Step |
Hyp |
Ref |
Expression |
1 |
|
limcleqr.k |
|- K = ( TopOpen ` CCfld ) |
2 |
|
limcleqr.a |
|- ( ph -> A C_ RR ) |
3 |
|
limcleqr.j |
|- J = ( topGen ` ran (,) ) |
4 |
|
limcleqr.f |
|- ( ph -> F : A --> CC ) |
5 |
|
limcleqr.b |
|- ( ph -> B e. RR ) |
6 |
|
limcleqr.l |
|- ( ph -> L e. ( ( F |` ( -oo (,) B ) ) limCC B ) ) |
7 |
|
limcleqr.r |
|- ( ph -> R e. ( ( F |` ( B (,) +oo ) ) limCC B ) ) |
8 |
|
limcleqr.leqr |
|- ( ph -> L = R ) |
9 |
|
limccl |
|- ( ( F |` ( -oo (,) B ) ) limCC B ) C_ CC |
10 |
9 6
|
sselid |
|- ( ph -> L e. CC ) |
11 |
|
simp-4r |
|- ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) -> a e. RR+ ) |
12 |
|
simplr |
|- ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) -> b e. RR+ ) |
13 |
11 12
|
ifcld |
|- ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) -> if ( a <_ b , a , b ) e. RR+ ) |
14 |
|
nfv |
|- F/ z ( ph /\ x e. RR+ ) |
15 |
|
nfv |
|- F/ z a e. RR+ |
16 |
14 15
|
nfan |
|- F/ z ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) |
17 |
|
nfra1 |
|- F/ z A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) |
18 |
16 17
|
nfan |
|- F/ z ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) |
19 |
|
nfv |
|- F/ z b e. RR+ |
20 |
18 19
|
nfan |
|- F/ z ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) |
21 |
|
nfra1 |
|- F/ z A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) |
22 |
20 21
|
nfan |
|- F/ z ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) |
23 |
|
simp-6l |
|- ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z < B ) -> ph ) |
24 |
23
|
3ad2antl1 |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> ph ) |
25 |
|
simpl2 |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> z e. A ) |
26 |
|
simpr |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> z < B ) |
27 |
|
mnfxr |
|- -oo e. RR* |
28 |
27
|
a1i |
|- ( ( ph /\ z e. A /\ z < B ) -> -oo e. RR* ) |
29 |
5
|
rexrd |
|- ( ph -> B e. RR* ) |
30 |
29
|
3ad2ant1 |
|- ( ( ph /\ z e. A /\ z < B ) -> B e. RR* ) |
31 |
2
|
sselda |
|- ( ( ph /\ z e. A ) -> z e. RR ) |
32 |
31
|
3adant3 |
|- ( ( ph /\ z e. A /\ z < B ) -> z e. RR ) |
33 |
32
|
mnfltd |
|- ( ( ph /\ z e. A /\ z < B ) -> -oo < z ) |
34 |
|
simp3 |
|- ( ( ph /\ z e. A /\ z < B ) -> z < B ) |
35 |
28 30 32 33 34
|
eliood |
|- ( ( ph /\ z e. A /\ z < B ) -> z e. ( -oo (,) B ) ) |
36 |
24 25 26 35
|
syl3anc |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> z e. ( -oo (,) B ) ) |
37 |
|
fvres |
|- ( z e. ( -oo (,) B ) -> ( ( F |` ( -oo (,) B ) ) ` z ) = ( F ` z ) ) |
38 |
37
|
oveq1d |
|- ( z e. ( -oo (,) B ) -> ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) = ( ( F ` z ) - L ) ) |
39 |
38
|
eqcomd |
|- ( z e. ( -oo (,) B ) -> ( ( F ` z ) - L ) = ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) |
40 |
39
|
fveq2d |
|- ( z e. ( -oo (,) B ) -> ( abs ` ( ( F ` z ) - L ) ) = ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) ) |
41 |
36 40
|
syl |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> ( abs ` ( ( F ` z ) - L ) ) = ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) ) |
42 |
|
simp-4r |
|- ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z < B ) -> A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) |
43 |
42
|
3ad2antl1 |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) |
44 |
25 36
|
elind |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> z e. ( A i^i ( -oo (,) B ) ) ) |
45 |
43 44
|
jca |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> ( A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) /\ z e. ( A i^i ( -oo (,) B ) ) ) ) |
46 |
|
simpl3l |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> z =/= B ) |
47 |
11
|
adantr |
|- ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z < B ) -> a e. RR+ ) |
48 |
47
|
3ad2antl1 |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> a e. RR+ ) |
49 |
12
|
adantr |
|- ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z < B ) -> b e. RR+ ) |
50 |
49
|
3ad2antl1 |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> b e. RR+ ) |
51 |
|
simpl3r |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) |
52 |
|
simpl1 |
|- ( ( ( ph /\ a e. RR+ /\ b e. RR+ ) /\ ( ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) /\ z e. A ) ) -> ph ) |
53 |
|
simprr |
|- ( ( ( ph /\ a e. RR+ /\ b e. RR+ ) /\ ( ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) /\ z e. A ) ) -> z e. A ) |
54 |
31
|
recnd |
|- ( ( ph /\ z e. A ) -> z e. CC ) |
55 |
5
|
recnd |
|- ( ph -> B e. CC ) |
56 |
55
|
adantr |
|- ( ( ph /\ z e. A ) -> B e. CC ) |
57 |
54 56
|
subcld |
|- ( ( ph /\ z e. A ) -> ( z - B ) e. CC ) |
58 |
57
|
abscld |
|- ( ( ph /\ z e. A ) -> ( abs ` ( z - B ) ) e. RR ) |
59 |
52 53 58
|
syl2anc |
|- ( ( ( ph /\ a e. RR+ /\ b e. RR+ ) /\ ( ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) /\ z e. A ) ) -> ( abs ` ( z - B ) ) e. RR ) |
60 |
|
rpre |
|- ( a e. RR+ -> a e. RR ) |
61 |
60
|
adantr |
|- ( ( a e. RR+ /\ b e. RR+ ) -> a e. RR ) |
62 |
|
rpre |
|- ( b e. RR+ -> b e. RR ) |
63 |
62
|
adantl |
|- ( ( a e. RR+ /\ b e. RR+ ) -> b e. RR ) |
64 |
61 63
|
ifcld |
|- ( ( a e. RR+ /\ b e. RR+ ) -> if ( a <_ b , a , b ) e. RR ) |
65 |
64
|
3adant1 |
|- ( ( ph /\ a e. RR+ /\ b e. RR+ ) -> if ( a <_ b , a , b ) e. RR ) |
66 |
65
|
adantr |
|- ( ( ( ph /\ a e. RR+ /\ b e. RR+ ) /\ ( ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) /\ z e. A ) ) -> if ( a <_ b , a , b ) e. RR ) |
67 |
61
|
3adant1 |
|- ( ( ph /\ a e. RR+ /\ b e. RR+ ) -> a e. RR ) |
68 |
67
|
adantr |
|- ( ( ( ph /\ a e. RR+ /\ b e. RR+ ) /\ ( ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) /\ z e. A ) ) -> a e. RR ) |
69 |
|
simprl |
|- ( ( ( ph /\ a e. RR+ /\ b e. RR+ ) /\ ( ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) /\ z e. A ) ) -> ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) |
70 |
63
|
3adant1 |
|- ( ( ph /\ a e. RR+ /\ b e. RR+ ) -> b e. RR ) |
71 |
|
min1 |
|- ( ( a e. RR /\ b e. RR ) -> if ( a <_ b , a , b ) <_ a ) |
72 |
67 70 71
|
syl2anc |
|- ( ( ph /\ a e. RR+ /\ b e. RR+ ) -> if ( a <_ b , a , b ) <_ a ) |
73 |
72
|
adantr |
|- ( ( ( ph /\ a e. RR+ /\ b e. RR+ ) /\ ( ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) /\ z e. A ) ) -> if ( a <_ b , a , b ) <_ a ) |
74 |
59 66 68 69 73
|
ltletrd |
|- ( ( ( ph /\ a e. RR+ /\ b e. RR+ ) /\ ( ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) /\ z e. A ) ) -> ( abs ` ( z - B ) ) < a ) |
75 |
24 48 50 51 25 74
|
syl32anc |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> ( abs ` ( z - B ) ) < a ) |
76 |
46 75
|
jca |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> ( z =/= B /\ ( abs ` ( z - B ) ) < a ) ) |
77 |
|
rspa |
|- ( ( A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) /\ z e. ( A i^i ( -oo (,) B ) ) ) -> ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) |
78 |
45 76 77
|
sylc |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) |
79 |
41 78
|
eqbrtrd |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) |
80 |
|
simp-6l |
|- ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ -. z < B ) -> ph ) |
81 |
80
|
3ad2antl1 |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ -. z < B ) -> ph ) |
82 |
81 5
|
syl |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ -. z < B ) -> B e. RR ) |
83 |
|
simpl2 |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ -. z < B ) -> z e. A ) |
84 |
81 83 31
|
syl2anc |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ -. z < B ) -> z e. RR ) |
85 |
|
id |
|- ( z =/= B -> z =/= B ) |
86 |
85
|
necomd |
|- ( z =/= B -> B =/= z ) |
87 |
86
|
ad2antrr |
|- ( ( ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) /\ -. z < B ) -> B =/= z ) |
88 |
87
|
3ad2antl3 |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ -. z < B ) -> B =/= z ) |
89 |
|
simpr |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ -. z < B ) -> -. z < B ) |
90 |
82 84 88 89
|
lttri5d |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ -. z < B ) -> B < z ) |
91 |
|
simp-6l |
|- ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ B < z ) -> ph ) |
92 |
91
|
3ad2antl1 |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> ph ) |
93 |
|
simpl2 |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> z e. A ) |
94 |
|
simpr |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> B < z ) |
95 |
29
|
3ad2ant1 |
|- ( ( ph /\ z e. A /\ B < z ) -> B e. RR* ) |
96 |
|
pnfxr |
|- +oo e. RR* |
97 |
96
|
a1i |
|- ( ( ph /\ z e. A /\ B < z ) -> +oo e. RR* ) |
98 |
31
|
3adant3 |
|- ( ( ph /\ z e. A /\ B < z ) -> z e. RR ) |
99 |
|
simp3 |
|- ( ( ph /\ z e. A /\ B < z ) -> B < z ) |
100 |
98
|
ltpnfd |
|- ( ( ph /\ z e. A /\ B < z ) -> z < +oo ) |
101 |
95 97 98 99 100
|
eliood |
|- ( ( ph /\ z e. A /\ B < z ) -> z e. ( B (,) +oo ) ) |
102 |
92 93 94 101
|
syl3anc |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> z e. ( B (,) +oo ) ) |
103 |
|
fvres |
|- ( z e. ( B (,) +oo ) -> ( ( F |` ( B (,) +oo ) ) ` z ) = ( F ` z ) ) |
104 |
103
|
eqcomd |
|- ( z e. ( B (,) +oo ) -> ( F ` z ) = ( ( F |` ( B (,) +oo ) ) ` z ) ) |
105 |
104
|
fvoveq1d |
|- ( z e. ( B (,) +oo ) -> ( abs ` ( ( F ` z ) - L ) ) = ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) ) |
106 |
102 105
|
syl |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> ( abs ` ( ( F ` z ) - L ) ) = ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) ) |
107 |
|
simpl1r |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) |
108 |
93 102
|
elind |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> z e. ( A i^i ( B (,) +oo ) ) ) |
109 |
107 108
|
jca |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> ( A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) /\ z e. ( A i^i ( B (,) +oo ) ) ) ) |
110 |
|
simpl3l |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> z =/= B ) |
111 |
11
|
adantr |
|- ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ B < z ) -> a e. RR+ ) |
112 |
111
|
3ad2antl1 |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> a e. RR+ ) |
113 |
12
|
adantr |
|- ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ B < z ) -> b e. RR+ ) |
114 |
113
|
3ad2antl1 |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> b e. RR+ ) |
115 |
|
simpl3r |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) |
116 |
70
|
adantr |
|- ( ( ( ph /\ a e. RR+ /\ b e. RR+ ) /\ ( ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) /\ z e. A ) ) -> b e. RR ) |
117 |
|
min2 |
|- ( ( a e. RR /\ b e. RR ) -> if ( a <_ b , a , b ) <_ b ) |
118 |
67 70 117
|
syl2anc |
|- ( ( ph /\ a e. RR+ /\ b e. RR+ ) -> if ( a <_ b , a , b ) <_ b ) |
119 |
118
|
adantr |
|- ( ( ( ph /\ a e. RR+ /\ b e. RR+ ) /\ ( ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) /\ z e. A ) ) -> if ( a <_ b , a , b ) <_ b ) |
120 |
59 66 116 69 119
|
ltletrd |
|- ( ( ( ph /\ a e. RR+ /\ b e. RR+ ) /\ ( ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) /\ z e. A ) ) -> ( abs ` ( z - B ) ) < b ) |
121 |
92 112 114 115 93 120
|
syl32anc |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> ( abs ` ( z - B ) ) < b ) |
122 |
110 121
|
jca |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> ( z =/= B /\ ( abs ` ( z - B ) ) < b ) ) |
123 |
|
rspa |
|- ( ( A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) /\ z e. ( A i^i ( B (,) +oo ) ) ) -> ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) |
124 |
109 122 123
|
sylc |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) |
125 |
106 124
|
eqbrtrd |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) |
126 |
90 125
|
syldan |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ -. z < B ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) |
127 |
79 126
|
pm2.61dan |
|- ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) |
128 |
127
|
3exp |
|- ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) -> ( z e. A -> ( ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) ) |
129 |
22 128
|
ralrimi |
|- ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) -> A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) |
130 |
|
brimralrspcev |
|- ( ( if ( a <_ b , a , b ) e. RR+ /\ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) -> E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) |
131 |
13 129 130
|
syl2anc |
|- ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) -> E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) |
132 |
|
fresin |
|- ( F : A --> CC -> ( F |` ( B (,) +oo ) ) : ( A i^i ( B (,) +oo ) ) --> CC ) |
133 |
4 132
|
syl |
|- ( ph -> ( F |` ( B (,) +oo ) ) : ( A i^i ( B (,) +oo ) ) --> CC ) |
134 |
|
inss2 |
|- ( A i^i ( B (,) +oo ) ) C_ ( B (,) +oo ) |
135 |
|
ioosscn |
|- ( B (,) +oo ) C_ CC |
136 |
134 135
|
sstri |
|- ( A i^i ( B (,) +oo ) ) C_ CC |
137 |
136
|
a1i |
|- ( ph -> ( A i^i ( B (,) +oo ) ) C_ CC ) |
138 |
133 137 55
|
ellimc3 |
|- ( ph -> ( R e. ( ( F |` ( B (,) +oo ) ) limCC B ) <-> ( R e. CC /\ A. x e. RR+ E. b e. RR+ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - R ) ) < x ) ) ) ) |
139 |
7 138
|
mpbid |
|- ( ph -> ( R e. CC /\ A. x e. RR+ E. b e. RR+ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - R ) ) < x ) ) ) |
140 |
139
|
simprd |
|- ( ph -> A. x e. RR+ E. b e. RR+ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - R ) ) < x ) ) |
141 |
140
|
r19.21bi |
|- ( ( ph /\ x e. RR+ ) -> E. b e. RR+ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - R ) ) < x ) ) |
142 |
8
|
oveq2d |
|- ( ph -> ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) = ( ( ( F |` ( B (,) +oo ) ) ` z ) - R ) ) |
143 |
142
|
fveq2d |
|- ( ph -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) = ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - R ) ) ) |
144 |
143
|
breq1d |
|- ( ph -> ( ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x <-> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - R ) ) < x ) ) |
145 |
144
|
imbi2d |
|- ( ph -> ( ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) <-> ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - R ) ) < x ) ) ) |
146 |
145
|
rexralbidv |
|- ( ph -> ( E. b e. RR+ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) <-> E. b e. RR+ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - R ) ) < x ) ) ) |
147 |
146
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> ( E. b e. RR+ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) <-> E. b e. RR+ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - R ) ) < x ) ) ) |
148 |
141 147
|
mpbird |
|- ( ( ph /\ x e. RR+ ) -> E. b e. RR+ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) |
149 |
148
|
ad2antrr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) -> E. b e. RR+ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) |
150 |
131 149
|
r19.29a |
|- ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) -> E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) |
151 |
|
fresin |
|- ( F : A --> CC -> ( F |` ( -oo (,) B ) ) : ( A i^i ( -oo (,) B ) ) --> CC ) |
152 |
4 151
|
syl |
|- ( ph -> ( F |` ( -oo (,) B ) ) : ( A i^i ( -oo (,) B ) ) --> CC ) |
153 |
|
inss2 |
|- ( A i^i ( -oo (,) B ) ) C_ ( -oo (,) B ) |
154 |
|
ioossre |
|- ( -oo (,) B ) C_ RR |
155 |
153 154
|
sstri |
|- ( A i^i ( -oo (,) B ) ) C_ RR |
156 |
|
ax-resscn |
|- RR C_ CC |
157 |
156
|
a1i |
|- ( ph -> RR C_ CC ) |
158 |
155 157
|
sstrid |
|- ( ph -> ( A i^i ( -oo (,) B ) ) C_ CC ) |
159 |
152 158 55
|
ellimc3 |
|- ( ph -> ( L e. ( ( F |` ( -oo (,) B ) ) limCC B ) <-> ( L e. CC /\ A. x e. RR+ E. a e. RR+ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) ) ) |
160 |
6 159
|
mpbid |
|- ( ph -> ( L e. CC /\ A. x e. RR+ E. a e. RR+ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) ) |
161 |
160
|
simprd |
|- ( ph -> A. x e. RR+ E. a e. RR+ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) |
162 |
161
|
r19.21bi |
|- ( ( ph /\ x e. RR+ ) -> E. a e. RR+ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) |
163 |
150 162
|
r19.29a |
|- ( ( ph /\ x e. RR+ ) -> E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) |
164 |
163
|
ralrimiva |
|- ( ph -> A. x e. RR+ E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) |
165 |
2 156
|
sstrdi |
|- ( ph -> A C_ CC ) |
166 |
4 165 55
|
ellimc3 |
|- ( ph -> ( L e. ( F limCC B ) <-> ( L e. CC /\ A. x e. RR+ E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) ) ) |
167 |
10 164 166
|
mpbir2and |
|- ( ph -> L e. ( F limCC B ) ) |