| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq2 | ⊢ ( 𝐴  =  𝐵  →  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) | 
						
							| 2 | 1 | a1d | ⊢ ( 𝐴  =  𝐵  →  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) ) | 
						
							| 3 | 2 | ralrimivv | ⊢ ( 𝐴  =  𝐵  →  ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) | 
						
							| 4 |  | elnn0 | ⊢ ( 𝐴  ∈  ℕ0  ↔  ( 𝐴  ∈  ℕ  ∨  𝐴  =  0 ) ) | 
						
							| 5 |  | elnn0 | ⊢ ( 𝐵  ∈  ℕ0  ↔  ( 𝐵  ∈  ℕ  ∨  𝐵  =  0 ) ) | 
						
							| 6 |  | nnre | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℝ ) | 
						
							| 7 |  | nnre | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℝ ) | 
						
							| 8 |  | lttri2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  ≠  𝐵  ↔  ( 𝐴  <  𝐵  ∨  𝐵  <  𝐴 ) ) ) | 
						
							| 9 | 6 7 8 | syl2an | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  ≠  𝐵  ↔  ( 𝐴  <  𝐵  ∨  𝐵  <  𝐴 ) ) ) | 
						
							| 10 | 9 | ancoms | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐴  ∈  ℕ )  →  ( 𝐴  ≠  𝐵  ↔  ( 𝐴  <  𝐵  ∨  𝐵  <  𝐴 ) ) ) | 
						
							| 11 |  | nn0prpwlem | ⊢ ( 𝐵  ∈  ℕ  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝐵  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) ) | 
						
							| 12 |  | breq1 | ⊢ ( 𝑘  =  𝐴  →  ( 𝑘  <  𝐵  ↔  𝐴  <  𝐵 ) ) | 
						
							| 13 |  | breq2 | ⊢ ( 𝑘  =  𝐴  →  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐴 ) ) | 
						
							| 14 | 13 | bibi1d | ⊢ ( 𝑘  =  𝐴  →  ( ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 )  ↔  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) ) | 
						
							| 15 | 14 | notbid | ⊢ ( 𝑘  =  𝐴  →  ( ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 )  ↔  ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) ) | 
						
							| 16 | 15 | 2rexbidv | ⊢ ( 𝑘  =  𝐴  →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 )  ↔  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) ) | 
						
							| 17 | 12 16 | imbi12d | ⊢ ( 𝑘  =  𝐴  →  ( ( 𝑘  <  𝐵  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) )  ↔  ( 𝐴  <  𝐵  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) ) ) | 
						
							| 18 | 17 | rspcv | ⊢ ( 𝐴  ∈  ℕ  →  ( ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝐵  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) )  →  ( 𝐴  <  𝐵  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) ) ) | 
						
							| 19 | 11 18 | mpan9 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐴  ∈  ℕ )  →  ( 𝐴  <  𝐵  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) ) | 
						
							| 20 |  | breq1 | ⊢ ( 𝑘  =  𝐵  →  ( 𝑘  <  𝐴  ↔  𝐵  <  𝐴 ) ) | 
						
							| 21 |  | breq2 | ⊢ ( 𝑘  =  𝐵  →  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) | 
						
							| 22 | 21 | bibi1d | ⊢ ( 𝑘  =  𝐵  →  ( ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐴 )  ↔  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐵  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐴 ) ) ) | 
						
							| 23 |  | bicom | ⊢ ( ( ( 𝑝 ↑ 𝑛 )  ∥  𝐵  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐴 )  ↔  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) | 
						
							| 24 | 22 23 | bitrdi | ⊢ ( 𝑘  =  𝐵  →  ( ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐴 )  ↔  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) ) | 
						
							| 25 | 24 | notbid | ⊢ ( 𝑘  =  𝐵  →  ( ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐴 )  ↔  ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) ) | 
						
							| 26 | 25 | 2rexbidv | ⊢ ( 𝑘  =  𝐵  →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐴 )  ↔  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) ) | 
						
							| 27 | 20 26 | imbi12d | ⊢ ( 𝑘  =  𝐵  →  ( ( 𝑘  <  𝐴  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐴 ) )  ↔  ( 𝐵  <  𝐴  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) ) ) | 
						
							| 28 | 27 | rspcv | ⊢ ( 𝐵  ∈  ℕ  →  ( ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝐴  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐴 ) )  →  ( 𝐵  <  𝐴  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) ) ) | 
						
							| 29 |  | nn0prpwlem | ⊢ ( 𝐴  ∈  ℕ  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝐴  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐴 ) ) ) | 
						
							| 30 | 28 29 | impel | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐴  ∈  ℕ )  →  ( 𝐵  <  𝐴  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) ) | 
						
							| 31 | 19 30 | jaod | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐴  ∈  ℕ )  →  ( ( 𝐴  <  𝐵  ∨  𝐵  <  𝐴 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) ) | 
						
							| 32 | 10 31 | sylbid | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐴  ∈  ℕ )  →  ( 𝐴  ≠  𝐵  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) ) | 
						
							| 33 |  | df-ne | ⊢ ( 𝐴  ≠  𝐵  ↔  ¬  𝐴  =  𝐵 ) | 
						
							| 34 |  | rexnal2 | ⊢ ( ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 )  ↔  ¬  ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) | 
						
							| 35 | 32 33 34 | 3imtr3g | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐴  ∈  ℕ )  →  ( ¬  𝐴  =  𝐵  →  ¬  ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) ) | 
						
							| 36 | 35 | con4d | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝐴  ∈  ℕ )  →  ( ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 )  →  𝐴  =  𝐵 ) ) | 
						
							| 37 | 36 | ex | ⊢ ( 𝐵  ∈  ℕ  →  ( 𝐴  ∈  ℕ  →  ( ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 )  →  𝐴  =  𝐵 ) ) ) | 
						
							| 38 |  | prmunb | ⊢ ( 𝐴  ∈  ℕ  →  ∃ 𝑝  ∈  ℙ 𝐴  <  𝑝 ) | 
						
							| 39 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 40 |  | prmz | ⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℤ ) | 
						
							| 41 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 42 |  | zexpcl | ⊢ ( ( 𝑝  ∈  ℤ  ∧  1  ∈  ℕ0 )  →  ( 𝑝 ↑ 1 )  ∈  ℤ ) | 
						
							| 43 | 40 41 42 | sylancl | ⊢ ( 𝑝  ∈  ℙ  →  ( 𝑝 ↑ 1 )  ∈  ℤ ) | 
						
							| 44 |  | dvds0 | ⊢ ( ( 𝑝 ↑ 1 )  ∈  ℤ  →  ( 𝑝 ↑ 1 )  ∥  0 ) | 
						
							| 45 | 43 44 | syl | ⊢ ( 𝑝  ∈  ℙ  →  ( 𝑝 ↑ 1 )  ∥  0 ) | 
						
							| 46 | 45 | 3ad2ant2 | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑝  ∈  ℙ  ∧  𝐴  <  𝑝 )  →  ( 𝑝 ↑ 1 )  ∥  0 ) | 
						
							| 47 |  | dvdsle | ⊢ ( ( ( 𝑝 ↑ 1 )  ∈  ℤ  ∧  𝐴  ∈  ℕ )  →  ( ( 𝑝 ↑ 1 )  ∥  𝐴  →  ( 𝑝 ↑ 1 )  ≤  𝐴 ) ) | 
						
							| 48 | 43 47 | sylan | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝐴  ∈  ℕ )  →  ( ( 𝑝 ↑ 1 )  ∥  𝐴  →  ( 𝑝 ↑ 1 )  ≤  𝐴 ) ) | 
						
							| 49 |  | prmnn | ⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℕ ) | 
						
							| 50 |  | nnre | ⊢ ( 𝑝  ∈  ℕ  →  𝑝  ∈  ℝ ) | 
						
							| 51 | 49 50 | syl | ⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℝ ) | 
						
							| 52 |  | reexpcl | ⊢ ( ( 𝑝  ∈  ℝ  ∧  1  ∈  ℕ0 )  →  ( 𝑝 ↑ 1 )  ∈  ℝ ) | 
						
							| 53 | 51 41 52 | sylancl | ⊢ ( 𝑝  ∈  ℙ  →  ( 𝑝 ↑ 1 )  ∈  ℝ ) | 
						
							| 54 |  | lenlt | ⊢ ( ( ( 𝑝 ↑ 1 )  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( ( 𝑝 ↑ 1 )  ≤  𝐴  ↔  ¬  𝐴  <  ( 𝑝 ↑ 1 ) ) ) | 
						
							| 55 | 53 6 54 | syl2an | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝐴  ∈  ℕ )  →  ( ( 𝑝 ↑ 1 )  ≤  𝐴  ↔  ¬  𝐴  <  ( 𝑝 ↑ 1 ) ) ) | 
						
							| 56 | 49 | nncnd | ⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℂ ) | 
						
							| 57 | 56 | exp1d | ⊢ ( 𝑝  ∈  ℙ  →  ( 𝑝 ↑ 1 )  =  𝑝 ) | 
						
							| 58 | 57 | adantr | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝐴  ∈  ℕ )  →  ( 𝑝 ↑ 1 )  =  𝑝 ) | 
						
							| 59 | 58 | breq2d | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝐴  ∈  ℕ )  →  ( 𝐴  <  ( 𝑝 ↑ 1 )  ↔  𝐴  <  𝑝 ) ) | 
						
							| 60 | 59 | notbid | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝐴  ∈  ℕ )  →  ( ¬  𝐴  <  ( 𝑝 ↑ 1 )  ↔  ¬  𝐴  <  𝑝 ) ) | 
						
							| 61 | 55 60 | bitrd | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝐴  ∈  ℕ )  →  ( ( 𝑝 ↑ 1 )  ≤  𝐴  ↔  ¬  𝐴  <  𝑝 ) ) | 
						
							| 62 | 48 61 | sylibd | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝐴  ∈  ℕ )  →  ( ( 𝑝 ↑ 1 )  ∥  𝐴  →  ¬  𝐴  <  𝑝 ) ) | 
						
							| 63 | 62 | ancoms | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑝  ∈  ℙ )  →  ( ( 𝑝 ↑ 1 )  ∥  𝐴  →  ¬  𝐴  <  𝑝 ) ) | 
						
							| 64 | 63 | con2d | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑝  ∈  ℙ )  →  ( 𝐴  <  𝑝  →  ¬  ( 𝑝 ↑ 1 )  ∥  𝐴 ) ) | 
						
							| 65 | 64 | 3impia | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑝  ∈  ℙ  ∧  𝐴  <  𝑝 )  →  ¬  ( 𝑝 ↑ 1 )  ∥  𝐴 ) | 
						
							| 66 | 46 65 | jcnd | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑝  ∈  ℙ  ∧  𝐴  <  𝑝 )  →  ¬  ( ( 𝑝 ↑ 1 )  ∥  0  →  ( 𝑝 ↑ 1 )  ∥  𝐴 ) ) | 
						
							| 67 |  | biimpr | ⊢ ( ( ( 𝑝 ↑ 1 )  ∥  𝐴  ↔  ( 𝑝 ↑ 1 )  ∥  0 )  →  ( ( 𝑝 ↑ 1 )  ∥  0  →  ( 𝑝 ↑ 1 )  ∥  𝐴 ) ) | 
						
							| 68 | 66 67 | nsyl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑝  ∈  ℙ  ∧  𝐴  <  𝑝 )  →  ¬  ( ( 𝑝 ↑ 1 )  ∥  𝐴  ↔  ( 𝑝 ↑ 1 )  ∥  0 ) ) | 
						
							| 69 |  | oveq2 | ⊢ ( 𝑛  =  1  →  ( 𝑝 ↑ 𝑛 )  =  ( 𝑝 ↑ 1 ) ) | 
						
							| 70 | 69 | breq1d | ⊢ ( 𝑛  =  1  →  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 1 )  ∥  𝐴 ) ) | 
						
							| 71 | 69 | breq1d | ⊢ ( 𝑛  =  1  →  ( ( 𝑝 ↑ 𝑛 )  ∥  0  ↔  ( 𝑝 ↑ 1 )  ∥  0 ) ) | 
						
							| 72 | 70 71 | bibi12d | ⊢ ( 𝑛  =  1  →  ( ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  0 )  ↔  ( ( 𝑝 ↑ 1 )  ∥  𝐴  ↔  ( 𝑝 ↑ 1 )  ∥  0 ) ) ) | 
						
							| 73 | 72 | notbid | ⊢ ( 𝑛  =  1  →  ( ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  0 )  ↔  ¬  ( ( 𝑝 ↑ 1 )  ∥  𝐴  ↔  ( 𝑝 ↑ 1 )  ∥  0 ) ) ) | 
						
							| 74 | 73 | rspcev | ⊢ ( ( 1  ∈  ℕ  ∧  ¬  ( ( 𝑝 ↑ 1 )  ∥  𝐴  ↔  ( 𝑝 ↑ 1 )  ∥  0 ) )  →  ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  0 ) ) | 
						
							| 75 | 39 68 74 | sylancr | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑝  ∈  ℙ  ∧  𝐴  <  𝑝 )  →  ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  0 ) ) | 
						
							| 76 | 75 | 3expia | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑝  ∈  ℙ )  →  ( 𝐴  <  𝑝  →  ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  0 ) ) ) | 
						
							| 77 | 76 | reximdva | ⊢ ( 𝐴  ∈  ℕ  →  ( ∃ 𝑝  ∈  ℙ 𝐴  <  𝑝  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  0 ) ) ) | 
						
							| 78 | 38 77 | mpd | ⊢ ( 𝐴  ∈  ℕ  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  0 ) ) | 
						
							| 79 |  | rexnal2 | ⊢ ( ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  0 )  ↔  ¬  ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  0 ) ) | 
						
							| 80 | 78 79 | sylib | ⊢ ( 𝐴  ∈  ℕ  →  ¬  ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  0 ) ) | 
						
							| 81 | 80 | pm2.21d | ⊢ ( 𝐴  ∈  ℕ  →  ( ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  0 )  →  𝐴  =  0 ) ) | 
						
							| 82 |  | breq2 | ⊢ ( 𝐵  =  0  →  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐵  ↔  ( 𝑝 ↑ 𝑛 )  ∥  0 ) ) | 
						
							| 83 | 82 | bibi2d | ⊢ ( 𝐵  =  0  →  ( ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 )  ↔  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  0 ) ) ) | 
						
							| 84 | 83 | 2ralbidv | ⊢ ( 𝐵  =  0  →  ( ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 )  ↔  ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  0 ) ) ) | 
						
							| 85 |  | eqeq2 | ⊢ ( 𝐵  =  0  →  ( 𝐴  =  𝐵  ↔  𝐴  =  0 ) ) | 
						
							| 86 | 84 85 | imbi12d | ⊢ ( 𝐵  =  0  →  ( ( ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 )  →  𝐴  =  𝐵 )  ↔  ( ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  0 )  →  𝐴  =  0 ) ) ) | 
						
							| 87 | 81 86 | imbitrrid | ⊢ ( 𝐵  =  0  →  ( 𝐴  ∈  ℕ  →  ( ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 )  →  𝐴  =  𝐵 ) ) ) | 
						
							| 88 | 37 87 | jaoi | ⊢ ( ( 𝐵  ∈  ℕ  ∨  𝐵  =  0 )  →  ( 𝐴  ∈  ℕ  →  ( ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 )  →  𝐴  =  𝐵 ) ) ) | 
						
							| 89 | 5 88 | sylbi | ⊢ ( 𝐵  ∈  ℕ0  →  ( 𝐴  ∈  ℕ  →  ( ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 )  →  𝐴  =  𝐵 ) ) ) | 
						
							| 90 | 89 | com12 | ⊢ ( 𝐴  ∈  ℕ  →  ( 𝐵  ∈  ℕ0  →  ( ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 )  →  𝐴  =  𝐵 ) ) ) | 
						
							| 91 |  | orcom | ⊢ ( ( 𝐵  ∈  ℕ  ∨  𝐵  =  0 )  ↔  ( 𝐵  =  0  ∨  𝐵  ∈  ℕ ) ) | 
						
							| 92 |  | df-or | ⊢ ( ( 𝐵  =  0  ∨  𝐵  ∈  ℕ )  ↔  ( ¬  𝐵  =  0  →  𝐵  ∈  ℕ ) ) | 
						
							| 93 | 5 91 92 | 3bitri | ⊢ ( 𝐵  ∈  ℕ0  ↔  ( ¬  𝐵  =  0  →  𝐵  ∈  ℕ ) ) | 
						
							| 94 |  | prmunb | ⊢ ( 𝐵  ∈  ℕ  →  ∃ 𝑝  ∈  ℙ 𝐵  <  𝑝 ) | 
						
							| 95 | 45 | 3ad2ant2 | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝑝  ∈  ℙ  ∧  𝐵  <  𝑝 )  →  ( 𝑝 ↑ 1 )  ∥  0 ) | 
						
							| 96 |  | dvdsle | ⊢ ( ( ( 𝑝 ↑ 1 )  ∈  ℤ  ∧  𝐵  ∈  ℕ )  →  ( ( 𝑝 ↑ 1 )  ∥  𝐵  →  ( 𝑝 ↑ 1 )  ≤  𝐵 ) ) | 
						
							| 97 | 43 96 | sylan | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝐵  ∈  ℕ )  →  ( ( 𝑝 ↑ 1 )  ∥  𝐵  →  ( 𝑝 ↑ 1 )  ≤  𝐵 ) ) | 
						
							| 98 |  | lenlt | ⊢ ( ( ( 𝑝 ↑ 1 )  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 𝑝 ↑ 1 )  ≤  𝐵  ↔  ¬  𝐵  <  ( 𝑝 ↑ 1 ) ) ) | 
						
							| 99 | 53 7 98 | syl2an | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝐵  ∈  ℕ )  →  ( ( 𝑝 ↑ 1 )  ≤  𝐵  ↔  ¬  𝐵  <  ( 𝑝 ↑ 1 ) ) ) | 
						
							| 100 | 57 | adantr | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝐵  ∈  ℕ )  →  ( 𝑝 ↑ 1 )  =  𝑝 ) | 
						
							| 101 | 100 | breq2d | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝐵  ∈  ℕ )  →  ( 𝐵  <  ( 𝑝 ↑ 1 )  ↔  𝐵  <  𝑝 ) ) | 
						
							| 102 | 101 | notbid | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝐵  ∈  ℕ )  →  ( ¬  𝐵  <  ( 𝑝 ↑ 1 )  ↔  ¬  𝐵  <  𝑝 ) ) | 
						
							| 103 | 99 102 | bitrd | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝐵  ∈  ℕ )  →  ( ( 𝑝 ↑ 1 )  ≤  𝐵  ↔  ¬  𝐵  <  𝑝 ) ) | 
						
							| 104 | 97 103 | sylibd | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝐵  ∈  ℕ )  →  ( ( 𝑝 ↑ 1 )  ∥  𝐵  →  ¬  𝐵  <  𝑝 ) ) | 
						
							| 105 | 104 | ancoms | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝑝  ∈  ℙ )  →  ( ( 𝑝 ↑ 1 )  ∥  𝐵  →  ¬  𝐵  <  𝑝 ) ) | 
						
							| 106 | 105 | con2d | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝑝  ∈  ℙ )  →  ( 𝐵  <  𝑝  →  ¬  ( 𝑝 ↑ 1 )  ∥  𝐵 ) ) | 
						
							| 107 | 106 | 3impia | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝑝  ∈  ℙ  ∧  𝐵  <  𝑝 )  →  ¬  ( 𝑝 ↑ 1 )  ∥  𝐵 ) | 
						
							| 108 | 95 107 | jcnd | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝑝  ∈  ℙ  ∧  𝐵  <  𝑝 )  →  ¬  ( ( 𝑝 ↑ 1 )  ∥  0  →  ( 𝑝 ↑ 1 )  ∥  𝐵 ) ) | 
						
							| 109 |  | biimp | ⊢ ( ( ( 𝑝 ↑ 1 )  ∥  0  ↔  ( 𝑝 ↑ 1 )  ∥  𝐵 )  →  ( ( 𝑝 ↑ 1 )  ∥  0  →  ( 𝑝 ↑ 1 )  ∥  𝐵 ) ) | 
						
							| 110 | 108 109 | nsyl | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝑝  ∈  ℙ  ∧  𝐵  <  𝑝 )  →  ¬  ( ( 𝑝 ↑ 1 )  ∥  0  ↔  ( 𝑝 ↑ 1 )  ∥  𝐵 ) ) | 
						
							| 111 | 69 | breq1d | ⊢ ( 𝑛  =  1  →  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐵  ↔  ( 𝑝 ↑ 1 )  ∥  𝐵 ) ) | 
						
							| 112 | 71 111 | bibi12d | ⊢ ( 𝑛  =  1  →  ( ( ( 𝑝 ↑ 𝑛 )  ∥  0  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 )  ↔  ( ( 𝑝 ↑ 1 )  ∥  0  ↔  ( 𝑝 ↑ 1 )  ∥  𝐵 ) ) ) | 
						
							| 113 | 112 | notbid | ⊢ ( 𝑛  =  1  →  ( ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  0  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 )  ↔  ¬  ( ( 𝑝 ↑ 1 )  ∥  0  ↔  ( 𝑝 ↑ 1 )  ∥  𝐵 ) ) ) | 
						
							| 114 | 113 | rspcev | ⊢ ( ( 1  ∈  ℕ  ∧  ¬  ( ( 𝑝 ↑ 1 )  ∥  0  ↔  ( 𝑝 ↑ 1 )  ∥  𝐵 ) )  →  ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  0  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) | 
						
							| 115 | 39 110 114 | sylancr | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝑝  ∈  ℙ  ∧  𝐵  <  𝑝 )  →  ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  0  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) | 
						
							| 116 | 115 | 3expia | ⊢ ( ( 𝐵  ∈  ℕ  ∧  𝑝  ∈  ℙ )  →  ( 𝐵  <  𝑝  →  ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  0  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) ) | 
						
							| 117 | 116 | reximdva | ⊢ ( 𝐵  ∈  ℕ  →  ( ∃ 𝑝  ∈  ℙ 𝐵  <  𝑝  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  0  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) ) | 
						
							| 118 | 94 117 | mpd | ⊢ ( 𝐵  ∈  ℕ  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  0  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) | 
						
							| 119 |  | rexnal2 | ⊢ ( ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  0  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 )  ↔  ¬  ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  0  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) | 
						
							| 120 | 118 119 | sylib | ⊢ ( 𝐵  ∈  ℕ  →  ¬  ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  0  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) | 
						
							| 121 | 120 | imim2i | ⊢ ( ( ¬  𝐵  =  0  →  𝐵  ∈  ℕ )  →  ( ¬  𝐵  =  0  →  ¬  ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  0  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) ) | 
						
							| 122 | 93 121 | sylbi | ⊢ ( 𝐵  ∈  ℕ0  →  ( ¬  𝐵  =  0  →  ¬  ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  0  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) ) | 
						
							| 123 | 122 | con4d | ⊢ ( 𝐵  ∈  ℕ0  →  ( ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  0  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 )  →  𝐵  =  0 ) ) | 
						
							| 124 |  | eqcom | ⊢ ( 𝐵  =  0  ↔  0  =  𝐵 ) | 
						
							| 125 | 123 124 | imbitrdi | ⊢ ( 𝐵  ∈  ℕ0  →  ( ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  0  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 )  →  0  =  𝐵 ) ) | 
						
							| 126 |  | breq2 | ⊢ ( 𝐴  =  0  →  ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  0 ) ) | 
						
							| 127 | 126 | bibi1d | ⊢ ( 𝐴  =  0  →  ( ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 )  ↔  ( ( 𝑝 ↑ 𝑛 )  ∥  0  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) ) | 
						
							| 128 | 127 | 2ralbidv | ⊢ ( 𝐴  =  0  →  ( ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 )  ↔  ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  0  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) ) | 
						
							| 129 |  | eqeq1 | ⊢ ( 𝐴  =  0  →  ( 𝐴  =  𝐵  ↔  0  =  𝐵 ) ) | 
						
							| 130 | 128 129 | imbi12d | ⊢ ( 𝐴  =  0  →  ( ( ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 )  →  𝐴  =  𝐵 )  ↔  ( ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  0  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 )  →  0  =  𝐵 ) ) ) | 
						
							| 131 | 125 130 | imbitrrid | ⊢ ( 𝐴  =  0  →  ( 𝐵  ∈  ℕ0  →  ( ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 )  →  𝐴  =  𝐵 ) ) ) | 
						
							| 132 | 90 131 | jaoi | ⊢ ( ( 𝐴  ∈  ℕ  ∨  𝐴  =  0 )  →  ( 𝐵  ∈  ℕ0  →  ( ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 )  →  𝐴  =  𝐵 ) ) ) | 
						
							| 133 | 132 | imp | ⊢ ( ( ( 𝐴  ∈  ℕ  ∨  𝐴  =  0 )  ∧  𝐵  ∈  ℕ0 )  →  ( ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 )  →  𝐴  =  𝐵 ) ) | 
						
							| 134 | 4 133 | sylanb | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 )  →  𝐴  =  𝐵 ) ) | 
						
							| 135 | 3 134 | impbid2 | ⊢ ( ( 𝐴  ∈  ℕ0  ∧  𝐵  ∈  ℕ0 )  →  ( 𝐴  =  𝐵  ↔  ∀ 𝑝  ∈  ℙ ∀ 𝑛  ∈  ℕ ( ( 𝑝 ↑ 𝑛 )  ∥  𝐴  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐵 ) ) ) |