Step |
Hyp |
Ref |
Expression |
1 |
|
elfuns.1 |
|- F e. _V |
2 |
|
elrel |
|- ( ( Rel F /\ p e. F ) -> E. x E. y p = <. x , y >. ) |
3 |
2
|
ex |
|- ( Rel F -> ( p e. F -> E. x E. y p = <. x , y >. ) ) |
4 |
|
elrel |
|- ( ( Rel F /\ q e. F ) -> E. a E. z q = <. a , z >. ) |
5 |
4
|
ex |
|- ( Rel F -> ( q e. F -> E. a E. z q = <. a , z >. ) ) |
6 |
3 5
|
anim12d |
|- ( Rel F -> ( ( p e. F /\ q e. F ) -> ( E. x E. y p = <. x , y >. /\ E. a E. z q = <. a , z >. ) ) ) |
7 |
6
|
adantrd |
|- ( Rel F -> ( ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) -> ( E. x E. y p = <. x , y >. /\ E. a E. z q = <. a , z >. ) ) ) |
8 |
7
|
pm4.71rd |
|- ( Rel F -> ( ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) <-> ( ( E. x E. y p = <. x , y >. /\ E. a E. z q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) ) |
9 |
|
19.41vvvv |
|- ( E. x E. y E. a E. z ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> ( E. x E. y E. a E. z ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) |
10 |
|
ee4anv |
|- ( E. x E. y E. a E. z ( p = <. x , y >. /\ q = <. a , z >. ) <-> ( E. x E. y p = <. x , y >. /\ E. a E. z q = <. a , z >. ) ) |
11 |
10
|
anbi1i |
|- ( ( E. x E. y E. a E. z ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> ( ( E. x E. y p = <. x , y >. /\ E. a E. z q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) |
12 |
9 11
|
bitr2i |
|- ( ( ( E. x E. y p = <. x , y >. /\ E. a E. z q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> E. x E. y E. a E. z ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) |
13 |
8 12
|
bitrdi |
|- ( Rel F -> ( ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) <-> E. x E. y E. a E. z ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) ) |
14 |
13
|
2exbidv |
|- ( Rel F -> ( E. p E. q ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) <-> E. p E. q E. x E. y E. a E. z ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) ) |
15 |
|
excom13 |
|- ( E. p E. q E. x E. y E. a E. z ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> E. x E. q E. p E. y E. a E. z ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) |
16 |
|
excom13 |
|- ( E. q E. p E. y E. a E. z ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> E. y E. p E. q E. a E. z ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) |
17 |
|
exrot4 |
|- ( E. p E. q E. a E. z ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> E. a E. z E. p E. q ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) |
18 |
|
excom |
|- ( E. a E. z E. p E. q ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> E. z E. a E. p E. q ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) |
19 |
|
df-3an |
|- ( ( p = <. x , y >. /\ q = <. a , z >. /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) |
20 |
19
|
2exbii |
|- ( E. p E. q ( p = <. x , y >. /\ q = <. a , z >. /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> E. p E. q ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) |
21 |
|
opex |
|- <. x , y >. e. _V |
22 |
|
opex |
|- <. a , z >. e. _V |
23 |
|
eleq1 |
|- ( p = <. x , y >. -> ( p e. F <-> <. x , y >. e. F ) ) |
24 |
23
|
anbi1d |
|- ( p = <. x , y >. -> ( ( p e. F /\ q e. F ) <-> ( <. x , y >. e. F /\ q e. F ) ) ) |
25 |
|
breq2 |
|- ( p = <. x , y >. -> ( q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p <-> q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) <. x , y >. ) ) |
26 |
24 25
|
anbi12d |
|- ( p = <. x , y >. -> ( ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) <-> ( ( <. x , y >. e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) <. x , y >. ) ) ) |
27 |
|
eleq1 |
|- ( q = <. a , z >. -> ( q e. F <-> <. a , z >. e. F ) ) |
28 |
27
|
anbi2d |
|- ( q = <. a , z >. -> ( ( <. x , y >. e. F /\ q e. F ) <-> ( <. x , y >. e. F /\ <. a , z >. e. F ) ) ) |
29 |
|
breq1 |
|- ( q = <. a , z >. -> ( q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) <. x , y >. <-> <. a , z >. ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) <. x , y >. ) ) |
30 |
|
vex |
|- x e. _V |
31 |
|
vex |
|- y e. _V |
32 |
22 30 31
|
brtxp |
|- ( <. a , z >. ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) <. x , y >. <-> ( <. a , z >. 1st x /\ <. a , z >. ( ( _V \ _I ) o. 2nd ) y ) ) |
33 |
|
vex |
|- a e. _V |
34 |
|
vex |
|- z e. _V |
35 |
33 34
|
br1steq |
|- ( <. a , z >. 1st x <-> x = a ) |
36 |
|
equcom |
|- ( x = a <-> a = x ) |
37 |
35 36
|
bitri |
|- ( <. a , z >. 1st x <-> a = x ) |
38 |
22 31
|
brco |
|- ( <. a , z >. ( ( _V \ _I ) o. 2nd ) y <-> E. x ( <. a , z >. 2nd x /\ x ( _V \ _I ) y ) ) |
39 |
33 34
|
br2ndeq |
|- ( <. a , z >. 2nd x <-> x = z ) |
40 |
39
|
anbi1i |
|- ( ( <. a , z >. 2nd x /\ x ( _V \ _I ) y ) <-> ( x = z /\ x ( _V \ _I ) y ) ) |
41 |
40
|
exbii |
|- ( E. x ( <. a , z >. 2nd x /\ x ( _V \ _I ) y ) <-> E. x ( x = z /\ x ( _V \ _I ) y ) ) |
42 |
|
breq1 |
|- ( x = z -> ( x ( _V \ _I ) y <-> z ( _V \ _I ) y ) ) |
43 |
|
brv |
|- z _V y |
44 |
|
brdif |
|- ( z ( _V \ _I ) y <-> ( z _V y /\ -. z _I y ) ) |
45 |
43 44
|
mpbiran |
|- ( z ( _V \ _I ) y <-> -. z _I y ) |
46 |
31
|
ideq |
|- ( z _I y <-> z = y ) |
47 |
|
equcom |
|- ( z = y <-> y = z ) |
48 |
46 47
|
bitri |
|- ( z _I y <-> y = z ) |
49 |
48
|
notbii |
|- ( -. z _I y <-> -. y = z ) |
50 |
45 49
|
bitri |
|- ( z ( _V \ _I ) y <-> -. y = z ) |
51 |
42 50
|
bitrdi |
|- ( x = z -> ( x ( _V \ _I ) y <-> -. y = z ) ) |
52 |
51
|
equsexvw |
|- ( E. x ( x = z /\ x ( _V \ _I ) y ) <-> -. y = z ) |
53 |
38 41 52
|
3bitri |
|- ( <. a , z >. ( ( _V \ _I ) o. 2nd ) y <-> -. y = z ) |
54 |
37 53
|
anbi12i |
|- ( ( <. a , z >. 1st x /\ <. a , z >. ( ( _V \ _I ) o. 2nd ) y ) <-> ( a = x /\ -. y = z ) ) |
55 |
32 54
|
bitri |
|- ( <. a , z >. ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) <. x , y >. <-> ( a = x /\ -. y = z ) ) |
56 |
29 55
|
bitrdi |
|- ( q = <. a , z >. -> ( q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) <. x , y >. <-> ( a = x /\ -. y = z ) ) ) |
57 |
28 56
|
anbi12d |
|- ( q = <. a , z >. -> ( ( ( <. x , y >. e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) <. x , y >. ) <-> ( ( <. x , y >. e. F /\ <. a , z >. e. F ) /\ ( a = x /\ -. y = z ) ) ) ) |
58 |
|
an12 |
|- ( ( ( <. x , y >. e. F /\ <. a , z >. e. F ) /\ ( a = x /\ -. y = z ) ) <-> ( a = x /\ ( ( <. x , y >. e. F /\ <. a , z >. e. F ) /\ -. y = z ) ) ) |
59 |
57 58
|
bitrdi |
|- ( q = <. a , z >. -> ( ( ( <. x , y >. e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) <. x , y >. ) <-> ( a = x /\ ( ( <. x , y >. e. F /\ <. a , z >. e. F ) /\ -. y = z ) ) ) ) |
60 |
21 22 26 59
|
ceqsex2v |
|- ( E. p E. q ( p = <. x , y >. /\ q = <. a , z >. /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> ( a = x /\ ( ( <. x , y >. e. F /\ <. a , z >. e. F ) /\ -. y = z ) ) ) |
61 |
20 60
|
bitr3i |
|- ( E. p E. q ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> ( a = x /\ ( ( <. x , y >. e. F /\ <. a , z >. e. F ) /\ -. y = z ) ) ) |
62 |
61
|
exbii |
|- ( E. a E. p E. q ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> E. a ( a = x /\ ( ( <. x , y >. e. F /\ <. a , z >. e. F ) /\ -. y = z ) ) ) |
63 |
|
opeq1 |
|- ( a = x -> <. a , z >. = <. x , z >. ) |
64 |
63
|
eleq1d |
|- ( a = x -> ( <. a , z >. e. F <-> <. x , z >. e. F ) ) |
65 |
64
|
anbi2d |
|- ( a = x -> ( ( <. x , y >. e. F /\ <. a , z >. e. F ) <-> ( <. x , y >. e. F /\ <. x , z >. e. F ) ) ) |
66 |
65
|
anbi1d |
|- ( a = x -> ( ( ( <. x , y >. e. F /\ <. a , z >. e. F ) /\ -. y = z ) <-> ( ( <. x , y >. e. F /\ <. x , z >. e. F ) /\ -. y = z ) ) ) |
67 |
66
|
equsexvw |
|- ( E. a ( a = x /\ ( ( <. x , y >. e. F /\ <. a , z >. e. F ) /\ -. y = z ) ) <-> ( ( <. x , y >. e. F /\ <. x , z >. e. F ) /\ -. y = z ) ) |
68 |
62 67
|
bitri |
|- ( E. a E. p E. q ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> ( ( <. x , y >. e. F /\ <. x , z >. e. F ) /\ -. y = z ) ) |
69 |
68
|
exbii |
|- ( E. z E. a E. p E. q ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> E. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) /\ -. y = z ) ) |
70 |
|
exanali |
|- ( E. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) /\ -. y = z ) <-> -. A. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) -> y = z ) ) |
71 |
69 70
|
bitri |
|- ( E. z E. a E. p E. q ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> -. A. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) -> y = z ) ) |
72 |
17 18 71
|
3bitri |
|- ( E. p E. q E. a E. z ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> -. A. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) -> y = z ) ) |
73 |
72
|
exbii |
|- ( E. y E. p E. q E. a E. z ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> E. y -. A. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) -> y = z ) ) |
74 |
|
exnal |
|- ( E. y -. A. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) -> y = z ) <-> -. A. y A. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) -> y = z ) ) |
75 |
16 73 74
|
3bitri |
|- ( E. q E. p E. y E. a E. z ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> -. A. y A. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) -> y = z ) ) |
76 |
75
|
exbii |
|- ( E. x E. q E. p E. y E. a E. z ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> E. x -. A. y A. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) -> y = z ) ) |
77 |
|
exnal |
|- ( E. x -. A. y A. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) -> y = z ) <-> -. A. x A. y A. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) -> y = z ) ) |
78 |
15 76 77
|
3bitri |
|- ( E. p E. q E. x E. y E. a E. z ( ( p = <. x , y >. /\ q = <. a , z >. ) /\ ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) <-> -. A. x A. y A. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) -> y = z ) ) |
79 |
14 78
|
bitrdi |
|- ( Rel F -> ( E. p E. q ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) <-> -. A. x A. y A. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) -> y = z ) ) ) |
80 |
79
|
con2bid |
|- ( Rel F -> ( A. x A. y A. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) -> y = z ) <-> -. E. p E. q ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) |
81 |
80
|
pm5.32i |
|- ( ( Rel F /\ A. x A. y A. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) -> y = z ) ) <-> ( Rel F /\ -. E. p E. q ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) |
82 |
|
dffun4 |
|- ( Fun F <-> ( Rel F /\ A. x A. y A. z ( ( <. x , y >. e. F /\ <. x , z >. e. F ) -> y = z ) ) ) |
83 |
|
df-funs |
|- Funs = ( ~P ( _V X. _V ) \ Fix ( _E o. ( ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) o. `' _E ) ) ) |
84 |
83
|
eleq2i |
|- ( F e. Funs <-> F e. ( ~P ( _V X. _V ) \ Fix ( _E o. ( ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) o. `' _E ) ) ) ) |
85 |
|
eldif |
|- ( F e. ( ~P ( _V X. _V ) \ Fix ( _E o. ( ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) o. `' _E ) ) ) <-> ( F e. ~P ( _V X. _V ) /\ -. F e. Fix ( _E o. ( ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) o. `' _E ) ) ) ) |
86 |
1
|
elpw |
|- ( F e. ~P ( _V X. _V ) <-> F C_ ( _V X. _V ) ) |
87 |
|
df-rel |
|- ( Rel F <-> F C_ ( _V X. _V ) ) |
88 |
86 87
|
bitr4i |
|- ( F e. ~P ( _V X. _V ) <-> Rel F ) |
89 |
1
|
elfix |
|- ( F e. Fix ( _E o. ( ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) o. `' _E ) ) <-> F ( _E o. ( ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) o. `' _E ) ) F ) |
90 |
1 1
|
coep |
|- ( F ( _E o. ( ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) o. `' _E ) ) F <-> E. p e. F F ( ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) o. `' _E ) p ) |
91 |
|
vex |
|- p e. _V |
92 |
1 91
|
coepr |
|- ( F ( ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) o. `' _E ) p <-> E. q e. F q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) |
93 |
92
|
rexbii |
|- ( E. p e. F F ( ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) o. `' _E ) p <-> E. p e. F E. q e. F q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) |
94 |
90 93
|
bitri |
|- ( F ( _E o. ( ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) o. `' _E ) ) F <-> E. p e. F E. q e. F q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) |
95 |
|
r2ex |
|- ( E. p e. F E. q e. F q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p <-> E. p E. q ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) |
96 |
89 94 95
|
3bitri |
|- ( F e. Fix ( _E o. ( ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) o. `' _E ) ) <-> E. p E. q ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) |
97 |
96
|
notbii |
|- ( -. F e. Fix ( _E o. ( ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) o. `' _E ) ) <-> -. E. p E. q ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) |
98 |
88 97
|
anbi12i |
|- ( ( F e. ~P ( _V X. _V ) /\ -. F e. Fix ( _E o. ( ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) o. `' _E ) ) ) <-> ( Rel F /\ -. E. p E. q ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) |
99 |
84 85 98
|
3bitri |
|- ( F e. Funs <-> ( Rel F /\ -. E. p E. q ( ( p e. F /\ q e. F ) /\ q ( 1st (x) ( ( _V \ _I ) o. 2nd ) ) p ) ) ) |
100 |
81 82 99
|
3bitr4ri |
|- ( F e. Funs <-> Fun F ) |