| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limcleqr.k |
|- K = ( TopOpen ` CCfld ) |
| 2 |
|
limcleqr.a |
|- ( ph -> A C_ RR ) |
| 3 |
|
limcleqr.j |
|- J = ( topGen ` ran (,) ) |
| 4 |
|
limcleqr.f |
|- ( ph -> F : A --> CC ) |
| 5 |
|
limcleqr.b |
|- ( ph -> B e. RR ) |
| 6 |
|
limcleqr.l |
|- ( ph -> L e. ( ( F |` ( -oo (,) B ) ) limCC B ) ) |
| 7 |
|
limcleqr.r |
|- ( ph -> R e. ( ( F |` ( B (,) +oo ) ) limCC B ) ) |
| 8 |
|
limcleqr.leqr |
|- ( ph -> L = R ) |
| 9 |
|
limccl |
|- ( ( F |` ( -oo (,) B ) ) limCC B ) C_ CC |
| 10 |
9 6
|
sselid |
|- ( ph -> L e. CC ) |
| 11 |
|
simp-4r |
|- ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) -> a e. RR+ ) |
| 12 |
|
simplr |
|- ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) -> b e. RR+ ) |
| 13 |
11 12
|
ifcld |
|- ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) -> if ( a <_ b , a , b ) e. RR+ ) |
| 14 |
|
nfv |
|- F/ z ( ph /\ x e. RR+ ) |
| 15 |
|
nfv |
|- F/ z a e. RR+ |
| 16 |
14 15
|
nfan |
|- F/ z ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) |
| 17 |
|
nfra1 |
|- F/ z A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) |
| 18 |
16 17
|
nfan |
|- F/ z ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) |
| 19 |
|
nfv |
|- F/ z b e. RR+ |
| 20 |
18 19
|
nfan |
|- F/ z ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) |
| 21 |
|
nfra1 |
|- F/ z A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) |
| 22 |
20 21
|
nfan |
|- F/ z ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) |
| 23 |
|
simp-6l |
|- ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z < B ) -> ph ) |
| 24 |
23
|
3ad2antl1 |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> ph ) |
| 25 |
|
simpl2 |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> z e. A ) |
| 26 |
|
simpr |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> z < B ) |
| 27 |
|
mnfxr |
|- -oo e. RR* |
| 28 |
27
|
a1i |
|- ( ( ph /\ z e. A /\ z < B ) -> -oo e. RR* ) |
| 29 |
5
|
rexrd |
|- ( ph -> B e. RR* ) |
| 30 |
29
|
3ad2ant1 |
|- ( ( ph /\ z e. A /\ z < B ) -> B e. RR* ) |
| 31 |
2
|
sselda |
|- ( ( ph /\ z e. A ) -> z e. RR ) |
| 32 |
31
|
3adant3 |
|- ( ( ph /\ z e. A /\ z < B ) -> z e. RR ) |
| 33 |
32
|
mnfltd |
|- ( ( ph /\ z e. A /\ z < B ) -> -oo < z ) |
| 34 |
|
simp3 |
|- ( ( ph /\ z e. A /\ z < B ) -> z < B ) |
| 35 |
28 30 32 33 34
|
eliood |
|- ( ( ph /\ z e. A /\ z < B ) -> z e. ( -oo (,) B ) ) |
| 36 |
24 25 26 35
|
syl3anc |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> z e. ( -oo (,) B ) ) |
| 37 |
|
fvres |
|- ( z e. ( -oo (,) B ) -> ( ( F |` ( -oo (,) B ) ) ` z ) = ( F ` z ) ) |
| 38 |
37
|
oveq1d |
|- ( z e. ( -oo (,) B ) -> ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) = ( ( F ` z ) - L ) ) |
| 39 |
38
|
eqcomd |
|- ( z e. ( -oo (,) B ) -> ( ( F ` z ) - L ) = ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) |
| 40 |
39
|
fveq2d |
|- ( z e. ( -oo (,) B ) -> ( abs ` ( ( F ` z ) - L ) ) = ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) ) |
| 41 |
36 40
|
syl |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> ( abs ` ( ( F ` z ) - L ) ) = ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) ) |
| 42 |
|
simp-4r |
|- ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z < B ) -> A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) |
| 43 |
42
|
3ad2antl1 |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) |
| 44 |
25 36
|
elind |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> z e. ( A i^i ( -oo (,) B ) ) ) |
| 45 |
43 44
|
jca |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> ( A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) /\ z e. ( A i^i ( -oo (,) B ) ) ) ) |
| 46 |
|
simpl3l |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> z =/= B ) |
| 47 |
11
|
adantr |
|- ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z < B ) -> a e. RR+ ) |
| 48 |
47
|
3ad2antl1 |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> a e. RR+ ) |
| 49 |
12
|
adantr |
|- ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z < B ) -> b e. RR+ ) |
| 50 |
49
|
3ad2antl1 |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> b e. RR+ ) |
| 51 |
|
simpl3r |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) |
| 52 |
|
simpl1 |
|- ( ( ( ph /\ a e. RR+ /\ b e. RR+ ) /\ ( ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) /\ z e. A ) ) -> ph ) |
| 53 |
|
simprr |
|- ( ( ( ph /\ a e. RR+ /\ b e. RR+ ) /\ ( ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) /\ z e. A ) ) -> z e. A ) |
| 54 |
31
|
recnd |
|- ( ( ph /\ z e. A ) -> z e. CC ) |
| 55 |
5
|
recnd |
|- ( ph -> B e. CC ) |
| 56 |
55
|
adantr |
|- ( ( ph /\ z e. A ) -> B e. CC ) |
| 57 |
54 56
|
subcld |
|- ( ( ph /\ z e. A ) -> ( z - B ) e. CC ) |
| 58 |
57
|
abscld |
|- ( ( ph /\ z e. A ) -> ( abs ` ( z - B ) ) e. RR ) |
| 59 |
52 53 58
|
syl2anc |
|- ( ( ( ph /\ a e. RR+ /\ b e. RR+ ) /\ ( ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) /\ z e. A ) ) -> ( abs ` ( z - B ) ) e. RR ) |
| 60 |
|
rpre |
|- ( a e. RR+ -> a e. RR ) |
| 61 |
60
|
adantr |
|- ( ( a e. RR+ /\ b e. RR+ ) -> a e. RR ) |
| 62 |
|
rpre |
|- ( b e. RR+ -> b e. RR ) |
| 63 |
62
|
adantl |
|- ( ( a e. RR+ /\ b e. RR+ ) -> b e. RR ) |
| 64 |
61 63
|
ifcld |
|- ( ( a e. RR+ /\ b e. RR+ ) -> if ( a <_ b , a , b ) e. RR ) |
| 65 |
64
|
3adant1 |
|- ( ( ph /\ a e. RR+ /\ b e. RR+ ) -> if ( a <_ b , a , b ) e. RR ) |
| 66 |
65
|
adantr |
|- ( ( ( ph /\ a e. RR+ /\ b e. RR+ ) /\ ( ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) /\ z e. A ) ) -> if ( a <_ b , a , b ) e. RR ) |
| 67 |
61
|
3adant1 |
|- ( ( ph /\ a e. RR+ /\ b e. RR+ ) -> a e. RR ) |
| 68 |
67
|
adantr |
|- ( ( ( ph /\ a e. RR+ /\ b e. RR+ ) /\ ( ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) /\ z e. A ) ) -> a e. RR ) |
| 69 |
|
simprl |
|- ( ( ( ph /\ a e. RR+ /\ b e. RR+ ) /\ ( ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) /\ z e. A ) ) -> ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) |
| 70 |
63
|
3adant1 |
|- ( ( ph /\ a e. RR+ /\ b e. RR+ ) -> b e. RR ) |
| 71 |
|
min1 |
|- ( ( a e. RR /\ b e. RR ) -> if ( a <_ b , a , b ) <_ a ) |
| 72 |
67 70 71
|
syl2anc |
|- ( ( ph /\ a e. RR+ /\ b e. RR+ ) -> if ( a <_ b , a , b ) <_ a ) |
| 73 |
72
|
adantr |
|- ( ( ( ph /\ a e. RR+ /\ b e. RR+ ) /\ ( ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) /\ z e. A ) ) -> if ( a <_ b , a , b ) <_ a ) |
| 74 |
59 66 68 69 73
|
ltletrd |
|- ( ( ( ph /\ a e. RR+ /\ b e. RR+ ) /\ ( ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) /\ z e. A ) ) -> ( abs ` ( z - B ) ) < a ) |
| 75 |
24 48 50 51 25 74
|
syl32anc |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> ( abs ` ( z - B ) ) < a ) |
| 76 |
46 75
|
jca |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> ( z =/= B /\ ( abs ` ( z - B ) ) < a ) ) |
| 77 |
|
rspa |
|- ( ( A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) /\ z e. ( A i^i ( -oo (,) B ) ) ) -> ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) |
| 78 |
45 76 77
|
sylc |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) |
| 79 |
41 78
|
eqbrtrd |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ z < B ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) |
| 80 |
|
simp-6l |
|- ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ -. z < B ) -> ph ) |
| 81 |
80
|
3ad2antl1 |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ -. z < B ) -> ph ) |
| 82 |
81 5
|
syl |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ -. z < B ) -> B e. RR ) |
| 83 |
|
simpl2 |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ -. z < B ) -> z e. A ) |
| 84 |
81 83 31
|
syl2anc |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ -. z < B ) -> z e. RR ) |
| 85 |
|
id |
|- ( z =/= B -> z =/= B ) |
| 86 |
85
|
necomd |
|- ( z =/= B -> B =/= z ) |
| 87 |
86
|
ad2antrr |
|- ( ( ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) /\ -. z < B ) -> B =/= z ) |
| 88 |
87
|
3ad2antl3 |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ -. z < B ) -> B =/= z ) |
| 89 |
|
simpr |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ -. z < B ) -> -. z < B ) |
| 90 |
82 84 88 89
|
lttri5d |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ -. z < B ) -> B < z ) |
| 91 |
|
simp-6l |
|- ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ B < z ) -> ph ) |
| 92 |
91
|
3ad2antl1 |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> ph ) |
| 93 |
|
simpl2 |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> z e. A ) |
| 94 |
|
simpr |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> B < z ) |
| 95 |
29
|
3ad2ant1 |
|- ( ( ph /\ z e. A /\ B < z ) -> B e. RR* ) |
| 96 |
|
pnfxr |
|- +oo e. RR* |
| 97 |
96
|
a1i |
|- ( ( ph /\ z e. A /\ B < z ) -> +oo e. RR* ) |
| 98 |
31
|
3adant3 |
|- ( ( ph /\ z e. A /\ B < z ) -> z e. RR ) |
| 99 |
|
simp3 |
|- ( ( ph /\ z e. A /\ B < z ) -> B < z ) |
| 100 |
98
|
ltpnfd |
|- ( ( ph /\ z e. A /\ B < z ) -> z < +oo ) |
| 101 |
95 97 98 99 100
|
eliood |
|- ( ( ph /\ z e. A /\ B < z ) -> z e. ( B (,) +oo ) ) |
| 102 |
92 93 94 101
|
syl3anc |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> z e. ( B (,) +oo ) ) |
| 103 |
|
fvres |
|- ( z e. ( B (,) +oo ) -> ( ( F |` ( B (,) +oo ) ) ` z ) = ( F ` z ) ) |
| 104 |
103
|
eqcomd |
|- ( z e. ( B (,) +oo ) -> ( F ` z ) = ( ( F |` ( B (,) +oo ) ) ` z ) ) |
| 105 |
104
|
fvoveq1d |
|- ( z e. ( B (,) +oo ) -> ( abs ` ( ( F ` z ) - L ) ) = ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) ) |
| 106 |
102 105
|
syl |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> ( abs ` ( ( F ` z ) - L ) ) = ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) ) |
| 107 |
|
simpl1r |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) |
| 108 |
93 102
|
elind |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> z e. ( A i^i ( B (,) +oo ) ) ) |
| 109 |
107 108
|
jca |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> ( A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) /\ z e. ( A i^i ( B (,) +oo ) ) ) ) |
| 110 |
|
simpl3l |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> z =/= B ) |
| 111 |
11
|
adantr |
|- ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ B < z ) -> a e. RR+ ) |
| 112 |
111
|
3ad2antl1 |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> a e. RR+ ) |
| 113 |
12
|
adantr |
|- ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ B < z ) -> b e. RR+ ) |
| 114 |
113
|
3ad2antl1 |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> b e. RR+ ) |
| 115 |
|
simpl3r |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) |
| 116 |
70
|
adantr |
|- ( ( ( ph /\ a e. RR+ /\ b e. RR+ ) /\ ( ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) /\ z e. A ) ) -> b e. RR ) |
| 117 |
|
min2 |
|- ( ( a e. RR /\ b e. RR ) -> if ( a <_ b , a , b ) <_ b ) |
| 118 |
67 70 117
|
syl2anc |
|- ( ( ph /\ a e. RR+ /\ b e. RR+ ) -> if ( a <_ b , a , b ) <_ b ) |
| 119 |
118
|
adantr |
|- ( ( ( ph /\ a e. RR+ /\ b e. RR+ ) /\ ( ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) /\ z e. A ) ) -> if ( a <_ b , a , b ) <_ b ) |
| 120 |
59 66 116 69 119
|
ltletrd |
|- ( ( ( ph /\ a e. RR+ /\ b e. RR+ ) /\ ( ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) /\ z e. A ) ) -> ( abs ` ( z - B ) ) < b ) |
| 121 |
92 112 114 115 93 120
|
syl32anc |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> ( abs ` ( z - B ) ) < b ) |
| 122 |
110 121
|
jca |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> ( z =/= B /\ ( abs ` ( z - B ) ) < b ) ) |
| 123 |
|
rspa |
|- ( ( A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) /\ z e. ( A i^i ( B (,) +oo ) ) ) -> ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) |
| 124 |
109 122 123
|
sylc |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) |
| 125 |
106 124
|
eqbrtrd |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ B < z ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) |
| 126 |
90 125
|
syldan |
|- ( ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) /\ -. z < B ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) |
| 127 |
79 126
|
pm2.61dan |
|- ( ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) /\ z e. A /\ ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) |
| 128 |
127
|
3exp |
|- ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) -> ( z e. A -> ( ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) ) |
| 129 |
22 128
|
ralrimi |
|- ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) -> A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) |
| 130 |
|
brimralrspcev |
|- ( ( if ( a <_ b , a , b ) e. RR+ /\ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < if ( a <_ b , a , b ) ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) -> E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) |
| 131 |
13 129 130
|
syl2anc |
|- ( ( ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) /\ b e. RR+ ) /\ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) -> E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) |
| 132 |
|
fresin |
|- ( F : A --> CC -> ( F |` ( B (,) +oo ) ) : ( A i^i ( B (,) +oo ) ) --> CC ) |
| 133 |
4 132
|
syl |
|- ( ph -> ( F |` ( B (,) +oo ) ) : ( A i^i ( B (,) +oo ) ) --> CC ) |
| 134 |
|
inss2 |
|- ( A i^i ( B (,) +oo ) ) C_ ( B (,) +oo ) |
| 135 |
|
ioosscn |
|- ( B (,) +oo ) C_ CC |
| 136 |
134 135
|
sstri |
|- ( A i^i ( B (,) +oo ) ) C_ CC |
| 137 |
136
|
a1i |
|- ( ph -> ( A i^i ( B (,) +oo ) ) C_ CC ) |
| 138 |
133 137 55
|
ellimc3 |
|- ( ph -> ( R e. ( ( F |` ( B (,) +oo ) ) limCC B ) <-> ( R e. CC /\ A. x e. RR+ E. b e. RR+ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - R ) ) < x ) ) ) ) |
| 139 |
7 138
|
mpbid |
|- ( ph -> ( R e. CC /\ A. x e. RR+ E. b e. RR+ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - R ) ) < x ) ) ) |
| 140 |
139
|
simprd |
|- ( ph -> A. x e. RR+ E. b e. RR+ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - R ) ) < x ) ) |
| 141 |
140
|
r19.21bi |
|- ( ( ph /\ x e. RR+ ) -> E. b e. RR+ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - R ) ) < x ) ) |
| 142 |
8
|
oveq2d |
|- ( ph -> ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) = ( ( ( F |` ( B (,) +oo ) ) ` z ) - R ) ) |
| 143 |
142
|
fveq2d |
|- ( ph -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) = ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - R ) ) ) |
| 144 |
143
|
breq1d |
|- ( ph -> ( ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x <-> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - R ) ) < x ) ) |
| 145 |
144
|
imbi2d |
|- ( ph -> ( ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) <-> ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - R ) ) < x ) ) ) |
| 146 |
145
|
rexralbidv |
|- ( ph -> ( E. b e. RR+ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) <-> E. b e. RR+ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - R ) ) < x ) ) ) |
| 147 |
146
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> ( E. b e. RR+ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) <-> E. b e. RR+ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - R ) ) < x ) ) ) |
| 148 |
141 147
|
mpbird |
|- ( ( ph /\ x e. RR+ ) -> E. b e. RR+ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) |
| 149 |
148
|
ad2antrr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) -> E. b e. RR+ A. z e. ( A i^i ( B (,) +oo ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < b ) -> ( abs ` ( ( ( F |` ( B (,) +oo ) ) ` z ) - L ) ) < x ) ) |
| 150 |
131 149
|
r19.29a |
|- ( ( ( ( ph /\ x e. RR+ ) /\ a e. RR+ ) /\ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) -> E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) |
| 151 |
|
fresin |
|- ( F : A --> CC -> ( F |` ( -oo (,) B ) ) : ( A i^i ( -oo (,) B ) ) --> CC ) |
| 152 |
4 151
|
syl |
|- ( ph -> ( F |` ( -oo (,) B ) ) : ( A i^i ( -oo (,) B ) ) --> CC ) |
| 153 |
|
inss2 |
|- ( A i^i ( -oo (,) B ) ) C_ ( -oo (,) B ) |
| 154 |
|
ioossre |
|- ( -oo (,) B ) C_ RR |
| 155 |
153 154
|
sstri |
|- ( A i^i ( -oo (,) B ) ) C_ RR |
| 156 |
|
ax-resscn |
|- RR C_ CC |
| 157 |
156
|
a1i |
|- ( ph -> RR C_ CC ) |
| 158 |
155 157
|
sstrid |
|- ( ph -> ( A i^i ( -oo (,) B ) ) C_ CC ) |
| 159 |
152 158 55
|
ellimc3 |
|- ( ph -> ( L e. ( ( F |` ( -oo (,) B ) ) limCC B ) <-> ( L e. CC /\ A. x e. RR+ E. a e. RR+ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) ) ) |
| 160 |
6 159
|
mpbid |
|- ( ph -> ( L e. CC /\ A. x e. RR+ E. a e. RR+ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) ) |
| 161 |
160
|
simprd |
|- ( ph -> A. x e. RR+ E. a e. RR+ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) |
| 162 |
161
|
r19.21bi |
|- ( ( ph /\ x e. RR+ ) -> E. a e. RR+ A. z e. ( A i^i ( -oo (,) B ) ) ( ( z =/= B /\ ( abs ` ( z - B ) ) < a ) -> ( abs ` ( ( ( F |` ( -oo (,) B ) ) ` z ) - L ) ) < x ) ) |
| 163 |
150 162
|
r19.29a |
|- ( ( ph /\ x e. RR+ ) -> E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) |
| 164 |
163
|
ralrimiva |
|- ( ph -> A. x e. RR+ E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) |
| 165 |
2 156
|
sstrdi |
|- ( ph -> A C_ CC ) |
| 166 |
4 165 55
|
ellimc3 |
|- ( ph -> ( L e. ( F limCC B ) <-> ( L e. CC /\ A. x e. RR+ E. y e. RR+ A. z e. A ( ( z =/= B /\ ( abs ` ( z - B ) ) < y ) -> ( abs ` ( ( F ` z ) - L ) ) < x ) ) ) ) |
| 167 |
10 164 166
|
mpbir2and |
|- ( ph -> L e. ( F limCC B ) ) |