| Step |
Hyp |
Ref |
Expression |
| 1 |
|
keridl.1 |
|- G = ( 1st ` S ) |
| 2 |
|
keridl.2 |
|- Z = ( GId ` G ) |
| 3 |
|
cnvimass |
|- ( `' F " { Z } ) C_ dom F |
| 4 |
|
eqid |
|- ( 1st ` R ) = ( 1st ` R ) |
| 5 |
|
eqid |
|- ran ( 1st ` R ) = ran ( 1st ` R ) |
| 6 |
|
eqid |
|- ran G = ran G |
| 7 |
4 5 1 6
|
rngohomf |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> F : ran ( 1st ` R ) --> ran G ) |
| 8 |
3 7
|
fssdm |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( `' F " { Z } ) C_ ran ( 1st ` R ) ) |
| 9 |
|
eqid |
|- ( GId ` ( 1st ` R ) ) = ( GId ` ( 1st ` R ) ) |
| 10 |
4 5 9
|
rngo0cl |
|- ( R e. RingOps -> ( GId ` ( 1st ` R ) ) e. ran ( 1st ` R ) ) |
| 11 |
10
|
3ad2ant1 |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( GId ` ( 1st ` R ) ) e. ran ( 1st ` R ) ) |
| 12 |
4 9 1 2
|
rngohom0 |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( F ` ( GId ` ( 1st ` R ) ) ) = Z ) |
| 13 |
|
fvex |
|- ( F ` ( GId ` ( 1st ` R ) ) ) e. _V |
| 14 |
13
|
elsn |
|- ( ( F ` ( GId ` ( 1st ` R ) ) ) e. { Z } <-> ( F ` ( GId ` ( 1st ` R ) ) ) = Z ) |
| 15 |
12 14
|
sylibr |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( F ` ( GId ` ( 1st ` R ) ) ) e. { Z } ) |
| 16 |
|
ffn |
|- ( F : ran ( 1st ` R ) --> ran G -> F Fn ran ( 1st ` R ) ) |
| 17 |
|
elpreima |
|- ( F Fn ran ( 1st ` R ) -> ( ( GId ` ( 1st ` R ) ) e. ( `' F " { Z } ) <-> ( ( GId ` ( 1st ` R ) ) e. ran ( 1st ` R ) /\ ( F ` ( GId ` ( 1st ` R ) ) ) e. { Z } ) ) ) |
| 18 |
7 16 17
|
3syl |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( ( GId ` ( 1st ` R ) ) e. ( `' F " { Z } ) <-> ( ( GId ` ( 1st ` R ) ) e. ran ( 1st ` R ) /\ ( F ` ( GId ` ( 1st ` R ) ) ) e. { Z } ) ) ) |
| 19 |
11 15 18
|
mpbir2and |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( GId ` ( 1st ` R ) ) e. ( `' F " { Z } ) ) |
| 20 |
|
an4 |
|- ( ( ( x e. ran ( 1st ` R ) /\ ( F ` x ) e. { Z } ) /\ ( y e. ran ( 1st ` R ) /\ ( F ` y ) e. { Z } ) ) <-> ( ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) /\ ( ( F ` x ) e. { Z } /\ ( F ` y ) e. { Z } ) ) ) |
| 21 |
4 5 1
|
rngohomadd |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( F ` ( x ( 1st ` R ) y ) ) = ( ( F ` x ) G ( F ` y ) ) ) |
| 22 |
21
|
adantr |
|- ( ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) /\ ( ( F ` x ) = Z /\ ( F ` y ) = Z ) ) -> ( F ` ( x ( 1st ` R ) y ) ) = ( ( F ` x ) G ( F ` y ) ) ) |
| 23 |
|
oveq12 |
|- ( ( ( F ` x ) = Z /\ ( F ` y ) = Z ) -> ( ( F ` x ) G ( F ` y ) ) = ( Z G Z ) ) |
| 24 |
23
|
adantl |
|- ( ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) /\ ( ( F ` x ) = Z /\ ( F ` y ) = Z ) ) -> ( ( F ` x ) G ( F ` y ) ) = ( Z G Z ) ) |
| 25 |
1
|
rngogrpo |
|- ( S e. RingOps -> G e. GrpOp ) |
| 26 |
6 2
|
grpoidcl |
|- ( G e. GrpOp -> Z e. ran G ) |
| 27 |
6 2
|
grpolid |
|- ( ( G e. GrpOp /\ Z e. ran G ) -> ( Z G Z ) = Z ) |
| 28 |
25 26 27
|
syl2anc2 |
|- ( S e. RingOps -> ( Z G Z ) = Z ) |
| 29 |
28
|
3ad2ant2 |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( Z G Z ) = Z ) |
| 30 |
29
|
ad2antrr |
|- ( ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) /\ ( ( F ` x ) = Z /\ ( F ` y ) = Z ) ) -> ( Z G Z ) = Z ) |
| 31 |
22 24 30
|
3eqtrd |
|- ( ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) /\ ( ( F ` x ) = Z /\ ( F ` y ) = Z ) ) -> ( F ` ( x ( 1st ` R ) y ) ) = Z ) |
| 32 |
31
|
ex |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( ( ( F ` x ) = Z /\ ( F ` y ) = Z ) -> ( F ` ( x ( 1st ` R ) y ) ) = Z ) ) |
| 33 |
|
fvex |
|- ( F ` x ) e. _V |
| 34 |
33
|
elsn |
|- ( ( F ` x ) e. { Z } <-> ( F ` x ) = Z ) |
| 35 |
|
fvex |
|- ( F ` y ) e. _V |
| 36 |
35
|
elsn |
|- ( ( F ` y ) e. { Z } <-> ( F ` y ) = Z ) |
| 37 |
34 36
|
anbi12i |
|- ( ( ( F ` x ) e. { Z } /\ ( F ` y ) e. { Z } ) <-> ( ( F ` x ) = Z /\ ( F ` y ) = Z ) ) |
| 38 |
|
fvex |
|- ( F ` ( x ( 1st ` R ) y ) ) e. _V |
| 39 |
38
|
elsn |
|- ( ( F ` ( x ( 1st ` R ) y ) ) e. { Z } <-> ( F ` ( x ( 1st ` R ) y ) ) = Z ) |
| 40 |
32 37 39
|
3imtr4g |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) ) -> ( ( ( F ` x ) e. { Z } /\ ( F ` y ) e. { Z } ) -> ( F ` ( x ( 1st ` R ) y ) ) e. { Z } ) ) |
| 41 |
40
|
imdistanda |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( ( ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) /\ ( ( F ` x ) e. { Z } /\ ( F ` y ) e. { Z } ) ) -> ( ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) /\ ( F ` ( x ( 1st ` R ) y ) ) e. { Z } ) ) ) |
| 42 |
4 5
|
rngogcl |
|- ( ( R e. RingOps /\ x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) -> ( x ( 1st ` R ) y ) e. ran ( 1st ` R ) ) |
| 43 |
42
|
3expib |
|- ( R e. RingOps -> ( ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) -> ( x ( 1st ` R ) y ) e. ran ( 1st ` R ) ) ) |
| 44 |
43
|
3ad2ant1 |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) -> ( x ( 1st ` R ) y ) e. ran ( 1st ` R ) ) ) |
| 45 |
44
|
anim1d |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( ( ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) /\ ( F ` ( x ( 1st ` R ) y ) ) e. { Z } ) -> ( ( x ( 1st ` R ) y ) e. ran ( 1st ` R ) /\ ( F ` ( x ( 1st ` R ) y ) ) e. { Z } ) ) ) |
| 46 |
41 45
|
syld |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( ( ( x e. ran ( 1st ` R ) /\ y e. ran ( 1st ` R ) ) /\ ( ( F ` x ) e. { Z } /\ ( F ` y ) e. { Z } ) ) -> ( ( x ( 1st ` R ) y ) e. ran ( 1st ` R ) /\ ( F ` ( x ( 1st ` R ) y ) ) e. { Z } ) ) ) |
| 47 |
20 46
|
biimtrid |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( ( ( x e. ran ( 1st ` R ) /\ ( F ` x ) e. { Z } ) /\ ( y e. ran ( 1st ` R ) /\ ( F ` y ) e. { Z } ) ) -> ( ( x ( 1st ` R ) y ) e. ran ( 1st ` R ) /\ ( F ` ( x ( 1st ` R ) y ) ) e. { Z } ) ) ) |
| 48 |
|
elpreima |
|- ( F Fn ran ( 1st ` R ) -> ( x e. ( `' F " { Z } ) <-> ( x e. ran ( 1st ` R ) /\ ( F ` x ) e. { Z } ) ) ) |
| 49 |
7 16 48
|
3syl |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( x e. ( `' F " { Z } ) <-> ( x e. ran ( 1st ` R ) /\ ( F ` x ) e. { Z } ) ) ) |
| 50 |
|
elpreima |
|- ( F Fn ran ( 1st ` R ) -> ( y e. ( `' F " { Z } ) <-> ( y e. ran ( 1st ` R ) /\ ( F ` y ) e. { Z } ) ) ) |
| 51 |
7 16 50
|
3syl |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( y e. ( `' F " { Z } ) <-> ( y e. ran ( 1st ` R ) /\ ( F ` y ) e. { Z } ) ) ) |
| 52 |
49 51
|
anbi12d |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( ( x e. ( `' F " { Z } ) /\ y e. ( `' F " { Z } ) ) <-> ( ( x e. ran ( 1st ` R ) /\ ( F ` x ) e. { Z } ) /\ ( y e. ran ( 1st ` R ) /\ ( F ` y ) e. { Z } ) ) ) ) |
| 53 |
|
elpreima |
|- ( F Fn ran ( 1st ` R ) -> ( ( x ( 1st ` R ) y ) e. ( `' F " { Z } ) <-> ( ( x ( 1st ` R ) y ) e. ran ( 1st ` R ) /\ ( F ` ( x ( 1st ` R ) y ) ) e. { Z } ) ) ) |
| 54 |
7 16 53
|
3syl |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( ( x ( 1st ` R ) y ) e. ( `' F " { Z } ) <-> ( ( x ( 1st ` R ) y ) e. ran ( 1st ` R ) /\ ( F ` ( x ( 1st ` R ) y ) ) e. { Z } ) ) ) |
| 55 |
47 52 54
|
3imtr4d |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( ( x e. ( `' F " { Z } ) /\ y e. ( `' F " { Z } ) ) -> ( x ( 1st ` R ) y ) e. ( `' F " { Z } ) ) ) |
| 56 |
55
|
impl |
|- ( ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ x e. ( `' F " { Z } ) ) /\ y e. ( `' F " { Z } ) ) -> ( x ( 1st ` R ) y ) e. ( `' F " { Z } ) ) |
| 57 |
56
|
ralrimiva |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ x e. ( `' F " { Z } ) ) -> A. y e. ( `' F " { Z } ) ( x ( 1st ` R ) y ) e. ( `' F " { Z } ) ) |
| 58 |
34
|
anbi2i |
|- ( ( x e. ran ( 1st ` R ) /\ ( F ` x ) e. { Z } ) <-> ( x e. ran ( 1st ` R ) /\ ( F ` x ) = Z ) ) |
| 59 |
|
eqid |
|- ( 2nd ` R ) = ( 2nd ` R ) |
| 60 |
4 59 5
|
rngocl |
|- ( ( R e. RingOps /\ z e. ran ( 1st ` R ) /\ x e. ran ( 1st ` R ) ) -> ( z ( 2nd ` R ) x ) e. ran ( 1st ` R ) ) |
| 61 |
60
|
3expb |
|- ( ( R e. RingOps /\ ( z e. ran ( 1st ` R ) /\ x e. ran ( 1st ` R ) ) ) -> ( z ( 2nd ` R ) x ) e. ran ( 1st ` R ) ) |
| 62 |
61
|
3ad2antl1 |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( z e. ran ( 1st ` R ) /\ x e. ran ( 1st ` R ) ) ) -> ( z ( 2nd ` R ) x ) e. ran ( 1st ` R ) ) |
| 63 |
62
|
anass1rs |
|- ( ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ x e. ran ( 1st ` R ) ) /\ z e. ran ( 1st ` R ) ) -> ( z ( 2nd ` R ) x ) e. ran ( 1st ` R ) ) |
| 64 |
63
|
adantlrr |
|- ( ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ ( F ` x ) = Z ) ) /\ z e. ran ( 1st ` R ) ) -> ( z ( 2nd ` R ) x ) e. ran ( 1st ` R ) ) |
| 65 |
|
eqid |
|- ( 2nd ` S ) = ( 2nd ` S ) |
| 66 |
4 5 59 65
|
rngohommul |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( z e. ran ( 1st ` R ) /\ x e. ran ( 1st ` R ) ) ) -> ( F ` ( z ( 2nd ` R ) x ) ) = ( ( F ` z ) ( 2nd ` S ) ( F ` x ) ) ) |
| 67 |
66
|
anass1rs |
|- ( ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ x e. ran ( 1st ` R ) ) /\ z e. ran ( 1st ` R ) ) -> ( F ` ( z ( 2nd ` R ) x ) ) = ( ( F ` z ) ( 2nd ` S ) ( F ` x ) ) ) |
| 68 |
67
|
adantlrr |
|- ( ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ ( F ` x ) = Z ) ) /\ z e. ran ( 1st ` R ) ) -> ( F ` ( z ( 2nd ` R ) x ) ) = ( ( F ` z ) ( 2nd ` S ) ( F ` x ) ) ) |
| 69 |
|
oveq2 |
|- ( ( F ` x ) = Z -> ( ( F ` z ) ( 2nd ` S ) ( F ` x ) ) = ( ( F ` z ) ( 2nd ` S ) Z ) ) |
| 70 |
69
|
adantl |
|- ( ( x e. ran ( 1st ` R ) /\ ( F ` x ) = Z ) -> ( ( F ` z ) ( 2nd ` S ) ( F ` x ) ) = ( ( F ` z ) ( 2nd ` S ) Z ) ) |
| 71 |
70
|
ad2antlr |
|- ( ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ ( F ` x ) = Z ) ) /\ z e. ran ( 1st ` R ) ) -> ( ( F ` z ) ( 2nd ` S ) ( F ` x ) ) = ( ( F ` z ) ( 2nd ` S ) Z ) ) |
| 72 |
4 5 1 6
|
rngohomcl |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ z e. ran ( 1st ` R ) ) -> ( F ` z ) e. ran G ) |
| 73 |
2 6 1 65
|
rngorz |
|- ( ( S e. RingOps /\ ( F ` z ) e. ran G ) -> ( ( F ` z ) ( 2nd ` S ) Z ) = Z ) |
| 74 |
73
|
3ad2antl2 |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( F ` z ) e. ran G ) -> ( ( F ` z ) ( 2nd ` S ) Z ) = Z ) |
| 75 |
72 74
|
syldan |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ z e. ran ( 1st ` R ) ) -> ( ( F ` z ) ( 2nd ` S ) Z ) = Z ) |
| 76 |
75
|
adantlr |
|- ( ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ ( F ` x ) = Z ) ) /\ z e. ran ( 1st ` R ) ) -> ( ( F ` z ) ( 2nd ` S ) Z ) = Z ) |
| 77 |
68 71 76
|
3eqtrd |
|- ( ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ ( F ` x ) = Z ) ) /\ z e. ran ( 1st ` R ) ) -> ( F ` ( z ( 2nd ` R ) x ) ) = Z ) |
| 78 |
|
fvex |
|- ( F ` ( z ( 2nd ` R ) x ) ) e. _V |
| 79 |
78
|
elsn |
|- ( ( F ` ( z ( 2nd ` R ) x ) ) e. { Z } <-> ( F ` ( z ( 2nd ` R ) x ) ) = Z ) |
| 80 |
77 79
|
sylibr |
|- ( ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ ( F ` x ) = Z ) ) /\ z e. ran ( 1st ` R ) ) -> ( F ` ( z ( 2nd ` R ) x ) ) e. { Z } ) |
| 81 |
|
elpreima |
|- ( F Fn ran ( 1st ` R ) -> ( ( z ( 2nd ` R ) x ) e. ( `' F " { Z } ) <-> ( ( z ( 2nd ` R ) x ) e. ran ( 1st ` R ) /\ ( F ` ( z ( 2nd ` R ) x ) ) e. { Z } ) ) ) |
| 82 |
7 16 81
|
3syl |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( ( z ( 2nd ` R ) x ) e. ( `' F " { Z } ) <-> ( ( z ( 2nd ` R ) x ) e. ran ( 1st ` R ) /\ ( F ` ( z ( 2nd ` R ) x ) ) e. { Z } ) ) ) |
| 83 |
82
|
ad2antrr |
|- ( ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ ( F ` x ) = Z ) ) /\ z e. ran ( 1st ` R ) ) -> ( ( z ( 2nd ` R ) x ) e. ( `' F " { Z } ) <-> ( ( z ( 2nd ` R ) x ) e. ran ( 1st ` R ) /\ ( F ` ( z ( 2nd ` R ) x ) ) e. { Z } ) ) ) |
| 84 |
64 80 83
|
mpbir2and |
|- ( ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ ( F ` x ) = Z ) ) /\ z e. ran ( 1st ` R ) ) -> ( z ( 2nd ` R ) x ) e. ( `' F " { Z } ) ) |
| 85 |
4 59 5
|
rngocl |
|- ( ( R e. RingOps /\ x e. ran ( 1st ` R ) /\ z e. ran ( 1st ` R ) ) -> ( x ( 2nd ` R ) z ) e. ran ( 1st ` R ) ) |
| 86 |
85
|
3expb |
|- ( ( R e. RingOps /\ ( x e. ran ( 1st ` R ) /\ z e. ran ( 1st ` R ) ) ) -> ( x ( 2nd ` R ) z ) e. ran ( 1st ` R ) ) |
| 87 |
86
|
3ad2antl1 |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ z e. ran ( 1st ` R ) ) ) -> ( x ( 2nd ` R ) z ) e. ran ( 1st ` R ) ) |
| 88 |
87
|
anassrs |
|- ( ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ x e. ran ( 1st ` R ) ) /\ z e. ran ( 1st ` R ) ) -> ( x ( 2nd ` R ) z ) e. ran ( 1st ` R ) ) |
| 89 |
88
|
adantlrr |
|- ( ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ ( F ` x ) = Z ) ) /\ z e. ran ( 1st ` R ) ) -> ( x ( 2nd ` R ) z ) e. ran ( 1st ` R ) ) |
| 90 |
4 5 59 65
|
rngohommul |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ z e. ran ( 1st ` R ) ) ) -> ( F ` ( x ( 2nd ` R ) z ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` z ) ) ) |
| 91 |
90
|
anassrs |
|- ( ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ x e. ran ( 1st ` R ) ) /\ z e. ran ( 1st ` R ) ) -> ( F ` ( x ( 2nd ` R ) z ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` z ) ) ) |
| 92 |
91
|
adantlrr |
|- ( ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ ( F ` x ) = Z ) ) /\ z e. ran ( 1st ` R ) ) -> ( F ` ( x ( 2nd ` R ) z ) ) = ( ( F ` x ) ( 2nd ` S ) ( F ` z ) ) ) |
| 93 |
|
oveq1 |
|- ( ( F ` x ) = Z -> ( ( F ` x ) ( 2nd ` S ) ( F ` z ) ) = ( Z ( 2nd ` S ) ( F ` z ) ) ) |
| 94 |
93
|
adantl |
|- ( ( x e. ran ( 1st ` R ) /\ ( F ` x ) = Z ) -> ( ( F ` x ) ( 2nd ` S ) ( F ` z ) ) = ( Z ( 2nd ` S ) ( F ` z ) ) ) |
| 95 |
94
|
ad2antlr |
|- ( ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ ( F ` x ) = Z ) ) /\ z e. ran ( 1st ` R ) ) -> ( ( F ` x ) ( 2nd ` S ) ( F ` z ) ) = ( Z ( 2nd ` S ) ( F ` z ) ) ) |
| 96 |
2 6 1 65
|
rngolz |
|- ( ( S e. RingOps /\ ( F ` z ) e. ran G ) -> ( Z ( 2nd ` S ) ( F ` z ) ) = Z ) |
| 97 |
96
|
3ad2antl2 |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( F ` z ) e. ran G ) -> ( Z ( 2nd ` S ) ( F ` z ) ) = Z ) |
| 98 |
72 97
|
syldan |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ z e. ran ( 1st ` R ) ) -> ( Z ( 2nd ` S ) ( F ` z ) ) = Z ) |
| 99 |
98
|
adantlr |
|- ( ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ ( F ` x ) = Z ) ) /\ z e. ran ( 1st ` R ) ) -> ( Z ( 2nd ` S ) ( F ` z ) ) = Z ) |
| 100 |
92 95 99
|
3eqtrd |
|- ( ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ ( F ` x ) = Z ) ) /\ z e. ran ( 1st ` R ) ) -> ( F ` ( x ( 2nd ` R ) z ) ) = Z ) |
| 101 |
|
fvex |
|- ( F ` ( x ( 2nd ` R ) z ) ) e. _V |
| 102 |
101
|
elsn |
|- ( ( F ` ( x ( 2nd ` R ) z ) ) e. { Z } <-> ( F ` ( x ( 2nd ` R ) z ) ) = Z ) |
| 103 |
100 102
|
sylibr |
|- ( ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ ( F ` x ) = Z ) ) /\ z e. ran ( 1st ` R ) ) -> ( F ` ( x ( 2nd ` R ) z ) ) e. { Z } ) |
| 104 |
|
elpreima |
|- ( F Fn ran ( 1st ` R ) -> ( ( x ( 2nd ` R ) z ) e. ( `' F " { Z } ) <-> ( ( x ( 2nd ` R ) z ) e. ran ( 1st ` R ) /\ ( F ` ( x ( 2nd ` R ) z ) ) e. { Z } ) ) ) |
| 105 |
7 16 104
|
3syl |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( ( x ( 2nd ` R ) z ) e. ( `' F " { Z } ) <-> ( ( x ( 2nd ` R ) z ) e. ran ( 1st ` R ) /\ ( F ` ( x ( 2nd ` R ) z ) ) e. { Z } ) ) ) |
| 106 |
105
|
ad2antrr |
|- ( ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ ( F ` x ) = Z ) ) /\ z e. ran ( 1st ` R ) ) -> ( ( x ( 2nd ` R ) z ) e. ( `' F " { Z } ) <-> ( ( x ( 2nd ` R ) z ) e. ran ( 1st ` R ) /\ ( F ` ( x ( 2nd ` R ) z ) ) e. { Z } ) ) ) |
| 107 |
89 103 106
|
mpbir2and |
|- ( ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ ( F ` x ) = Z ) ) /\ z e. ran ( 1st ` R ) ) -> ( x ( 2nd ` R ) z ) e. ( `' F " { Z } ) ) |
| 108 |
84 107
|
jca |
|- ( ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ ( F ` x ) = Z ) ) /\ z e. ran ( 1st ` R ) ) -> ( ( z ( 2nd ` R ) x ) e. ( `' F " { Z } ) /\ ( x ( 2nd ` R ) z ) e. ( `' F " { Z } ) ) ) |
| 109 |
108
|
ralrimiva |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ ( x e. ran ( 1st ` R ) /\ ( F ` x ) = Z ) ) -> A. z e. ran ( 1st ` R ) ( ( z ( 2nd ` R ) x ) e. ( `' F " { Z } ) /\ ( x ( 2nd ` R ) z ) e. ( `' F " { Z } ) ) ) |
| 110 |
109
|
ex |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( ( x e. ran ( 1st ` R ) /\ ( F ` x ) = Z ) -> A. z e. ran ( 1st ` R ) ( ( z ( 2nd ` R ) x ) e. ( `' F " { Z } ) /\ ( x ( 2nd ` R ) z ) e. ( `' F " { Z } ) ) ) ) |
| 111 |
58 110
|
biimtrid |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( ( x e. ran ( 1st ` R ) /\ ( F ` x ) e. { Z } ) -> A. z e. ran ( 1st ` R ) ( ( z ( 2nd ` R ) x ) e. ( `' F " { Z } ) /\ ( x ( 2nd ` R ) z ) e. ( `' F " { Z } ) ) ) ) |
| 112 |
49 111
|
sylbid |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( x e. ( `' F " { Z } ) -> A. z e. ran ( 1st ` R ) ( ( z ( 2nd ` R ) x ) e. ( `' F " { Z } ) /\ ( x ( 2nd ` R ) z ) e. ( `' F " { Z } ) ) ) ) |
| 113 |
112
|
imp |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ x e. ( `' F " { Z } ) ) -> A. z e. ran ( 1st ` R ) ( ( z ( 2nd ` R ) x ) e. ( `' F " { Z } ) /\ ( x ( 2nd ` R ) z ) e. ( `' F " { Z } ) ) ) |
| 114 |
57 113
|
jca |
|- ( ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) /\ x e. ( `' F " { Z } ) ) -> ( A. y e. ( `' F " { Z } ) ( x ( 1st ` R ) y ) e. ( `' F " { Z } ) /\ A. z e. ran ( 1st ` R ) ( ( z ( 2nd ` R ) x ) e. ( `' F " { Z } ) /\ ( x ( 2nd ` R ) z ) e. ( `' F " { Z } ) ) ) ) |
| 115 |
114
|
ralrimiva |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> A. x e. ( `' F " { Z } ) ( A. y e. ( `' F " { Z } ) ( x ( 1st ` R ) y ) e. ( `' F " { Z } ) /\ A. z e. ran ( 1st ` R ) ( ( z ( 2nd ` R ) x ) e. ( `' F " { Z } ) /\ ( x ( 2nd ` R ) z ) e. ( `' F " { Z } ) ) ) ) |
| 116 |
4 59 5 9
|
isidl |
|- ( R e. RingOps -> ( ( `' F " { Z } ) e. ( Idl ` R ) <-> ( ( `' F " { Z } ) C_ ran ( 1st ` R ) /\ ( GId ` ( 1st ` R ) ) e. ( `' F " { Z } ) /\ A. x e. ( `' F " { Z } ) ( A. y e. ( `' F " { Z } ) ( x ( 1st ` R ) y ) e. ( `' F " { Z } ) /\ A. z e. ran ( 1st ` R ) ( ( z ( 2nd ` R ) x ) e. ( `' F " { Z } ) /\ ( x ( 2nd ` R ) z ) e. ( `' F " { Z } ) ) ) ) ) ) |
| 117 |
116
|
3ad2ant1 |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( ( `' F " { Z } ) e. ( Idl ` R ) <-> ( ( `' F " { Z } ) C_ ran ( 1st ` R ) /\ ( GId ` ( 1st ` R ) ) e. ( `' F " { Z } ) /\ A. x e. ( `' F " { Z } ) ( A. y e. ( `' F " { Z } ) ( x ( 1st ` R ) y ) e. ( `' F " { Z } ) /\ A. z e. ran ( 1st ` R ) ( ( z ( 2nd ` R ) x ) e. ( `' F " { Z } ) /\ ( x ( 2nd ` R ) z ) e. ( `' F " { Z } ) ) ) ) ) ) |
| 118 |
8 19 115 117
|
mpbir3and |
|- ( ( R e. RingOps /\ S e. RingOps /\ F e. ( R RingOpsHom S ) ) -> ( `' F " { Z } ) e. ( Idl ` R ) ) |