| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq2 |
⊢ ( 𝐴 = 𝐵 → ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) |
| 2 |
1
|
a1d |
⊢ ( 𝐴 = 𝐵 → ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) → ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) ) |
| 3 |
2
|
ralrimivv |
⊢ ( 𝐴 = 𝐵 → ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) |
| 4 |
|
elnn0 |
⊢ ( 𝐴 ∈ ℕ0 ↔ ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) ) |
| 5 |
|
elnn0 |
⊢ ( 𝐵 ∈ ℕ0 ↔ ( 𝐵 ∈ ℕ ∨ 𝐵 = 0 ) ) |
| 6 |
|
nnre |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) |
| 7 |
|
nnre |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ ) |
| 8 |
|
lttri2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≠ 𝐵 ↔ ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 9 |
6 7 8
|
syl2an |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 ≠ 𝐵 ↔ ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 10 |
9
|
ancoms |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ) → ( 𝐴 ≠ 𝐵 ↔ ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 11 |
|
nn0prpwlem |
⊢ ( 𝐵 ∈ ℕ → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝐵 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) ) |
| 12 |
|
breq1 |
⊢ ( 𝑘 = 𝐴 → ( 𝑘 < 𝐵 ↔ 𝐴 < 𝐵 ) ) |
| 13 |
|
breq2 |
⊢ ( 𝑘 = 𝐴 → ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ) ) |
| 14 |
13
|
bibi1d |
⊢ ( 𝑘 = 𝐴 → ( ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ↔ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) ) |
| 15 |
14
|
notbid |
⊢ ( 𝑘 = 𝐴 → ( ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ↔ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) ) |
| 16 |
15
|
2rexbidv |
⊢ ( 𝑘 = 𝐴 → ( ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) ) |
| 17 |
12 16
|
imbi12d |
⊢ ( 𝑘 = 𝐴 → ( ( 𝑘 < 𝐵 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) ↔ ( 𝐴 < 𝐵 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) ) ) |
| 18 |
17
|
rspcv |
⊢ ( 𝐴 ∈ ℕ → ( ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝐵 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) → ( 𝐴 < 𝐵 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) ) ) |
| 19 |
11 18
|
mpan9 |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ) → ( 𝐴 < 𝐵 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) ) |
| 20 |
|
breq1 |
⊢ ( 𝑘 = 𝐵 → ( 𝑘 < 𝐴 ↔ 𝐵 < 𝐴 ) ) |
| 21 |
|
breq2 |
⊢ ( 𝑘 = 𝐵 → ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) |
| 22 |
21
|
bibi1d |
⊢ ( 𝑘 = 𝐵 → ( ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ) ↔ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ) ) ) |
| 23 |
|
bicom |
⊢ ( ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ) ↔ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) |
| 24 |
22 23
|
bitrdi |
⊢ ( 𝑘 = 𝐵 → ( ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ) ↔ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) ) |
| 25 |
24
|
notbid |
⊢ ( 𝑘 = 𝐵 → ( ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ) ↔ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) ) |
| 26 |
25
|
2rexbidv |
⊢ ( 𝑘 = 𝐵 → ( ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ) ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) ) |
| 27 |
20 26
|
imbi12d |
⊢ ( 𝑘 = 𝐵 → ( ( 𝑘 < 𝐴 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ) ) ↔ ( 𝐵 < 𝐴 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) ) ) |
| 28 |
27
|
rspcv |
⊢ ( 𝐵 ∈ ℕ → ( ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝐴 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ) ) → ( 𝐵 < 𝐴 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) ) ) |
| 29 |
|
nn0prpwlem |
⊢ ( 𝐴 ∈ ℕ → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝐴 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ) ) ) |
| 30 |
28 29
|
impel |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ) → ( 𝐵 < 𝐴 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) ) |
| 31 |
19 30
|
jaod |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ) → ( ( 𝐴 < 𝐵 ∨ 𝐵 < 𝐴 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) ) |
| 32 |
10 31
|
sylbid |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ) → ( 𝐴 ≠ 𝐵 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) ) |
| 33 |
|
df-ne |
⊢ ( 𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵 ) |
| 34 |
|
rexnal2 |
⊢ ( ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ↔ ¬ ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) |
| 35 |
32 33 34
|
3imtr3g |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ) → ( ¬ 𝐴 = 𝐵 → ¬ ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) ) |
| 36 |
35
|
con4d |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐴 ∈ ℕ ) → ( ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) → 𝐴 = 𝐵 ) ) |
| 37 |
36
|
ex |
⊢ ( 𝐵 ∈ ℕ → ( 𝐴 ∈ ℕ → ( ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) → 𝐴 = 𝐵 ) ) ) |
| 38 |
|
prmunb |
⊢ ( 𝐴 ∈ ℕ → ∃ 𝑝 ∈ ℙ 𝐴 < 𝑝 ) |
| 39 |
|
1nn |
⊢ 1 ∈ ℕ |
| 40 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
| 41 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 42 |
|
zexpcl |
⊢ ( ( 𝑝 ∈ ℤ ∧ 1 ∈ ℕ0 ) → ( 𝑝 ↑ 1 ) ∈ ℤ ) |
| 43 |
40 41 42
|
sylancl |
⊢ ( 𝑝 ∈ ℙ → ( 𝑝 ↑ 1 ) ∈ ℤ ) |
| 44 |
|
dvds0 |
⊢ ( ( 𝑝 ↑ 1 ) ∈ ℤ → ( 𝑝 ↑ 1 ) ∥ 0 ) |
| 45 |
43 44
|
syl |
⊢ ( 𝑝 ∈ ℙ → ( 𝑝 ↑ 1 ) ∥ 0 ) |
| 46 |
45
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝 ) → ( 𝑝 ↑ 1 ) ∥ 0 ) |
| 47 |
|
dvdsle |
⊢ ( ( ( 𝑝 ↑ 1 ) ∈ ℤ ∧ 𝐴 ∈ ℕ ) → ( ( 𝑝 ↑ 1 ) ∥ 𝐴 → ( 𝑝 ↑ 1 ) ≤ 𝐴 ) ) |
| 48 |
43 47
|
sylan |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( ( 𝑝 ↑ 1 ) ∥ 𝐴 → ( 𝑝 ↑ 1 ) ≤ 𝐴 ) ) |
| 49 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
| 50 |
|
nnre |
⊢ ( 𝑝 ∈ ℕ → 𝑝 ∈ ℝ ) |
| 51 |
49 50
|
syl |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℝ ) |
| 52 |
|
reexpcl |
⊢ ( ( 𝑝 ∈ ℝ ∧ 1 ∈ ℕ0 ) → ( 𝑝 ↑ 1 ) ∈ ℝ ) |
| 53 |
51 41 52
|
sylancl |
⊢ ( 𝑝 ∈ ℙ → ( 𝑝 ↑ 1 ) ∈ ℝ ) |
| 54 |
|
lenlt |
⊢ ( ( ( 𝑝 ↑ 1 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝑝 ↑ 1 ) ≤ 𝐴 ↔ ¬ 𝐴 < ( 𝑝 ↑ 1 ) ) ) |
| 55 |
53 6 54
|
syl2an |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( ( 𝑝 ↑ 1 ) ≤ 𝐴 ↔ ¬ 𝐴 < ( 𝑝 ↑ 1 ) ) ) |
| 56 |
49
|
nncnd |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℂ ) |
| 57 |
56
|
exp1d |
⊢ ( 𝑝 ∈ ℙ → ( 𝑝 ↑ 1 ) = 𝑝 ) |
| 58 |
57
|
adantr |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( 𝑝 ↑ 1 ) = 𝑝 ) |
| 59 |
58
|
breq2d |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( 𝐴 < ( 𝑝 ↑ 1 ) ↔ 𝐴 < 𝑝 ) ) |
| 60 |
59
|
notbid |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( ¬ 𝐴 < ( 𝑝 ↑ 1 ) ↔ ¬ 𝐴 < 𝑝 ) ) |
| 61 |
55 60
|
bitrd |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( ( 𝑝 ↑ 1 ) ≤ 𝐴 ↔ ¬ 𝐴 < 𝑝 ) ) |
| 62 |
48 61
|
sylibd |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ ) → ( ( 𝑝 ↑ 1 ) ∥ 𝐴 → ¬ 𝐴 < 𝑝 ) ) |
| 63 |
62
|
ancoms |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ↑ 1 ) ∥ 𝐴 → ¬ 𝐴 < 𝑝 ) ) |
| 64 |
63
|
con2d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( 𝐴 < 𝑝 → ¬ ( 𝑝 ↑ 1 ) ∥ 𝐴 ) ) |
| 65 |
64
|
3impia |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝 ) → ¬ ( 𝑝 ↑ 1 ) ∥ 𝐴 ) |
| 66 |
46 65
|
jcnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝 ) → ¬ ( ( 𝑝 ↑ 1 ) ∥ 0 → ( 𝑝 ↑ 1 ) ∥ 𝐴 ) ) |
| 67 |
|
biimpr |
⊢ ( ( ( 𝑝 ↑ 1 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 1 ) ∥ 0 ) → ( ( 𝑝 ↑ 1 ) ∥ 0 → ( 𝑝 ↑ 1 ) ∥ 𝐴 ) ) |
| 68 |
66 67
|
nsyl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝 ) → ¬ ( ( 𝑝 ↑ 1 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 1 ) ∥ 0 ) ) |
| 69 |
|
oveq2 |
⊢ ( 𝑛 = 1 → ( 𝑝 ↑ 𝑛 ) = ( 𝑝 ↑ 1 ) ) |
| 70 |
69
|
breq1d |
⊢ ( 𝑛 = 1 → ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 1 ) ∥ 𝐴 ) ) |
| 71 |
69
|
breq1d |
⊢ ( 𝑛 = 1 → ( ( 𝑝 ↑ 𝑛 ) ∥ 0 ↔ ( 𝑝 ↑ 1 ) ∥ 0 ) ) |
| 72 |
70 71
|
bibi12d |
⊢ ( 𝑛 = 1 → ( ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 0 ) ↔ ( ( 𝑝 ↑ 1 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 1 ) ∥ 0 ) ) ) |
| 73 |
72
|
notbid |
⊢ ( 𝑛 = 1 → ( ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 0 ) ↔ ¬ ( ( 𝑝 ↑ 1 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 1 ) ∥ 0 ) ) ) |
| 74 |
73
|
rspcev |
⊢ ( ( 1 ∈ ℕ ∧ ¬ ( ( 𝑝 ↑ 1 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 1 ) ∥ 0 ) ) → ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 0 ) ) |
| 75 |
39 68 74
|
sylancr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐴 < 𝑝 ) → ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 0 ) ) |
| 76 |
75
|
3expia |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( 𝐴 < 𝑝 → ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 0 ) ) ) |
| 77 |
76
|
reximdva |
⊢ ( 𝐴 ∈ ℕ → ( ∃ 𝑝 ∈ ℙ 𝐴 < 𝑝 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 0 ) ) ) |
| 78 |
38 77
|
mpd |
⊢ ( 𝐴 ∈ ℕ → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 0 ) ) |
| 79 |
|
rexnal2 |
⊢ ( ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 0 ) ↔ ¬ ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 0 ) ) |
| 80 |
78 79
|
sylib |
⊢ ( 𝐴 ∈ ℕ → ¬ ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 0 ) ) |
| 81 |
80
|
pm2.21d |
⊢ ( 𝐴 ∈ ℕ → ( ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 0 ) → 𝐴 = 0 ) ) |
| 82 |
|
breq2 |
⊢ ( 𝐵 = 0 → ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 0 ) ) |
| 83 |
82
|
bibi2d |
⊢ ( 𝐵 = 0 → ( ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ↔ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 0 ) ) ) |
| 84 |
83
|
2ralbidv |
⊢ ( 𝐵 = 0 → ( ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ↔ ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 0 ) ) ) |
| 85 |
|
eqeq2 |
⊢ ( 𝐵 = 0 → ( 𝐴 = 𝐵 ↔ 𝐴 = 0 ) ) |
| 86 |
84 85
|
imbi12d |
⊢ ( 𝐵 = 0 → ( ( ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) → 𝐴 = 𝐵 ) ↔ ( ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 0 ) → 𝐴 = 0 ) ) ) |
| 87 |
81 86
|
imbitrrid |
⊢ ( 𝐵 = 0 → ( 𝐴 ∈ ℕ → ( ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) → 𝐴 = 𝐵 ) ) ) |
| 88 |
37 87
|
jaoi |
⊢ ( ( 𝐵 ∈ ℕ ∨ 𝐵 = 0 ) → ( 𝐴 ∈ ℕ → ( ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) → 𝐴 = 𝐵 ) ) ) |
| 89 |
5 88
|
sylbi |
⊢ ( 𝐵 ∈ ℕ0 → ( 𝐴 ∈ ℕ → ( ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) → 𝐴 = 𝐵 ) ) ) |
| 90 |
89
|
com12 |
⊢ ( 𝐴 ∈ ℕ → ( 𝐵 ∈ ℕ0 → ( ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) → 𝐴 = 𝐵 ) ) ) |
| 91 |
|
orcom |
⊢ ( ( 𝐵 ∈ ℕ ∨ 𝐵 = 0 ) ↔ ( 𝐵 = 0 ∨ 𝐵 ∈ ℕ ) ) |
| 92 |
|
df-or |
⊢ ( ( 𝐵 = 0 ∨ 𝐵 ∈ ℕ ) ↔ ( ¬ 𝐵 = 0 → 𝐵 ∈ ℕ ) ) |
| 93 |
5 91 92
|
3bitri |
⊢ ( 𝐵 ∈ ℕ0 ↔ ( ¬ 𝐵 = 0 → 𝐵 ∈ ℕ ) ) |
| 94 |
|
prmunb |
⊢ ( 𝐵 ∈ ℕ → ∃ 𝑝 ∈ ℙ 𝐵 < 𝑝 ) |
| 95 |
45
|
3ad2ant2 |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝 ) → ( 𝑝 ↑ 1 ) ∥ 0 ) |
| 96 |
|
dvdsle |
⊢ ( ( ( 𝑝 ↑ 1 ) ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( ( 𝑝 ↑ 1 ) ∥ 𝐵 → ( 𝑝 ↑ 1 ) ≤ 𝐵 ) ) |
| 97 |
43 96
|
sylan |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ ) → ( ( 𝑝 ↑ 1 ) ∥ 𝐵 → ( 𝑝 ↑ 1 ) ≤ 𝐵 ) ) |
| 98 |
|
lenlt |
⊢ ( ( ( 𝑝 ↑ 1 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝑝 ↑ 1 ) ≤ 𝐵 ↔ ¬ 𝐵 < ( 𝑝 ↑ 1 ) ) ) |
| 99 |
53 7 98
|
syl2an |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ ) → ( ( 𝑝 ↑ 1 ) ≤ 𝐵 ↔ ¬ 𝐵 < ( 𝑝 ↑ 1 ) ) ) |
| 100 |
57
|
adantr |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ ) → ( 𝑝 ↑ 1 ) = 𝑝 ) |
| 101 |
100
|
breq2d |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ ) → ( 𝐵 < ( 𝑝 ↑ 1 ) ↔ 𝐵 < 𝑝 ) ) |
| 102 |
101
|
notbid |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ ) → ( ¬ 𝐵 < ( 𝑝 ↑ 1 ) ↔ ¬ 𝐵 < 𝑝 ) ) |
| 103 |
99 102
|
bitrd |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ ) → ( ( 𝑝 ↑ 1 ) ≤ 𝐵 ↔ ¬ 𝐵 < 𝑝 ) ) |
| 104 |
97 103
|
sylibd |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐵 ∈ ℕ ) → ( ( 𝑝 ↑ 1 ) ∥ 𝐵 → ¬ 𝐵 < 𝑝 ) ) |
| 105 |
104
|
ancoms |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ↑ 1 ) ∥ 𝐵 → ¬ 𝐵 < 𝑝 ) ) |
| 106 |
105
|
con2d |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( 𝐵 < 𝑝 → ¬ ( 𝑝 ↑ 1 ) ∥ 𝐵 ) ) |
| 107 |
106
|
3impia |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝 ) → ¬ ( 𝑝 ↑ 1 ) ∥ 𝐵 ) |
| 108 |
95 107
|
jcnd |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝 ) → ¬ ( ( 𝑝 ↑ 1 ) ∥ 0 → ( 𝑝 ↑ 1 ) ∥ 𝐵 ) ) |
| 109 |
|
biimp |
⊢ ( ( ( 𝑝 ↑ 1 ) ∥ 0 ↔ ( 𝑝 ↑ 1 ) ∥ 𝐵 ) → ( ( 𝑝 ↑ 1 ) ∥ 0 → ( 𝑝 ↑ 1 ) ∥ 𝐵 ) ) |
| 110 |
108 109
|
nsyl |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝 ) → ¬ ( ( 𝑝 ↑ 1 ) ∥ 0 ↔ ( 𝑝 ↑ 1 ) ∥ 𝐵 ) ) |
| 111 |
69
|
breq1d |
⊢ ( 𝑛 = 1 → ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ↔ ( 𝑝 ↑ 1 ) ∥ 𝐵 ) ) |
| 112 |
71 111
|
bibi12d |
⊢ ( 𝑛 = 1 → ( ( ( 𝑝 ↑ 𝑛 ) ∥ 0 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ↔ ( ( 𝑝 ↑ 1 ) ∥ 0 ↔ ( 𝑝 ↑ 1 ) ∥ 𝐵 ) ) ) |
| 113 |
112
|
notbid |
⊢ ( 𝑛 = 1 → ( ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 0 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ↔ ¬ ( ( 𝑝 ↑ 1 ) ∥ 0 ↔ ( 𝑝 ↑ 1 ) ∥ 𝐵 ) ) ) |
| 114 |
113
|
rspcev |
⊢ ( ( 1 ∈ ℕ ∧ ¬ ( ( 𝑝 ↑ 1 ) ∥ 0 ↔ ( 𝑝 ↑ 1 ) ∥ 𝐵 ) ) → ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 0 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) |
| 115 |
39 110 114
|
sylancr |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ∧ 𝐵 < 𝑝 ) → ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 0 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) |
| 116 |
115
|
3expia |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( 𝐵 < 𝑝 → ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 0 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) ) |
| 117 |
116
|
reximdva |
⊢ ( 𝐵 ∈ ℕ → ( ∃ 𝑝 ∈ ℙ 𝐵 < 𝑝 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 0 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) ) |
| 118 |
94 117
|
mpd |
⊢ ( 𝐵 ∈ ℕ → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 0 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) |
| 119 |
|
rexnal2 |
⊢ ( ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 0 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ↔ ¬ ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 0 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) |
| 120 |
118 119
|
sylib |
⊢ ( 𝐵 ∈ ℕ → ¬ ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 0 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) |
| 121 |
120
|
imim2i |
⊢ ( ( ¬ 𝐵 = 0 → 𝐵 ∈ ℕ ) → ( ¬ 𝐵 = 0 → ¬ ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 0 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) ) |
| 122 |
93 121
|
sylbi |
⊢ ( 𝐵 ∈ ℕ0 → ( ¬ 𝐵 = 0 → ¬ ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 0 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) ) |
| 123 |
122
|
con4d |
⊢ ( 𝐵 ∈ ℕ0 → ( ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 0 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) → 𝐵 = 0 ) ) |
| 124 |
|
eqcom |
⊢ ( 𝐵 = 0 ↔ 0 = 𝐵 ) |
| 125 |
123 124
|
imbitrdi |
⊢ ( 𝐵 ∈ ℕ0 → ( ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 0 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) → 0 = 𝐵 ) ) |
| 126 |
|
breq2 |
⊢ ( 𝐴 = 0 → ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 0 ) ) |
| 127 |
126
|
bibi1d |
⊢ ( 𝐴 = 0 → ( ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ↔ ( ( 𝑝 ↑ 𝑛 ) ∥ 0 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) ) |
| 128 |
127
|
2ralbidv |
⊢ ( 𝐴 = 0 → ( ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ↔ ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 0 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) ) |
| 129 |
|
eqeq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 = 𝐵 ↔ 0 = 𝐵 ) ) |
| 130 |
128 129
|
imbi12d |
⊢ ( 𝐴 = 0 → ( ( ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) → 𝐴 = 𝐵 ) ↔ ( ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 0 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) → 0 = 𝐵 ) ) ) |
| 131 |
125 130
|
imbitrrid |
⊢ ( 𝐴 = 0 → ( 𝐵 ∈ ℕ0 → ( ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) → 𝐴 = 𝐵 ) ) ) |
| 132 |
90 131
|
jaoi |
⊢ ( ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) → ( 𝐵 ∈ ℕ0 → ( ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) → 𝐴 = 𝐵 ) ) ) |
| 133 |
132
|
imp |
⊢ ( ( ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) ∧ 𝐵 ∈ ℕ0 ) → ( ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) → 𝐴 = 𝐵 ) ) |
| 134 |
4 133
|
sylanb |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) → 𝐴 = 𝐵 ) ) |
| 135 |
3 134
|
impbid2 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑝 ∈ ℙ ∀ 𝑛 ∈ ℕ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐵 ) ) ) |