ` 0 ) <-> ( X ` x ) = 0 ) ) |
71 |
68 69 70
|
sylancl |
|- ( ( ph /\ x e. ( Base ` ( Z/nZ ` N ) ) ) -> ( ( * ` ( X ` x ) ) = ( * ` 0 ) <-> ( X ` x ) = 0 ) ) |
72 |
67 71
|
bitrd |
|- ( ( ph /\ x e. ( Base ` ( Z/nZ ` N ) ) ) -> ( ( ( * o. X ) ` x ) = 0 <-> ( X ` x ) = 0 ) ) |
73 |
72
|
necon3bid |
|- ( ( ph /\ x e. ( Base ` ( Z/nZ ` N ) ) ) -> ( ( ( * o. X ) ` x ) =/= 0 <-> ( X ` x ) =/= 0 ) ) |
74 |
73
|
imbi1d |
|- ( ( ph /\ x e. ( Base ` ( Z/nZ ` N ) ) ) -> ( ( ( ( * o. X ) ` x ) =/= 0 -> x e. ( Unit ` ( Z/nZ ` N ) ) ) <-> ( ( X ` x ) =/= 0 -> x e. ( Unit ` ( Z/nZ ` N ) ) ) ) ) |
75 |
74
|
ralbidva |
|- ( ph -> ( A. x e. ( Base ` ( Z/nZ ` N ) ) ( ( ( * o. X ) ` x ) =/= 0 -> x e. ( Unit ` ( Z/nZ ` N ) ) ) <-> A. x e. ( Base ` ( Z/nZ ` N ) ) ( ( X ` x ) =/= 0 -> x e. ( Unit ` ( Z/nZ ` N ) ) ) ) ) |
76 |
62 75
|
mpbird |
|- ( ph -> A. x e. ( Base ` ( Z/nZ ` N ) ) ( ( ( * o. X ) ` x ) =/= 0 -> x e. ( Unit ` ( Z/nZ ` N ) ) ) ) |
77 |
49 61 76
|
3jca |
|- ( ph -> ( A. x e. ( Unit ` ( Z/nZ ` N ) ) A. y e. ( Unit ` ( Z/nZ ` N ) ) ( ( * o. X ) ` ( x ( .r ` ( Z/nZ ` N ) ) y ) ) = ( ( ( * o. X ) ` x ) x. ( ( * o. X ) ` y ) ) /\ ( ( * o. X ) ` ( 1r ` ( Z/nZ ` N ) ) ) = 1 /\ A. x e. ( Base ` ( Z/nZ ` N ) ) ( ( ( * o. X ) ` x ) =/= 0 -> x e. ( Unit ` ( Z/nZ ` N ) ) ) ) ) |
78 |
1 5 8 12 14 2
|
dchrelbas3 |
|- ( ph -> ( ( * o. X ) e. D <-> ( ( * o. X ) : ( Base ` ( Z/nZ ` N ) ) --> CC /\ ( A. x e. ( Unit ` ( Z/nZ ` N ) ) A. y e. ( Unit ` ( Z/nZ ` N ) ) ( ( * o. X ) ` ( x ( .r ` ( Z/nZ ` N ) ) y ) ) = ( ( ( * o. X ) ` x ) x. ( ( * o. X ) ` y ) ) /\ ( ( * o. X ) ` ( 1r ` ( Z/nZ ` N ) ) ) = 1 /\ A. x e. ( Base ` ( Z/nZ ` N ) ) ( ( ( * o. X ) ` x ) =/= 0 -> x e. ( Unit ` ( Z/nZ ` N ) ) ) ) ) ) ) |
79 |
11 77 78
|
mpbir2and |
|- ( ph -> ( * o. X ) e. D ) |
80 |
1 5 2 6 3 79
|
dchrmul |
|- ( ph -> ( X ( +g ` G ) ( * o. X ) ) = ( X oF x. ( * o. X ) ) ) |
81 |
80
|
adantr |
|- ( ( ph /\ x e. ( Unit ` ( Z/nZ ` N ) ) ) -> ( X ( +g ` G ) ( * o. X ) ) = ( X oF x. ( * o. X ) ) ) |
82 |
81
|
fveq1d |
|- ( ( ph /\ x e. ( Unit ` ( Z/nZ ` N ) ) ) -> ( ( X ( +g ` G ) ( * o. X ) ) ` x ) = ( ( X oF x. ( * o. X ) ) ` x ) ) |
83 |
24
|
sseli |
|- ( x e. ( Unit ` ( Z/nZ ` N ) ) -> x e. ( Base ` ( Z/nZ ` N ) ) ) |
84 |
83 63
|
sylan2 |
|- ( ( ph /\ x e. ( Unit ` ( Z/nZ ` N ) ) ) -> ( ( * o. X ) ` x ) = ( * ` ( X ` x ) ) ) |
85 |
84
|
oveq2d |
|- ( ( ph /\ x e. ( Unit ` ( Z/nZ ` N ) ) ) -> ( ( X ` x ) x. ( ( * o. X ) ` x ) ) = ( ( X ` x ) x. ( * ` ( X ` x ) ) ) ) |
86 |
83 68
|
sylan2 |
|- ( ( ph /\ x e. ( Unit ` ( Z/nZ ` N ) ) ) -> ( X ` x ) e. CC ) |
87 |
86
|
absvalsqd |
|- ( ( ph /\ x e. ( Unit ` ( Z/nZ ` N ) ) ) -> ( ( abs ` ( X ` x ) ) ^ 2 ) = ( ( X ` x ) x. ( * ` ( X ` x ) ) ) ) |
88 |
3
|
adantr |
|- ( ( ph /\ x e. ( Unit ` ( Z/nZ ` N ) ) ) -> X e. D ) |
89 |
|
simpr |
|- ( ( ph /\ x e. ( Unit ` ( Z/nZ ` N ) ) ) -> x e. ( Unit ` ( Z/nZ ` N ) ) ) |
90 |
1 2 88 5 12 89
|
dchrabs |
|- ( ( ph /\ x e. ( Unit ` ( Z/nZ ` N ) ) ) -> ( abs ` ( X ` x ) ) = 1 ) |
91 |
90
|
oveq1d |
|- ( ( ph /\ x e. ( Unit ` ( Z/nZ ` N ) ) ) -> ( ( abs ` ( X ` x ) ) ^ 2 ) = ( 1 ^ 2 ) ) |
92 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
93 |
91 92
|
eqtrdi |
|- ( ( ph /\ x e. ( Unit ` ( Z/nZ ` N ) ) ) -> ( ( abs ` ( X ` x ) ) ^ 2 ) = 1 ) |
94 |
85 87 93
|
3eqtr2d |
|- ( ( ph /\ x e. ( Unit ` ( Z/nZ ` N ) ) ) -> ( ( X ` x ) x. ( ( * o. X ) ` x ) ) = 1 ) |
95 |
9
|
adantr |
|- ( ( ph /\ x e. ( Unit ` ( Z/nZ ` N ) ) ) -> X : ( Base ` ( Z/nZ ` N ) ) --> CC ) |
96 |
95
|
ffnd |
|- ( ( ph /\ x e. ( Unit ` ( Z/nZ ` N ) ) ) -> X Fn ( Base ` ( Z/nZ ` N ) ) ) |
97 |
11
|
ffnd |
|- ( ph -> ( * o. X ) Fn ( Base ` ( Z/nZ ` N ) ) ) |
98 |
97
|
adantr |
|- ( ( ph /\ x e. ( Unit ` ( Z/nZ ` N ) ) ) -> ( * o. X ) Fn ( Base ` ( Z/nZ ` N ) ) ) |
99 |
|
fvexd |
|- ( ( ph /\ x e. ( Unit ` ( Z/nZ ` N ) ) ) -> ( Base ` ( Z/nZ ` N ) ) e. _V ) |
100 |
83
|
adantl |
|- ( ( ph /\ x e. ( Unit ` ( Z/nZ ` N ) ) ) -> x e. ( Base ` ( Z/nZ ` N ) ) ) |
101 |
|
fnfvof |
|- ( ( ( X Fn ( Base ` ( Z/nZ ` N ) ) /\ ( * o. X ) Fn ( Base ` ( Z/nZ ` N ) ) ) /\ ( ( Base ` ( Z/nZ ` N ) ) e. _V /\ x e. ( Base ` ( Z/nZ ` N ) ) ) ) -> ( ( X oF x. ( * o. X ) ) ` x ) = ( ( X ` x ) x. ( ( * o. X ) ` x ) ) ) |
102 |
96 98 99 100 101
|
syl22anc |
|- ( ( ph /\ x e. ( Unit ` ( Z/nZ ` N ) ) ) -> ( ( X oF x. ( * o. X ) ) ` x ) = ( ( X ` x ) x. ( ( * o. X ) ` x ) ) ) |
103 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
104 |
14
|
adantr |
|- ( ( ph /\ x e. ( Unit ` ( Z/nZ ` N ) ) ) -> N e. NN ) |
105 |
1 5 103 12 104 89
|
dchr1 |
|- ( ( ph /\ x e. ( Unit ` ( Z/nZ ` N ) ) ) -> ( ( 0g ` G ) ` x ) = 1 ) |
106 |
94 102 105
|
3eqtr4d |
|- ( ( ph /\ x e. ( Unit ` ( Z/nZ ` N ) ) ) -> ( ( X oF x. ( * o. X ) ) ` x ) = ( ( 0g ` G ) ` x ) ) |
107 |
82 106
|
eqtrd |
|- ( ( ph /\ x e. ( Unit ` ( Z/nZ ` N ) ) ) -> ( ( X ( +g ` G ) ( * o. X ) ) ` x ) = ( ( 0g ` G ) ` x ) ) |
108 |
107
|
ralrimiva |
|- ( ph -> A. x e. ( Unit ` ( Z/nZ ` N ) ) ( ( X ( +g ` G ) ( * o. X ) ) ` x ) = ( ( 0g ` G ) ` x ) ) |
109 |
1 5 2 6 3 79
|
dchrmulcl |
|- ( ph -> ( X ( +g ` G ) ( * o. X ) ) e. D ) |
110 |
1
|
dchrabl |
|- ( N e. NN -> G e. Abel ) |
111 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
112 |
14 110 111
|
3syl |
|- ( ph -> G e. Grp ) |
113 |
2 103
|
grpidcl |
|- ( G e. Grp -> ( 0g ` G ) e. D ) |
114 |
112 113
|
syl |
|- ( ph -> ( 0g ` G ) e. D ) |
115 |
1 5 2 12 109 114
|
dchreq |
|- ( ph -> ( ( X ( +g ` G ) ( * o. X ) ) = ( 0g ` G ) <-> A. x e. ( Unit ` ( Z/nZ ` N ) ) ( ( X ( +g ` G ) ( * o. X ) ) ` x ) = ( ( 0g ` G ) ` x ) ) ) |
116 |
108 115
|
mpbird |
|- ( ph -> ( X ( +g ` G ) ( * o. X ) ) = ( 0g ` G ) ) |
117 |
2 6 103 4
|
grpinvid1 |
|- ( ( G e. Grp /\ X e. D /\ ( * o. X ) e. D ) -> ( ( I ` X ) = ( * o. X ) <-> ( X ( +g ` G ) ( * o. X ) ) = ( 0g ` G ) ) ) |
118 |
112 3 79 117
|
syl3anc |
|- ( ph -> ( ( I ` X ) = ( * o. X ) <-> ( X ( +g ` G ) ( * o. X ) ) = ( 0g ` G ) ) ) |
119 |
116 118
|
mpbird |
|- ( ph -> ( I ` X ) = ( * o. X ) ) |