Step |
Hyp |
Ref |
Expression |
1 |
|
breq2 |
|- ( A = B -> ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) |
2 |
1
|
a1d |
|- ( A = B -> ( ( p e. Prime /\ n e. NN ) -> ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) |
3 |
2
|
ralrimivv |
|- ( A = B -> A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) |
4 |
|
elnn0 |
|- ( A e. NN0 <-> ( A e. NN \/ A = 0 ) ) |
5 |
|
elnn0 |
|- ( B e. NN0 <-> ( B e. NN \/ B = 0 ) ) |
6 |
|
nnre |
|- ( A e. NN -> A e. RR ) |
7 |
|
nnre |
|- ( B e. NN -> B e. RR ) |
8 |
|
lttri2 |
|- ( ( A e. RR /\ B e. RR ) -> ( A =/= B <-> ( A < B \/ B < A ) ) ) |
9 |
6 7 8
|
syl2an |
|- ( ( A e. NN /\ B e. NN ) -> ( A =/= B <-> ( A < B \/ B < A ) ) ) |
10 |
9
|
ancoms |
|- ( ( B e. NN /\ A e. NN ) -> ( A =/= B <-> ( A < B \/ B < A ) ) ) |
11 |
|
nn0prpwlem |
|- ( B e. NN -> A. k e. NN ( k < B -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || k <-> ( p ^ n ) || B ) ) ) |
12 |
|
breq1 |
|- ( k = A -> ( k < B <-> A < B ) ) |
13 |
|
breq2 |
|- ( k = A -> ( ( p ^ n ) || k <-> ( p ^ n ) || A ) ) |
14 |
13
|
bibi1d |
|- ( k = A -> ( ( ( p ^ n ) || k <-> ( p ^ n ) || B ) <-> ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) |
15 |
14
|
notbid |
|- ( k = A -> ( -. ( ( p ^ n ) || k <-> ( p ^ n ) || B ) <-> -. ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) |
16 |
15
|
2rexbidv |
|- ( k = A -> ( E. p e. Prime E. n e. NN -. ( ( p ^ n ) || k <-> ( p ^ n ) || B ) <-> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) |
17 |
12 16
|
imbi12d |
|- ( k = A -> ( ( k < B -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || k <-> ( p ^ n ) || B ) ) <-> ( A < B -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) ) |
18 |
17
|
rspcv |
|- ( A e. NN -> ( A. k e. NN ( k < B -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || k <-> ( p ^ n ) || B ) ) -> ( A < B -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) ) |
19 |
11 18
|
mpan9 |
|- ( ( B e. NN /\ A e. NN ) -> ( A < B -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) |
20 |
|
breq1 |
|- ( k = B -> ( k < A <-> B < A ) ) |
21 |
|
breq2 |
|- ( k = B -> ( ( p ^ n ) || k <-> ( p ^ n ) || B ) ) |
22 |
21
|
bibi1d |
|- ( k = B -> ( ( ( p ^ n ) || k <-> ( p ^ n ) || A ) <-> ( ( p ^ n ) || B <-> ( p ^ n ) || A ) ) ) |
23 |
|
bicom |
|- ( ( ( p ^ n ) || B <-> ( p ^ n ) || A ) <-> ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) |
24 |
22 23
|
bitrdi |
|- ( k = B -> ( ( ( p ^ n ) || k <-> ( p ^ n ) || A ) <-> ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) |
25 |
24
|
notbid |
|- ( k = B -> ( -. ( ( p ^ n ) || k <-> ( p ^ n ) || A ) <-> -. ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) |
26 |
25
|
2rexbidv |
|- ( k = B -> ( E. p e. Prime E. n e. NN -. ( ( p ^ n ) || k <-> ( p ^ n ) || A ) <-> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) |
27 |
20 26
|
imbi12d |
|- ( k = B -> ( ( k < A -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || k <-> ( p ^ n ) || A ) ) <-> ( B < A -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) ) |
28 |
27
|
rspcv |
|- ( B e. NN -> ( A. k e. NN ( k < A -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || k <-> ( p ^ n ) || A ) ) -> ( B < A -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) ) |
29 |
|
nn0prpwlem |
|- ( A e. NN -> A. k e. NN ( k < A -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || k <-> ( p ^ n ) || A ) ) ) |
30 |
28 29
|
impel |
|- ( ( B e. NN /\ A e. NN ) -> ( B < A -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) |
31 |
19 30
|
jaod |
|- ( ( B e. NN /\ A e. NN ) -> ( ( A < B \/ B < A ) -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) |
32 |
10 31
|
sylbid |
|- ( ( B e. NN /\ A e. NN ) -> ( A =/= B -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) |
33 |
|
df-ne |
|- ( A =/= B <-> -. A = B ) |
34 |
|
rexnal2 |
|- ( E. p e. Prime E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || B ) <-> -. A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) |
35 |
32 33 34
|
3imtr3g |
|- ( ( B e. NN /\ A e. NN ) -> ( -. A = B -> -. A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) |
36 |
35
|
con4d |
|- ( ( B e. NN /\ A e. NN ) -> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) -> A = B ) ) |
37 |
36
|
ex |
|- ( B e. NN -> ( A e. NN -> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) -> A = B ) ) ) |
38 |
|
prmunb |
|- ( A e. NN -> E. p e. Prime A < p ) |
39 |
|
1nn |
|- 1 e. NN |
40 |
|
prmz |
|- ( p e. Prime -> p e. ZZ ) |
41 |
|
1nn0 |
|- 1 e. NN0 |
42 |
|
zexpcl |
|- ( ( p e. ZZ /\ 1 e. NN0 ) -> ( p ^ 1 ) e. ZZ ) |
43 |
40 41 42
|
sylancl |
|- ( p e. Prime -> ( p ^ 1 ) e. ZZ ) |
44 |
|
dvds0 |
|- ( ( p ^ 1 ) e. ZZ -> ( p ^ 1 ) || 0 ) |
45 |
43 44
|
syl |
|- ( p e. Prime -> ( p ^ 1 ) || 0 ) |
46 |
45
|
3ad2ant2 |
|- ( ( A e. NN /\ p e. Prime /\ A < p ) -> ( p ^ 1 ) || 0 ) |
47 |
|
dvdsle |
|- ( ( ( p ^ 1 ) e. ZZ /\ A e. NN ) -> ( ( p ^ 1 ) || A -> ( p ^ 1 ) <_ A ) ) |
48 |
43 47
|
sylan |
|- ( ( p e. Prime /\ A e. NN ) -> ( ( p ^ 1 ) || A -> ( p ^ 1 ) <_ A ) ) |
49 |
|
prmnn |
|- ( p e. Prime -> p e. NN ) |
50 |
|
nnre |
|- ( p e. NN -> p e. RR ) |
51 |
49 50
|
syl |
|- ( p e. Prime -> p e. RR ) |
52 |
|
reexpcl |
|- ( ( p e. RR /\ 1 e. NN0 ) -> ( p ^ 1 ) e. RR ) |
53 |
51 41 52
|
sylancl |
|- ( p e. Prime -> ( p ^ 1 ) e. RR ) |
54 |
|
lenlt |
|- ( ( ( p ^ 1 ) e. RR /\ A e. RR ) -> ( ( p ^ 1 ) <_ A <-> -. A < ( p ^ 1 ) ) ) |
55 |
53 6 54
|
syl2an |
|- ( ( p e. Prime /\ A e. NN ) -> ( ( p ^ 1 ) <_ A <-> -. A < ( p ^ 1 ) ) ) |
56 |
49
|
nncnd |
|- ( p e. Prime -> p e. CC ) |
57 |
56
|
exp1d |
|- ( p e. Prime -> ( p ^ 1 ) = p ) |
58 |
57
|
adantr |
|- ( ( p e. Prime /\ A e. NN ) -> ( p ^ 1 ) = p ) |
59 |
58
|
breq2d |
|- ( ( p e. Prime /\ A e. NN ) -> ( A < ( p ^ 1 ) <-> A < p ) ) |
60 |
59
|
notbid |
|- ( ( p e. Prime /\ A e. NN ) -> ( -. A < ( p ^ 1 ) <-> -. A < p ) ) |
61 |
55 60
|
bitrd |
|- ( ( p e. Prime /\ A e. NN ) -> ( ( p ^ 1 ) <_ A <-> -. A < p ) ) |
62 |
48 61
|
sylibd |
|- ( ( p e. Prime /\ A e. NN ) -> ( ( p ^ 1 ) || A -> -. A < p ) ) |
63 |
62
|
ancoms |
|- ( ( A e. NN /\ p e. Prime ) -> ( ( p ^ 1 ) || A -> -. A < p ) ) |
64 |
63
|
con2d |
|- ( ( A e. NN /\ p e. Prime ) -> ( A < p -> -. ( p ^ 1 ) || A ) ) |
65 |
64
|
3impia |
|- ( ( A e. NN /\ p e. Prime /\ A < p ) -> -. ( p ^ 1 ) || A ) |
66 |
46 65
|
jcnd |
|- ( ( A e. NN /\ p e. Prime /\ A < p ) -> -. ( ( p ^ 1 ) || 0 -> ( p ^ 1 ) || A ) ) |
67 |
|
biimpr |
|- ( ( ( p ^ 1 ) || A <-> ( p ^ 1 ) || 0 ) -> ( ( p ^ 1 ) || 0 -> ( p ^ 1 ) || A ) ) |
68 |
66 67
|
nsyl |
|- ( ( A e. NN /\ p e. Prime /\ A < p ) -> -. ( ( p ^ 1 ) || A <-> ( p ^ 1 ) || 0 ) ) |
69 |
|
oveq2 |
|- ( n = 1 -> ( p ^ n ) = ( p ^ 1 ) ) |
70 |
69
|
breq1d |
|- ( n = 1 -> ( ( p ^ n ) || A <-> ( p ^ 1 ) || A ) ) |
71 |
69
|
breq1d |
|- ( n = 1 -> ( ( p ^ n ) || 0 <-> ( p ^ 1 ) || 0 ) ) |
72 |
70 71
|
bibi12d |
|- ( n = 1 -> ( ( ( p ^ n ) || A <-> ( p ^ n ) || 0 ) <-> ( ( p ^ 1 ) || A <-> ( p ^ 1 ) || 0 ) ) ) |
73 |
72
|
notbid |
|- ( n = 1 -> ( -. ( ( p ^ n ) || A <-> ( p ^ n ) || 0 ) <-> -. ( ( p ^ 1 ) || A <-> ( p ^ 1 ) || 0 ) ) ) |
74 |
73
|
rspcev |
|- ( ( 1 e. NN /\ -. ( ( p ^ 1 ) || A <-> ( p ^ 1 ) || 0 ) ) -> E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || 0 ) ) |
75 |
39 68 74
|
sylancr |
|- ( ( A e. NN /\ p e. Prime /\ A < p ) -> E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || 0 ) ) |
76 |
75
|
3expia |
|- ( ( A e. NN /\ p e. Prime ) -> ( A < p -> E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || 0 ) ) ) |
77 |
76
|
reximdva |
|- ( A e. NN -> ( E. p e. Prime A < p -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || 0 ) ) ) |
78 |
38 77
|
mpd |
|- ( A e. NN -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || 0 ) ) |
79 |
|
rexnal2 |
|- ( E. p e. Prime E. n e. NN -. ( ( p ^ n ) || A <-> ( p ^ n ) || 0 ) <-> -. A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || 0 ) ) |
80 |
78 79
|
sylib |
|- ( A e. NN -> -. A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || 0 ) ) |
81 |
80
|
pm2.21d |
|- ( A e. NN -> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || 0 ) -> A = 0 ) ) |
82 |
|
breq2 |
|- ( B = 0 -> ( ( p ^ n ) || B <-> ( p ^ n ) || 0 ) ) |
83 |
82
|
bibi2d |
|- ( B = 0 -> ( ( ( p ^ n ) || A <-> ( p ^ n ) || B ) <-> ( ( p ^ n ) || A <-> ( p ^ n ) || 0 ) ) ) |
84 |
83
|
2ralbidv |
|- ( B = 0 -> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) <-> A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || 0 ) ) ) |
85 |
|
eqeq2 |
|- ( B = 0 -> ( A = B <-> A = 0 ) ) |
86 |
84 85
|
imbi12d |
|- ( B = 0 -> ( ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) -> A = B ) <-> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || 0 ) -> A = 0 ) ) ) |
87 |
81 86
|
syl5ibr |
|- ( B = 0 -> ( A e. NN -> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) -> A = B ) ) ) |
88 |
37 87
|
jaoi |
|- ( ( B e. NN \/ B = 0 ) -> ( A e. NN -> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) -> A = B ) ) ) |
89 |
5 88
|
sylbi |
|- ( B e. NN0 -> ( A e. NN -> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) -> A = B ) ) ) |
90 |
89
|
com12 |
|- ( A e. NN -> ( B e. NN0 -> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) -> A = B ) ) ) |
91 |
|
orcom |
|- ( ( B e. NN \/ B = 0 ) <-> ( B = 0 \/ B e. NN ) ) |
92 |
|
df-or |
|- ( ( B = 0 \/ B e. NN ) <-> ( -. B = 0 -> B e. NN ) ) |
93 |
5 91 92
|
3bitri |
|- ( B e. NN0 <-> ( -. B = 0 -> B e. NN ) ) |
94 |
|
prmunb |
|- ( B e. NN -> E. p e. Prime B < p ) |
95 |
45
|
3ad2ant2 |
|- ( ( B e. NN /\ p e. Prime /\ B < p ) -> ( p ^ 1 ) || 0 ) |
96 |
|
dvdsle |
|- ( ( ( p ^ 1 ) e. ZZ /\ B e. NN ) -> ( ( p ^ 1 ) || B -> ( p ^ 1 ) <_ B ) ) |
97 |
43 96
|
sylan |
|- ( ( p e. Prime /\ B e. NN ) -> ( ( p ^ 1 ) || B -> ( p ^ 1 ) <_ B ) ) |
98 |
|
lenlt |
|- ( ( ( p ^ 1 ) e. RR /\ B e. RR ) -> ( ( p ^ 1 ) <_ B <-> -. B < ( p ^ 1 ) ) ) |
99 |
53 7 98
|
syl2an |
|- ( ( p e. Prime /\ B e. NN ) -> ( ( p ^ 1 ) <_ B <-> -. B < ( p ^ 1 ) ) ) |
100 |
57
|
adantr |
|- ( ( p e. Prime /\ B e. NN ) -> ( p ^ 1 ) = p ) |
101 |
100
|
breq2d |
|- ( ( p e. Prime /\ B e. NN ) -> ( B < ( p ^ 1 ) <-> B < p ) ) |
102 |
101
|
notbid |
|- ( ( p e. Prime /\ B e. NN ) -> ( -. B < ( p ^ 1 ) <-> -. B < p ) ) |
103 |
99 102
|
bitrd |
|- ( ( p e. Prime /\ B e. NN ) -> ( ( p ^ 1 ) <_ B <-> -. B < p ) ) |
104 |
97 103
|
sylibd |
|- ( ( p e. Prime /\ B e. NN ) -> ( ( p ^ 1 ) || B -> -. B < p ) ) |
105 |
104
|
ancoms |
|- ( ( B e. NN /\ p e. Prime ) -> ( ( p ^ 1 ) || B -> -. B < p ) ) |
106 |
105
|
con2d |
|- ( ( B e. NN /\ p e. Prime ) -> ( B < p -> -. ( p ^ 1 ) || B ) ) |
107 |
106
|
3impia |
|- ( ( B e. NN /\ p e. Prime /\ B < p ) -> -. ( p ^ 1 ) || B ) |
108 |
95 107
|
jcnd |
|- ( ( B e. NN /\ p e. Prime /\ B < p ) -> -. ( ( p ^ 1 ) || 0 -> ( p ^ 1 ) || B ) ) |
109 |
|
biimp |
|- ( ( ( p ^ 1 ) || 0 <-> ( p ^ 1 ) || B ) -> ( ( p ^ 1 ) || 0 -> ( p ^ 1 ) || B ) ) |
110 |
108 109
|
nsyl |
|- ( ( B e. NN /\ p e. Prime /\ B < p ) -> -. ( ( p ^ 1 ) || 0 <-> ( p ^ 1 ) || B ) ) |
111 |
69
|
breq1d |
|- ( n = 1 -> ( ( p ^ n ) || B <-> ( p ^ 1 ) || B ) ) |
112 |
71 111
|
bibi12d |
|- ( n = 1 -> ( ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) <-> ( ( p ^ 1 ) || 0 <-> ( p ^ 1 ) || B ) ) ) |
113 |
112
|
notbid |
|- ( n = 1 -> ( -. ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) <-> -. ( ( p ^ 1 ) || 0 <-> ( p ^ 1 ) || B ) ) ) |
114 |
113
|
rspcev |
|- ( ( 1 e. NN /\ -. ( ( p ^ 1 ) || 0 <-> ( p ^ 1 ) || B ) ) -> E. n e. NN -. ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) ) |
115 |
39 110 114
|
sylancr |
|- ( ( B e. NN /\ p e. Prime /\ B < p ) -> E. n e. NN -. ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) ) |
116 |
115
|
3expia |
|- ( ( B e. NN /\ p e. Prime ) -> ( B < p -> E. n e. NN -. ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) ) ) |
117 |
116
|
reximdva |
|- ( B e. NN -> ( E. p e. Prime B < p -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) ) ) |
118 |
94 117
|
mpd |
|- ( B e. NN -> E. p e. Prime E. n e. NN -. ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) ) |
119 |
|
rexnal2 |
|- ( E. p e. Prime E. n e. NN -. ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) <-> -. A. p e. Prime A. n e. NN ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) ) |
120 |
118 119
|
sylib |
|- ( B e. NN -> -. A. p e. Prime A. n e. NN ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) ) |
121 |
120
|
imim2i |
|- ( ( -. B = 0 -> B e. NN ) -> ( -. B = 0 -> -. A. p e. Prime A. n e. NN ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) ) ) |
122 |
93 121
|
sylbi |
|- ( B e. NN0 -> ( -. B = 0 -> -. A. p e. Prime A. n e. NN ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) ) ) |
123 |
122
|
con4d |
|- ( B e. NN0 -> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) -> B = 0 ) ) |
124 |
|
eqcom |
|- ( B = 0 <-> 0 = B ) |
125 |
123 124
|
syl6ib |
|- ( B e. NN0 -> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) -> 0 = B ) ) |
126 |
|
breq2 |
|- ( A = 0 -> ( ( p ^ n ) || A <-> ( p ^ n ) || 0 ) ) |
127 |
126
|
bibi1d |
|- ( A = 0 -> ( ( ( p ^ n ) || A <-> ( p ^ n ) || B ) <-> ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) ) ) |
128 |
127
|
2ralbidv |
|- ( A = 0 -> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) <-> A. p e. Prime A. n e. NN ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) ) ) |
129 |
|
eqeq1 |
|- ( A = 0 -> ( A = B <-> 0 = B ) ) |
130 |
128 129
|
imbi12d |
|- ( A = 0 -> ( ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) -> A = B ) <-> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || 0 <-> ( p ^ n ) || B ) -> 0 = B ) ) ) |
131 |
125 130
|
syl5ibr |
|- ( A = 0 -> ( B e. NN0 -> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) -> A = B ) ) ) |
132 |
90 131
|
jaoi |
|- ( ( A e. NN \/ A = 0 ) -> ( B e. NN0 -> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) -> A = B ) ) ) |
133 |
132
|
imp |
|- ( ( ( A e. NN \/ A = 0 ) /\ B e. NN0 ) -> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) -> A = B ) ) |
134 |
4 133
|
sylanb |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) -> A = B ) ) |
135 |
3 134
|
impbid2 |
|- ( ( A e. NN0 /\ B e. NN0 ) -> ( A = B <-> A. p e. Prime A. n e. NN ( ( p ^ n ) || A <-> ( p ^ n ) || B ) ) ) |