Step |
Hyp |
Ref |
Expression |
1 |
|
mplsubglem.s |
|
2 |
|
mplsubglem.b |
|
3 |
|
mplsubglem.z |
|
4 |
|
mplsubglem.d |
|
5 |
|
mplsubglem.i |
|
6 |
|
mplsubglem.0 |
|
7 |
|
mplsubglem.a |
|
8 |
|
mplsubglem.y |
|
9 |
|
mplsubglem.u |
|
10 |
|
mpllsslem.r |
|
11 |
1 5 10
|
psrsca |
|
12 |
|
eqidd |
|
13 |
2
|
a1i |
|
14 |
|
eqidd |
|
15 |
|
eqidd |
|
16 |
|
eqidd |
|
17 |
|
ringgrp |
|
18 |
10 17
|
syl |
|
19 |
1 2 3 4 5 6 7 8 9 18
|
mplsubglem |
|
20 |
2
|
subgss |
|
21 |
19 20
|
syl |
|
22 |
|
eqid |
|
23 |
22
|
subg0cl |
|
24 |
|
ne0i |
|
25 |
19 23 24
|
3syl |
|
26 |
19
|
adantr |
|
27 |
|
eqid |
|
28 |
|
eqid |
|
29 |
10
|
adantr |
|
30 |
|
simprl |
|
31 |
|
simprr |
|
32 |
9
|
adantr |
|
33 |
32
|
eleq2d |
|
34 |
|
oveq1 |
|
35 |
34
|
eleq1d |
|
36 |
35
|
elrab |
|
37 |
33 36
|
bitrdi |
|
38 |
31 37
|
mpbid |
|
39 |
38
|
simpld |
|
40 |
1 27 28 2 29 30 39
|
psrvscacl |
|
41 |
|
ovex |
|
42 |
41
|
a1i |
|
43 |
|
sseq2 |
|
44 |
43
|
imbi1d |
|
45 |
44
|
albidv |
|
46 |
8
|
expr |
|
47 |
46
|
alrimiv |
|
48 |
47
|
ralrimiva |
|
49 |
48
|
adantr |
|
50 |
38
|
simprd |
|
51 |
45 49 50
|
rspcdva |
|
52 |
1 28 4 2 40
|
psrelbas |
|
53 |
|
eqid |
|
54 |
30
|
adantr |
|
55 |
39
|
adantr |
|
56 |
|
eldifi |
|
57 |
56
|
adantl |
|
58 |
1 27 28 2 53 4 54 55 57
|
psrvscaval |
|
59 |
1 28 4 2 39
|
psrelbas |
|
60 |
|
ssidd |
|
61 |
|
ovex |
|
62 |
4 61
|
rabex2 |
|
63 |
62
|
a1i |
|
64 |
3
|
fvexi |
|
65 |
64
|
a1i |
|
66 |
59 60 63 65
|
suppssr |
|
67 |
66
|
oveq2d |
|
68 |
28 53 3
|
ringrz |
|
69 |
10 30 68
|
syl2an2r |
|
70 |
69
|
adantr |
|
71 |
58 67 70
|
3eqtrd |
|
72 |
52 71
|
suppss |
|
73 |
|
sseq1 |
|
74 |
|
eleq1 |
|
75 |
73 74
|
imbi12d |
|
76 |
75
|
spcgv |
|
77 |
42 51 72 76
|
syl3c |
|
78 |
32
|
eleq2d |
|
79 |
|
oveq1 |
|
80 |
79
|
eleq1d |
|
81 |
80
|
elrab |
|
82 |
78 81
|
bitrdi |
|
83 |
40 77 82
|
mpbir2and |
|
84 |
83
|
3adantr3 |
|
85 |
|
simpr3 |
|
86 |
|
eqid |
|
87 |
86
|
subgcl |
|
88 |
26 84 85 87
|
syl3anc |
|
89 |
11 12 13 14 15 16 21 25 88
|
islssd |
|