Metamath Proof Explorer


Theorem nn0prpw

Description: Two nonnegative integers are the same if and only if they are divisible by the same prime powers. (Contributed by Jeff Hankins, 29-Sep-2013)

Ref Expression
Assertion nn0prpw A0B0A=BpnpnApnB

Proof

Step Hyp Ref Expression
1 breq2 A=BpnApnB
2 1 a1d A=BpnpnApnB
3 2 ralrimivv A=BpnpnApnB
4 elnn0 A0AA=0
5 elnn0 B0BB=0
6 nnre AA
7 nnre BB
8 lttri2 ABABA<BB<A
9 6 7 8 syl2an ABABA<BB<A
10 9 ancoms BAABA<BB<A
11 nn0prpwlem Bkk<Bpn¬pnkpnB
12 breq1 k=Ak<BA<B
13 breq2 k=ApnkpnA
14 13 bibi1d k=ApnkpnBpnApnB
15 14 notbid k=A¬pnkpnB¬pnApnB
16 15 2rexbidv k=Apn¬pnkpnBpn¬pnApnB
17 12 16 imbi12d k=Ak<Bpn¬pnkpnBA<Bpn¬pnApnB
18 17 rspcv Akk<Bpn¬pnkpnBA<Bpn¬pnApnB
19 11 18 mpan9 BAA<Bpn¬pnApnB
20 breq1 k=Bk<AB<A
21 breq2 k=BpnkpnB
22 21 bibi1d k=BpnkpnApnBpnA
23 bicom pnBpnApnApnB
24 22 23 bitrdi k=BpnkpnApnApnB
25 24 notbid k=B¬pnkpnA¬pnApnB
26 25 2rexbidv k=Bpn¬pnkpnApn¬pnApnB
27 20 26 imbi12d k=Bk<Apn¬pnkpnAB<Apn¬pnApnB
28 27 rspcv Bkk<Apn¬pnkpnAB<Apn¬pnApnB
29 nn0prpwlem Akk<Apn¬pnkpnA
30 28 29 impel BAB<Apn¬pnApnB
31 19 30 jaod BAA<BB<Apn¬pnApnB
32 10 31 sylbid BAABpn¬pnApnB
33 df-ne AB¬A=B
34 rexnal2 pn¬pnApnB¬pnpnApnB
35 32 33 34 3imtr3g BA¬A=B¬pnpnApnB
36 35 con4d BApnpnApnBA=B
37 36 ex BApnpnApnBA=B
38 prmunb ApA<p
39 1nn 1
40 prmz pp
41 1nn0 10
42 zexpcl p10p1
43 40 41 42 sylancl pp1
44 dvds0 p1p10
45 43 44 syl pp10
46 45 3ad2ant2 ApA<pp10
47 dvdsle p1Ap1Ap1A
48 43 47 sylan pAp1Ap1A
49 prmnn pp
50 nnre pp
51 49 50 syl pp
52 reexpcl p10p1
53 51 41 52 sylancl pp1
54 lenlt p1Ap1A¬A<p1
55 53 6 54 syl2an pAp1A¬A<p1
56 49 nncnd pp
57 56 exp1d pp1=p
58 57 adantr pAp1=p
59 58 breq2d pAA<p1A<p
60 59 notbid pA¬A<p1¬A<p
61 55 60 bitrd pAp1A¬A<p
62 48 61 sylibd pAp1A¬A<p
63 62 ancoms App1A¬A<p
64 63 con2d ApA<p¬p1A
65 64 3impia ApA<p¬p1A
66 46 65 jcnd ApA<p¬p10p1A
67 biimpr p1Ap10p10p1A
68 66 67 nsyl ApA<p¬p1Ap10
69 oveq2 n=1pn=p1
70 69 breq1d n=1pnAp1A
71 69 breq1d n=1pn0p10
72 70 71 bibi12d n=1pnApn0p1Ap10
73 72 notbid n=1¬pnApn0¬p1Ap10
74 73 rspcev 1¬p1Ap10n¬pnApn0
75 39 68 74 sylancr ApA<pn¬pnApn0
76 75 3expia ApA<pn¬pnApn0
77 76 reximdva ApA<ppn¬pnApn0
78 38 77 mpd Apn¬pnApn0
79 rexnal2 pn¬pnApn0¬pnpnApn0
80 78 79 sylib A¬pnpnApn0
81 80 pm2.21d ApnpnApn0A=0
82 breq2 B=0pnBpn0
83 82 bibi2d B=0pnApnBpnApn0
84 83 2ralbidv B=0pnpnApnBpnpnApn0
85 eqeq2 B=0A=BA=0
86 84 85 imbi12d B=0pnpnApnBA=BpnpnApn0A=0
87 81 86 imbitrrid B=0ApnpnApnBA=B
88 37 87 jaoi BB=0ApnpnApnBA=B
89 5 88 sylbi B0ApnpnApnBA=B
90 89 com12 AB0pnpnApnBA=B
91 orcom BB=0B=0B
92 df-or B=0B¬B=0B
93 5 91 92 3bitri B0¬B=0B
94 prmunb BpB<p
95 45 3ad2ant2 BpB<pp10
96 dvdsle p1Bp1Bp1B
97 43 96 sylan pBp1Bp1B
98 lenlt p1Bp1B¬B<p1
99 53 7 98 syl2an pBp1B¬B<p1
100 57 adantr pBp1=p
101 100 breq2d pBB<p1B<p
102 101 notbid pB¬B<p1¬B<p
103 99 102 bitrd pBp1B¬B<p
104 97 103 sylibd pBp1B¬B<p
105 104 ancoms Bpp1B¬B<p
106 105 con2d BpB<p¬p1B
107 106 3impia BpB<p¬p1B
108 95 107 jcnd BpB<p¬p10p1B
109 biimp p10p1Bp10p1B
110 108 109 nsyl BpB<p¬p10p1B
111 69 breq1d n=1pnBp1B
112 71 111 bibi12d n=1pn0pnBp10p1B
113 112 notbid n=1¬pn0pnB¬p10p1B
114 113 rspcev 1¬p10p1Bn¬pn0pnB
115 39 110 114 sylancr BpB<pn¬pn0pnB
116 115 3expia BpB<pn¬pn0pnB
117 116 reximdva BpB<ppn¬pn0pnB
118 94 117 mpd Bpn¬pn0pnB
119 rexnal2 pn¬pn0pnB¬pnpn0pnB
120 118 119 sylib B¬pnpn0pnB
121 120 imim2i ¬B=0B¬B=0¬pnpn0pnB
122 93 121 sylbi B0¬B=0¬pnpn0pnB
123 122 con4d B0pnpn0pnBB=0
124 eqcom B=00=B
125 123 124 imbitrdi B0pnpn0pnB0=B
126 breq2 A=0pnApn0
127 126 bibi1d A=0pnApnBpn0pnB
128 127 2ralbidv A=0pnpnApnBpnpn0pnB
129 eqeq1 A=0A=B0=B
130 128 129 imbi12d A=0pnpnApnBA=Bpnpn0pnB0=B
131 125 130 imbitrrid A=0B0pnpnApnBA=B
132 90 131 jaoi AA=0B0pnpnApnBA=B
133 132 imp AA=0B0pnpnApnBA=B
134 4 133 sylanb A0B0pnpnApnBA=B
135 3 134 impbid2 A0B0A=BpnpnApnB