| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq2 |  |-  ( A = B -> ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) | 
						
							| 2 | 1 | a1d |  |-  ( A = B -> ( ( p e. Prime /\ n e. NN ) -> ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) | 
						
							| 3 | 2 | ralrimivv |  |-  ( A = B -> A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) | 
						
							| 4 |  | elnn0 |  |-  ( A e. NN0 <-> ( A e. NN \/ A = 0 ) ) | 
						
							| 5 |  | elnn0 |  |-  ( B e. NN0 <-> ( B e. NN \/ B = 0 ) ) | 
						
							| 6 |  | nnre |  |-  ( A e. NN -> A e. RR ) | 
						
							| 7 |  | nnre |  |-  ( B e. NN -> B e. RR ) | 
						
							| 8 |  | lttri2 |  |-  ( ( A e. RR /\ B e. RR ) -> ( A =/= B <-> ( A < B \/ B < A ) ) ) | 
						
							| 9 | 6 7 8 | syl2an |  |-  ( ( A e. NN /\ B e. NN ) -> ( A =/= B <-> ( A < B \/ B < A ) ) ) | 
						
							| 10 | 9 | ancoms |  |-  ( ( B e. NN /\ A e. NN ) -> ( A =/= B <-> ( A < B \/ B < A ) ) ) | 
						
							| 11 |  | nn0prpwlem |  |-  ( B e. NN -> A. k e. NN ( k < B -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || k <-> ( p ^ n ) || B ) ) ) | 
						
							| 12 |  | breq1 |  |-  ( k = A -> ( k < B <-> A < B ) ) | 
						
							| 13 |  | breq2 |  |-  ( k = A -> ( ( p ^ n ) || k <-> ( p ^ n ) || A ) ) | 
						
							| 14 | 13 | bibi1d |  |-  ( k = A -> ( ( ( p ^ n ) || k <-> ( p ^ n ) || B ) <-> ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) | 
						
							| 15 | 14 | notbid |  |-  ( k = A -> ( -. ( ( p ^ n ) || k <-> ( p ^ n ) || B ) <-> -. ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) | 
						
							| 16 | 15 | 2rexbidv |  |-  ( k = A -> ( E. p e. Prime E. n e. NN -. ( ( p ^ n ) || k <-> ( p ^ n ) || B ) <-> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) | 
						
							| 17 | 12 16 | imbi12d |  |-  ( k = A -> ( ( k < B -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || k <-> ( p ^ n ) || B ) ) <-> ( A < B -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) ) | 
						
							| 18 | 17 | rspcv |  |-  ( A e. NN -> ( A. k e. NN ( k < B -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || k <-> ( p ^ n ) || B ) ) -> ( A < B -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) ) | 
						
							| 19 | 11 18 | mpan9 |  |-  ( ( B e. NN /\ A e. NN ) -> ( A < B -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) | 
						
							| 20 |  | breq1 |  |-  ( k = B -> ( k < A <-> B < A ) ) | 
						
							| 21 |  | breq2 |  |-  ( k = B -> ( ( p ^ n ) || k <-> ( p ^ n ) || B ) ) | 
						
							| 22 | 21 | bibi1d |  |-  ( k = B -> ( ( ( p ^ n ) || k <-> ( p ^ n ) || A ) <-> ( ( p ^ n ) || B <-> ( p ^ n ) || A ) ) ) | 
						
							| 23 |  | bicom |  |-  ( ( ( p ^ n ) || B <-> ( p ^ n ) || A ) <-> ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) | 
						
							| 24 | 22 23 | bitrdi |  |-  ( k = B -> ( ( ( p ^ n ) || k <-> ( p ^ n ) || A ) <-> ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) | 
						
							| 25 | 24 | notbid |  |-  ( k = B -> ( -. ( ( p ^ n ) || k <-> ( p ^ n ) || A ) <-> -. ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) | 
						
							| 26 | 25 | 2rexbidv |  |-  ( k = B -> ( E. p e. Prime E. n e. NN -. ( ( p ^ n ) || k <-> ( p ^ n ) || A ) <-> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) | 
						
							| 27 | 20 26 | imbi12d |  |-  ( k = B -> ( ( k < A -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || k <-> ( p ^ n ) || A ) ) <-> ( B < A -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) ) | 
						
							| 28 | 27 | rspcv |  |-  ( B e. NN -> ( A. k e. NN ( k < A -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || k <-> ( p ^ n ) || A ) ) -> ( B < A -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) ) | 
						
							| 29 |  | nn0prpwlem |  |-  ( A e. NN -> A. k e. NN ( k < A -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || k <-> ( p ^ n ) || A ) ) ) | 
						
							| 30 | 28 29 | impel |  |-  ( ( B e. NN /\ A e. NN ) -> ( B < A -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) | 
						
							| 31 | 19 30 | jaod |  |-  ( ( B e. NN /\ A e. NN ) -> ( ( A < B \/ B < A ) -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) | 
						
							| 32 | 10 31 | sylbid |  |-  ( ( B e. NN /\ A e. NN ) -> ( A =/= B -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) | 
						
							| 33 |  | df-ne |  |-  ( A =/= B <-> -. A = B ) | 
						
							| 34 |  | rexnal2 |  |-  ( E. p e. Prime E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || B ) <-> -. A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) | 
						
							| 35 | 32 33 34 | 3imtr3g |  |-  ( ( B e. NN /\ A e. NN ) -> ( -. A = B -> -. A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) | 
						
							| 36 | 35 | con4d |  |-  ( ( B e. NN /\ A e. NN ) -> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) -> A = B ) ) | 
						
							| 37 | 36 | ex |  |-  ( B e. NN -> ( A e. NN -> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) -> A = B ) ) ) | 
						
							| 38 |  | prmunb |  |-  ( A e. NN -> E. p e. Prime A < p ) | 
						
							| 39 |  | 1nn |  |-  1 e. NN | 
						
							| 40 |  | prmz |  |-  ( p e. Prime -> p e. ZZ ) | 
						
							| 41 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 42 |  | zexpcl |  |-  ( ( p e. ZZ /\ 1 e. NN0 ) -> ( p ^ 1 ) e. ZZ ) | 
						
							| 43 | 40 41 42 | sylancl |  |-  ( p e. Prime -> ( p ^ 1 ) e. ZZ ) | 
						
							| 44 |  | dvds0 |  |-  ( ( p ^ 1 ) e. ZZ -> ( p ^ 1 ) || 0 ) | 
						
							| 45 | 43 44 | syl |  |-  ( p e. Prime -> ( p ^ 1 ) || 0 ) | 
						
							| 46 | 45 | 3ad2ant2 |  |-  ( ( A e. NN /\ p e. Prime /\ A < p ) -> ( p ^ 1 ) || 0 ) | 
						
							| 47 |  | dvdsle |  |-  ( ( ( p ^ 1 ) e. ZZ /\ A e. NN ) -> ( ( p ^ 1 ) || A -> ( p ^ 1 ) <_ A ) ) | 
						
							| 48 | 43 47 | sylan |  |-  ( ( p e. Prime /\ A e. NN ) -> ( ( p ^ 1 ) || A -> ( p ^ 1 ) <_ A ) ) | 
						
							| 49 |  | prmnn |  |-  ( p e. Prime -> p e. NN ) | 
						
							| 50 |  | nnre |  |-  ( p e. NN -> p e. RR ) | 
						
							| 51 | 49 50 | syl |  |-  ( p e. Prime -> p e. RR ) | 
						
							| 52 |  | reexpcl |  |-  ( ( p e. RR /\ 1 e. NN0 ) -> ( p ^ 1 ) e. RR ) | 
						
							| 53 | 51 41 52 | sylancl |  |-  ( p e. Prime -> ( p ^ 1 ) e. RR ) | 
						
							| 54 |  | lenlt |  |-  ( ( ( p ^ 1 ) e. RR /\ A e. RR ) -> ( ( p ^ 1 ) <_ A <-> -. A < ( p ^ 1 ) ) ) | 
						
							| 55 | 53 6 54 | syl2an |  |-  ( ( p e. Prime /\ A e. NN ) -> ( ( p ^ 1 ) <_ A <-> -. A < ( p ^ 1 ) ) ) | 
						
							| 56 | 49 | nncnd |  |-  ( p e. Prime -> p e. CC ) | 
						
							| 57 | 56 | exp1d |  |-  ( p e. Prime -> ( p ^ 1 ) = p ) | 
						
							| 58 | 57 | adantr |  |-  ( ( p e. Prime /\ A e. NN ) -> ( p ^ 1 ) = p ) | 
						
							| 59 | 58 | breq2d |  |-  ( ( p e. Prime /\ A e. NN ) -> ( A < ( p ^ 1 ) <-> A < p ) ) | 
						
							| 60 | 59 | notbid |  |-  ( ( p e. Prime /\ A e. NN ) -> ( -. A < ( p ^ 1 ) <-> -. A < p ) ) | 
						
							| 61 | 55 60 | bitrd |  |-  ( ( p e. Prime /\ A e. NN ) -> ( ( p ^ 1 ) <_ A <-> -. A < p ) ) | 
						
							| 62 | 48 61 | sylibd |  |-  ( ( p e. Prime /\ A e. NN ) -> ( ( p ^ 1 ) || A -> -. A < p ) ) | 
						
							| 63 | 62 | ancoms |  |-  ( ( A e. NN /\ p e. Prime ) -> ( ( p ^ 1 ) || A -> -. A < p ) ) | 
						
							| 64 | 63 | con2d |  |-  ( ( A e. NN /\ p e. Prime ) -> ( A < p -> -. ( p ^ 1 ) || A ) ) | 
						
							| 65 | 64 | 3impia |  |-  ( ( A e. NN /\ p e. Prime /\ A < p ) -> -. ( p ^ 1 ) || A ) | 
						
							| 66 | 46 65 | jcnd |  |-  ( ( A e. NN /\ p e. Prime /\ A < p ) -> -. ( ( p ^ 1 ) || 0 -> ( p ^ 1 ) || A ) ) | 
						
							| 67 |  | biimpr |  |-  ( ( ( p ^ 1 ) || A <-> ( p ^ 1 ) || 0 ) -> ( ( p ^ 1 ) || 0 -> ( p ^ 1 ) || A ) ) | 
						
							| 68 | 66 67 | nsyl |  |-  ( ( A e. NN /\ p e. Prime /\ A < p ) -> -. ( ( p ^ 1 ) || A <-> ( p ^ 1 ) || 0 ) ) | 
						
							| 69 |  | oveq2 |  |-  ( n = 1 -> ( p ^ n ) = ( p ^ 1 ) ) | 
						
							| 70 | 69 | breq1d |  |-  ( n = 1 -> ( ( p ^ n ) || A <-> ( p ^ 1 ) || A ) ) | 
						
							| 71 | 69 | breq1d |  |-  ( n = 1 -> ( ( p ^ n ) || 0 <-> ( p ^ 1 ) || 0 ) ) | 
						
							| 72 | 70 71 | bibi12d |  |-  ( n = 1 -> ( ( ( p ^ n ) || A <-> ( p ^ n ) || 0 ) <-> ( ( p ^ 1 ) || A <-> ( p ^ 1 ) || 0 ) ) ) | 
						
							| 73 | 72 | notbid |  |-  ( n = 1 -> ( -. ( ( p ^ n ) || A <-> ( p ^ n ) || 0 ) <-> -. ( ( p ^ 1 ) || A <-> ( p ^ 1 ) || 0 ) ) ) | 
						
							| 74 | 73 | rspcev |  |-  ( ( 1 e. NN /\ -. ( ( p ^ 1 ) || A <-> ( p ^ 1 ) || 0 ) ) -> E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || 0 ) ) | 
						
							| 75 | 39 68 74 | sylancr |  |-  ( ( A e. NN /\ p e. Prime /\ A < p ) -> E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || 0 ) ) | 
						
							| 76 | 75 | 3expia |  |-  ( ( A e. NN /\ p e. Prime ) -> ( A < p -> E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || 0 ) ) ) | 
						
							| 77 | 76 | reximdva |  |-  ( A e. NN -> ( E. p e. Prime A < p -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || 0 ) ) ) | 
						
							| 78 | 38 77 | mpd |  |-  ( A e. NN -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || 0 ) ) | 
						
							| 79 |  | rexnal2 |  |-  ( E. p e. Prime E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || 0 ) <-> -. A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || 0 ) ) | 
						
							| 80 | 78 79 | sylib |  |-  ( A e. NN -> -. A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || 0 ) ) | 
						
							| 81 | 80 | pm2.21d |  |-  ( A e. NN -> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || 0 ) -> A = 0 ) ) | 
						
							| 82 |  | breq2 |  |-  ( B = 0 -> ( ( p ^ n ) || B <-> ( p ^ n ) || 0 ) ) | 
						
							| 83 | 82 | bibi2d |  |-  ( B = 0 -> ( ( ( p ^ n ) || A <-> ( p ^ n ) || B ) <-> ( ( p ^ n ) || A <-> ( p ^ n ) || 0 ) ) ) | 
						
							| 84 | 83 | 2ralbidv |  |-  ( B = 0 -> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) <-> A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || 0 ) ) ) | 
						
							| 85 |  | eqeq2 |  |-  ( B = 0 -> ( A = B <-> A = 0 ) ) | 
						
							| 86 | 84 85 | imbi12d |  |-  ( B = 0 -> ( ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) -> A = B ) <-> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || 0 ) -> A = 0 ) ) ) | 
						
							| 87 | 81 86 | imbitrrid |  |-  ( B = 0 -> ( A e. NN -> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) -> A = B ) ) ) | 
						
							| 88 | 37 87 | jaoi |  |-  ( ( B e. NN \/ B = 0 ) -> ( A e. NN -> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) -> A = B ) ) ) | 
						
							| 89 | 5 88 | sylbi |  |-  ( B e. NN0 -> ( A e. NN -> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) -> A = B ) ) ) | 
						
							| 90 | 89 | com12 |  |-  ( A e. NN -> ( B e. NN0 -> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) -> A = B ) ) ) | 
						
							| 91 |  | orcom |  |-  ( ( B e. NN \/ B = 0 ) <-> ( B = 0 \/ B e. NN ) ) | 
						
							| 92 |  | df-or |  |-  ( ( B = 0 \/ B e. NN ) <-> ( -. B = 0 -> B e. NN ) ) | 
						
							| 93 | 5 91 92 | 3bitri |  |-  ( B e. NN0 <-> ( -. B = 0 -> B e. NN ) ) | 
						
							| 94 |  | prmunb |  |-  ( B e. NN -> E. p e. Prime B < p ) | 
						
							| 95 | 45 | 3ad2ant2 |  |-  ( ( B e. NN /\ p e. Prime /\ B < p ) -> ( p ^ 1 ) || 0 ) | 
						
							| 96 |  | dvdsle |  |-  ( ( ( p ^ 1 ) e. ZZ /\ B e. NN ) -> ( ( p ^ 1 ) || B -> ( p ^ 1 ) <_ B ) ) | 
						
							| 97 | 43 96 | sylan |  |-  ( ( p e. Prime /\ B e. NN ) -> ( ( p ^ 1 ) || B -> ( p ^ 1 ) <_ B ) ) | 
						
							| 98 |  | lenlt |  |-  ( ( ( p ^ 1 ) e. RR /\ B e. RR ) -> ( ( p ^ 1 ) <_ B <-> -. B < ( p ^ 1 ) ) ) | 
						
							| 99 | 53 7 98 | syl2an |  |-  ( ( p e. Prime /\ B e. NN ) -> ( ( p ^ 1 ) <_ B <-> -. B < ( p ^ 1 ) ) ) | 
						
							| 100 | 57 | adantr |  |-  ( ( p e. Prime /\ B e. NN ) -> ( p ^ 1 ) = p ) | 
						
							| 101 | 100 | breq2d |  |-  ( ( p e. Prime /\ B e. NN ) -> ( B < ( p ^ 1 ) <-> B < p ) ) | 
						
							| 102 | 101 | notbid |  |-  ( ( p e. Prime /\ B e. NN ) -> ( -. B < ( p ^ 1 ) <-> -. B < p ) ) | 
						
							| 103 | 99 102 | bitrd |  |-  ( ( p e. Prime /\ B e. NN ) -> ( ( p ^ 1 ) <_ B <-> -. B < p ) ) | 
						
							| 104 | 97 103 | sylibd |  |-  ( ( p e. Prime /\ B e. NN ) -> ( ( p ^ 1 ) || B -> -. B < p ) ) | 
						
							| 105 | 104 | ancoms |  |-  ( ( B e. NN /\ p e. Prime ) -> ( ( p ^ 1 ) || B -> -. B < p ) ) | 
						
							| 106 | 105 | con2d |  |-  ( ( B e. NN /\ p e. Prime ) -> ( B < p -> -. ( p ^ 1 ) || B ) ) | 
						
							| 107 | 106 | 3impia |  |-  ( ( B e. NN /\ p e. Prime /\ B < p ) -> -. ( p ^ 1 ) || B ) | 
						
							| 108 | 95 107 | jcnd |  |-  ( ( B e. NN /\ p e. Prime /\ B < p ) -> -. ( ( p ^ 1 ) || 0 -> ( p ^ 1 ) || B ) ) | 
						
							| 109 |  | biimp |  |-  ( ( ( p ^ 1 ) || 0 <-> ( p ^ 1 ) || B ) -> ( ( p ^ 1 ) || 0 -> ( p ^ 1 ) || B ) ) | 
						
							| 110 | 108 109 | nsyl |  |-  ( ( B e. NN /\ p e. Prime /\ B < p ) -> -. ( ( p ^ 1 ) || 0 <-> ( p ^ 1 ) || B ) ) | 
						
							| 111 | 69 | breq1d |  |-  ( n = 1 -> ( ( p ^ n ) || B <-> ( p ^ 1 ) || B ) ) | 
						
							| 112 | 71 111 | bibi12d |  |-  ( n = 1 -> ( ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) <-> ( ( p ^ 1 ) || 0 <-> ( p ^ 1 ) || B ) ) ) | 
						
							| 113 | 112 | notbid |  |-  ( n = 1 -> ( -. ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) <-> -. ( ( p ^ 1 ) || 0 <-> ( p ^ 1 ) || B ) ) ) | 
						
							| 114 | 113 | rspcev |  |-  ( ( 1 e. NN /\ -. ( ( p ^ 1 ) || 0 <-> ( p ^ 1 ) || B ) ) -> E. n e. NN -. ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) ) | 
						
							| 115 | 39 110 114 | sylancr |  |-  ( ( B e. NN /\ p e. Prime /\ B < p ) -> E. n e. NN -. ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) ) | 
						
							| 116 | 115 | 3expia |  |-  ( ( B e. NN /\ p e. Prime ) -> ( B < p -> E. n e. NN -. ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) ) ) | 
						
							| 117 | 116 | reximdva |  |-  ( B e. NN -> ( E. p e. Prime B < p -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) ) ) | 
						
							| 118 | 94 117 | mpd |  |-  ( B e. NN -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) ) | 
						
							| 119 |  | rexnal2 |  |-  ( E. p e. Prime E. n e. NN -. ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) <-> -. A. p e. Prime A. n e. NN ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) ) | 
						
							| 120 | 118 119 | sylib |  |-  ( B e. NN -> -. A. p e. Prime A. n e. NN ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) ) | 
						
							| 121 | 120 | imim2i |  |-  ( ( -. B = 0 -> B e. NN ) -> ( -. B = 0 -> -. A. p e. Prime A. n e. NN ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) ) ) | 
						
							| 122 | 93 121 | sylbi |  |-  ( B e. NN0 -> ( -. B = 0 -> -. A. p e. Prime A. n e. NN ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) ) ) | 
						
							| 123 | 122 | con4d |  |-  ( B e. NN0 -> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) -> B = 0 ) ) | 
						
							| 124 |  | eqcom |  |-  ( B = 0 <-> 0 = B ) | 
						
							| 125 | 123 124 | imbitrdi |  |-  ( B e. NN0 -> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) -> 0 = B ) ) | 
						
							| 126 |  | breq2 |  |-  ( A = 0 -> ( ( p ^ n ) || A <-> ( p ^ n ) || 0 ) ) | 
						
							| 127 | 126 | bibi1d |  |-  ( A = 0 -> ( ( ( p ^ n ) || A <-> ( p ^ n ) || B ) <-> ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) ) ) | 
						
							| 128 | 127 | 2ralbidv |  |-  ( A = 0 -> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) <-> A. p e. Prime A. n e. NN ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) ) ) | 
						
							| 129 |  | eqeq1 |  |-  ( A = 0 -> ( A = B <-> 0 = B ) ) | 
						
							| 130 | 128 129 | imbi12d |  |-  ( A = 0 -> ( ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) -> A = B ) <-> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) -> 0 = B ) ) ) | 
						
							| 131 | 125 130 | imbitrrid |  |-  ( A = 0 -> ( B e. NN0 -> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) -> A = B ) ) ) | 
						
							| 132 | 90 131 | jaoi |  |-  ( ( A e. NN \/ A = 0 ) -> ( B e. NN0 -> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) -> A = B ) ) ) | 
						
							| 133 | 132 | imp |  |-  ( ( ( A e. NN \/ A = 0 ) /\ B e. NN0 ) -> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) -> A = B ) ) | 
						
							| 134 | 4 133 | sylanb |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) -> A = B ) ) | 
						
							| 135 | 3 134 | impbid2 |  |-  ( ( A e. NN0 /\ B e. NN0 ) -> ( A = B <-> A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) |