Metamath Proof Explorer


Theorem mpllsslem

Description: If A is an ideal of subsets (a nonempty collection closed under subset and binary union) of the set D of finite bags (the primary applications being A = Fin and A = ~P B for some B ), then the set of all power series whose coefficient functions are supported on an element of A is a linear subspace of the set of all power series. (Contributed by Mario Carneiro, 12-Jan-2015) (Revised by AV, 16-Jul-2019)

Ref Expression
Hypotheses mplsubglem.s S = I mPwSer R
mplsubglem.b B = Base S
mplsubglem.z 0 ˙ = 0 R
mplsubglem.d D = f 0 I | f -1 Fin
mplsubglem.i φ I W
mplsubglem.0 φ A
mplsubglem.a φ x A y A x y A
mplsubglem.y φ x A y x y A
mplsubglem.u φ U = g B | g supp 0 ˙ A
mpllsslem.r φ R Ring
Assertion mpllsslem φ U LSubSp S

Proof

Step Hyp Ref Expression
1 mplsubglem.s S = I mPwSer R
2 mplsubglem.b B = Base S
3 mplsubglem.z 0 ˙ = 0 R
4 mplsubglem.d D = f 0 I | f -1 Fin
5 mplsubglem.i φ I W
6 mplsubglem.0 φ A
7 mplsubglem.a φ x A y A x y A
8 mplsubglem.y φ x A y x y A
9 mplsubglem.u φ U = g B | g supp 0 ˙ A
10 mpllsslem.r φ R Ring
11 1 5 10 psrsca φ R = Scalar S
12 eqidd φ Base R = Base R
13 2 a1i φ B = Base S
14 eqidd φ + S = + S
15 eqidd φ S = S
16 eqidd φ LSubSp S = LSubSp S
17 ringgrp R Ring R Grp
18 10 17 syl φ R Grp
19 1 2 3 4 5 6 7 8 9 18 mplsubglem φ U SubGrp S
20 2 subgss U SubGrp S U B
21 19 20 syl φ U B
22 eqid 0 S = 0 S
23 22 subg0cl U SubGrp S 0 S U
24 ne0i 0 S U U
25 19 23 24 3syl φ U
26 19 adantr φ u Base R v U w U U SubGrp S
27 eqid S = S
28 eqid Base R = Base R
29 10 adantr φ u Base R v U R Ring
30 simprl φ u Base R v U u Base R
31 simprr φ u Base R v U v U
32 9 adantr φ u Base R v U U = g B | g supp 0 ˙ A
33 32 eleq2d φ u Base R v U v U v g B | g supp 0 ˙ A
34 oveq1 g = v g supp 0 ˙ = v supp 0 ˙
35 34 eleq1d g = v g supp 0 ˙ A v supp 0 ˙ A
36 35 elrab v g B | g supp 0 ˙ A v B v supp 0 ˙ A
37 33 36 bitrdi φ u Base R v U v U v B v supp 0 ˙ A
38 31 37 mpbid φ u Base R v U v B v supp 0 ˙ A
39 38 simpld φ u Base R v U v B
40 1 27 28 2 29 30 39 psrvscacl φ u Base R v U u S v B
41 ovex u S v supp 0 ˙ V
42 41 a1i φ u Base R v U u S v supp 0 ˙ V
43 sseq2 x = v supp 0 ˙ y x y v supp 0 ˙
44 43 imbi1d x = v supp 0 ˙ y x y A y v supp 0 ˙ y A
45 44 albidv x = v supp 0 ˙ y y x y A y y v supp 0 ˙ y A
46 8 expr φ x A y x y A
47 46 alrimiv φ x A y y x y A
48 47 ralrimiva φ x A y y x y A
49 48 adantr φ u Base R v U x A y y x y A
50 38 simprd φ u Base R v U v supp 0 ˙ A
51 45 49 50 rspcdva φ u Base R v U y y v supp 0 ˙ y A
52 1 28 4 2 40 psrelbas φ u Base R v U u S v : D Base R
53 eqid R = R
54 30 adantr φ u Base R v U k D supp 0 ˙ v u Base R
55 39 adantr φ u Base R v U k D supp 0 ˙ v v B
56 eldifi k D supp 0 ˙ v k D
57 56 adantl φ u Base R v U k D supp 0 ˙ v k D
58 1 27 28 2 53 4 54 55 57 psrvscaval φ u Base R v U k D supp 0 ˙ v u S v k = u R v k
59 1 28 4 2 39 psrelbas φ u Base R v U v : D Base R
60 ssidd φ u Base R v U v supp 0 ˙ v supp 0 ˙
61 ovex 0 I V
62 4 61 rabex2 D V
63 62 a1i φ u Base R v U D V
64 3 fvexi 0 ˙ V
65 64 a1i φ u Base R v U 0 ˙ V
66 59 60 63 65 suppssr φ u Base R v U k D supp 0 ˙ v v k = 0 ˙
67 66 oveq2d φ u Base R v U k D supp 0 ˙ v u R v k = u R 0 ˙
68 28 53 3 ringrz R Ring u Base R u R 0 ˙ = 0 ˙
69 10 30 68 syl2an2r φ u Base R v U u R 0 ˙ = 0 ˙
70 69 adantr φ u Base R v U k D supp 0 ˙ v u R 0 ˙ = 0 ˙
71 58 67 70 3eqtrd φ u Base R v U k D supp 0 ˙ v u S v k = 0 ˙
72 52 71 suppss φ u Base R v U u S v supp 0 ˙ v supp 0 ˙
73 sseq1 y = u S v supp 0 ˙ y v supp 0 ˙ u S v supp 0 ˙ v supp 0 ˙
74 eleq1 y = u S v supp 0 ˙ y A u S v supp 0 ˙ A
75 73 74 imbi12d y = u S v supp 0 ˙ y v supp 0 ˙ y A u S v supp 0 ˙ v supp 0 ˙ u S v supp 0 ˙ A
76 75 spcgv u S v supp 0 ˙ V y y v supp 0 ˙ y A u S v supp 0 ˙ v supp 0 ˙ u S v supp 0 ˙ A
77 42 51 72 76 syl3c φ u Base R v U u S v supp 0 ˙ A
78 32 eleq2d φ u Base R v U u S v U u S v g B | g supp 0 ˙ A
79 oveq1 g = u S v g supp 0 ˙ = u S v supp 0 ˙
80 79 eleq1d g = u S v g supp 0 ˙ A u S v supp 0 ˙ A
81 80 elrab u S v g B | g supp 0 ˙ A u S v B u S v supp 0 ˙ A
82 78 81 bitrdi φ u Base R v U u S v U u S v B u S v supp 0 ˙ A
83 40 77 82 mpbir2and φ u Base R v U u S v U
84 83 3adantr3 φ u Base R v U w U u S v U
85 simpr3 φ u Base R v U w U w U
86 eqid + S = + S
87 86 subgcl U SubGrp S u S v U w U u S v + S w U
88 26 84 85 87 syl3anc φ u Base R v U w U u S v + S w U
89 11 12 13 14 15 16 21 25 88 islssd φ U LSubSp S