| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplsubglem.s |
|- S = ( I mPwSer R ) |
| 2 |
|
mplsubglem.b |
|- B = ( Base ` S ) |
| 3 |
|
mplsubglem.z |
|- .0. = ( 0g ` R ) |
| 4 |
|
mplsubglem.d |
|- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
| 5 |
|
mplsubglem.i |
|- ( ph -> I e. W ) |
| 6 |
|
mplsubglem.0 |
|- ( ph -> (/) e. A ) |
| 7 |
|
mplsubglem.a |
|- ( ( ph /\ ( x e. A /\ y e. A ) ) -> ( x u. y ) e. A ) |
| 8 |
|
mplsubglem.y |
|- ( ( ph /\ ( x e. A /\ y C_ x ) ) -> y e. A ) |
| 9 |
|
mplsubglem.u |
|- ( ph -> U = { g e. B | ( g supp .0. ) e. A } ) |
| 10 |
|
mpllsslem.r |
|- ( ph -> R e. Ring ) |
| 11 |
1 5 10
|
psrsca |
|- ( ph -> R = ( Scalar ` S ) ) |
| 12 |
|
eqidd |
|- ( ph -> ( Base ` R ) = ( Base ` R ) ) |
| 13 |
2
|
a1i |
|- ( ph -> B = ( Base ` S ) ) |
| 14 |
|
eqidd |
|- ( ph -> ( +g ` S ) = ( +g ` S ) ) |
| 15 |
|
eqidd |
|- ( ph -> ( .s ` S ) = ( .s ` S ) ) |
| 16 |
|
eqidd |
|- ( ph -> ( LSubSp ` S ) = ( LSubSp ` S ) ) |
| 17 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 18 |
10 17
|
syl |
|- ( ph -> R e. Grp ) |
| 19 |
1 2 3 4 5 6 7 8 9 18
|
mplsubglem |
|- ( ph -> U e. ( SubGrp ` S ) ) |
| 20 |
2
|
subgss |
|- ( U e. ( SubGrp ` S ) -> U C_ B ) |
| 21 |
19 20
|
syl |
|- ( ph -> U C_ B ) |
| 22 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
| 23 |
22
|
subg0cl |
|- ( U e. ( SubGrp ` S ) -> ( 0g ` S ) e. U ) |
| 24 |
|
ne0i |
|- ( ( 0g ` S ) e. U -> U =/= (/) ) |
| 25 |
19 23 24
|
3syl |
|- ( ph -> U =/= (/) ) |
| 26 |
19
|
adantr |
|- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U /\ w e. U ) ) -> U e. ( SubGrp ` S ) ) |
| 27 |
|
eqid |
|- ( .s ` S ) = ( .s ` S ) |
| 28 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 29 |
10
|
adantr |
|- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> R e. Ring ) |
| 30 |
|
simprl |
|- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> u e. ( Base ` R ) ) |
| 31 |
|
simprr |
|- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> v e. U ) |
| 32 |
9
|
adantr |
|- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> U = { g e. B | ( g supp .0. ) e. A } ) |
| 33 |
32
|
eleq2d |
|- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> ( v e. U <-> v e. { g e. B | ( g supp .0. ) e. A } ) ) |
| 34 |
|
oveq1 |
|- ( g = v -> ( g supp .0. ) = ( v supp .0. ) ) |
| 35 |
34
|
eleq1d |
|- ( g = v -> ( ( g supp .0. ) e. A <-> ( v supp .0. ) e. A ) ) |
| 36 |
35
|
elrab |
|- ( v e. { g e. B | ( g supp .0. ) e. A } <-> ( v e. B /\ ( v supp .0. ) e. A ) ) |
| 37 |
33 36
|
bitrdi |
|- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> ( v e. U <-> ( v e. B /\ ( v supp .0. ) e. A ) ) ) |
| 38 |
31 37
|
mpbid |
|- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> ( v e. B /\ ( v supp .0. ) e. A ) ) |
| 39 |
38
|
simpld |
|- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> v e. B ) |
| 40 |
1 27 28 2 29 30 39
|
psrvscacl |
|- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> ( u ( .s ` S ) v ) e. B ) |
| 41 |
|
ovex |
|- ( ( u ( .s ` S ) v ) supp .0. ) e. _V |
| 42 |
41
|
a1i |
|- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> ( ( u ( .s ` S ) v ) supp .0. ) e. _V ) |
| 43 |
|
sseq2 |
|- ( x = ( v supp .0. ) -> ( y C_ x <-> y C_ ( v supp .0. ) ) ) |
| 44 |
43
|
imbi1d |
|- ( x = ( v supp .0. ) -> ( ( y C_ x -> y e. A ) <-> ( y C_ ( v supp .0. ) -> y e. A ) ) ) |
| 45 |
44
|
albidv |
|- ( x = ( v supp .0. ) -> ( A. y ( y C_ x -> y e. A ) <-> A. y ( y C_ ( v supp .0. ) -> y e. A ) ) ) |
| 46 |
8
|
expr |
|- ( ( ph /\ x e. A ) -> ( y C_ x -> y e. A ) ) |
| 47 |
46
|
alrimiv |
|- ( ( ph /\ x e. A ) -> A. y ( y C_ x -> y e. A ) ) |
| 48 |
47
|
ralrimiva |
|- ( ph -> A. x e. A A. y ( y C_ x -> y e. A ) ) |
| 49 |
48
|
adantr |
|- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> A. x e. A A. y ( y C_ x -> y e. A ) ) |
| 50 |
38
|
simprd |
|- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> ( v supp .0. ) e. A ) |
| 51 |
45 49 50
|
rspcdva |
|- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> A. y ( y C_ ( v supp .0. ) -> y e. A ) ) |
| 52 |
1 28 4 2 40
|
psrelbas |
|- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> ( u ( .s ` S ) v ) : D --> ( Base ` R ) ) |
| 53 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 54 |
30
|
adantr |
|- ( ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) /\ k e. ( D \ ( v supp .0. ) ) ) -> u e. ( Base ` R ) ) |
| 55 |
39
|
adantr |
|- ( ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) /\ k e. ( D \ ( v supp .0. ) ) ) -> v e. B ) |
| 56 |
|
eldifi |
|- ( k e. ( D \ ( v supp .0. ) ) -> k e. D ) |
| 57 |
56
|
adantl |
|- ( ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) /\ k e. ( D \ ( v supp .0. ) ) ) -> k e. D ) |
| 58 |
1 27 28 2 53 4 54 55 57
|
psrvscaval |
|- ( ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) /\ k e. ( D \ ( v supp .0. ) ) ) -> ( ( u ( .s ` S ) v ) ` k ) = ( u ( .r ` R ) ( v ` k ) ) ) |
| 59 |
1 28 4 2 39
|
psrelbas |
|- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> v : D --> ( Base ` R ) ) |
| 60 |
|
ssidd |
|- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> ( v supp .0. ) C_ ( v supp .0. ) ) |
| 61 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
| 62 |
4 61
|
rabex2 |
|- D e. _V |
| 63 |
62
|
a1i |
|- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> D e. _V ) |
| 64 |
3
|
fvexi |
|- .0. e. _V |
| 65 |
64
|
a1i |
|- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> .0. e. _V ) |
| 66 |
59 60 63 65
|
suppssr |
|- ( ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) /\ k e. ( D \ ( v supp .0. ) ) ) -> ( v ` k ) = .0. ) |
| 67 |
66
|
oveq2d |
|- ( ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) /\ k e. ( D \ ( v supp .0. ) ) ) -> ( u ( .r ` R ) ( v ` k ) ) = ( u ( .r ` R ) .0. ) ) |
| 68 |
28 53 3
|
ringrz |
|- ( ( R e. Ring /\ u e. ( Base ` R ) ) -> ( u ( .r ` R ) .0. ) = .0. ) |
| 69 |
10 30 68
|
syl2an2r |
|- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> ( u ( .r ` R ) .0. ) = .0. ) |
| 70 |
69
|
adantr |
|- ( ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) /\ k e. ( D \ ( v supp .0. ) ) ) -> ( u ( .r ` R ) .0. ) = .0. ) |
| 71 |
58 67 70
|
3eqtrd |
|- ( ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) /\ k e. ( D \ ( v supp .0. ) ) ) -> ( ( u ( .s ` S ) v ) ` k ) = .0. ) |
| 72 |
52 71
|
suppss |
|- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> ( ( u ( .s ` S ) v ) supp .0. ) C_ ( v supp .0. ) ) |
| 73 |
|
sseq1 |
|- ( y = ( ( u ( .s ` S ) v ) supp .0. ) -> ( y C_ ( v supp .0. ) <-> ( ( u ( .s ` S ) v ) supp .0. ) C_ ( v supp .0. ) ) ) |
| 74 |
|
eleq1 |
|- ( y = ( ( u ( .s ` S ) v ) supp .0. ) -> ( y e. A <-> ( ( u ( .s ` S ) v ) supp .0. ) e. A ) ) |
| 75 |
73 74
|
imbi12d |
|- ( y = ( ( u ( .s ` S ) v ) supp .0. ) -> ( ( y C_ ( v supp .0. ) -> y e. A ) <-> ( ( ( u ( .s ` S ) v ) supp .0. ) C_ ( v supp .0. ) -> ( ( u ( .s ` S ) v ) supp .0. ) e. A ) ) ) |
| 76 |
75
|
spcgv |
|- ( ( ( u ( .s ` S ) v ) supp .0. ) e. _V -> ( A. y ( y C_ ( v supp .0. ) -> y e. A ) -> ( ( ( u ( .s ` S ) v ) supp .0. ) C_ ( v supp .0. ) -> ( ( u ( .s ` S ) v ) supp .0. ) e. A ) ) ) |
| 77 |
42 51 72 76
|
syl3c |
|- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> ( ( u ( .s ` S ) v ) supp .0. ) e. A ) |
| 78 |
32
|
eleq2d |
|- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> ( ( u ( .s ` S ) v ) e. U <-> ( u ( .s ` S ) v ) e. { g e. B | ( g supp .0. ) e. A } ) ) |
| 79 |
|
oveq1 |
|- ( g = ( u ( .s ` S ) v ) -> ( g supp .0. ) = ( ( u ( .s ` S ) v ) supp .0. ) ) |
| 80 |
79
|
eleq1d |
|- ( g = ( u ( .s ` S ) v ) -> ( ( g supp .0. ) e. A <-> ( ( u ( .s ` S ) v ) supp .0. ) e. A ) ) |
| 81 |
80
|
elrab |
|- ( ( u ( .s ` S ) v ) e. { g e. B | ( g supp .0. ) e. A } <-> ( ( u ( .s ` S ) v ) e. B /\ ( ( u ( .s ` S ) v ) supp .0. ) e. A ) ) |
| 82 |
78 81
|
bitrdi |
|- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> ( ( u ( .s ` S ) v ) e. U <-> ( ( u ( .s ` S ) v ) e. B /\ ( ( u ( .s ` S ) v ) supp .0. ) e. A ) ) ) |
| 83 |
40 77 82
|
mpbir2and |
|- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U ) ) -> ( u ( .s ` S ) v ) e. U ) |
| 84 |
83
|
3adantr3 |
|- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U /\ w e. U ) ) -> ( u ( .s ` S ) v ) e. U ) |
| 85 |
|
simpr3 |
|- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U /\ w e. U ) ) -> w e. U ) |
| 86 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
| 87 |
86
|
subgcl |
|- ( ( U e. ( SubGrp ` S ) /\ ( u ( .s ` S ) v ) e. U /\ w e. U ) -> ( ( u ( .s ` S ) v ) ( +g ` S ) w ) e. U ) |
| 88 |
26 84 85 87
|
syl3anc |
|- ( ( ph /\ ( u e. ( Base ` R ) /\ v e. U /\ w e. U ) ) -> ( ( u ( .s ` S ) v ) ( +g ` S ) w ) e. U ) |
| 89 |
11 12 13 14 15 16 21 25 88
|
islssd |
|- ( ph -> U e. ( LSubSp ` S ) ) |