| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑘 < 𝑥 ↔ 𝑘 < 𝐴 ) ) |
| 2 |
|
breq2 |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ) ) |
| 3 |
2
|
bibi2d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ↔ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ) ) ) |
| 4 |
3
|
notbid |
⊢ ( 𝑥 = 𝐴 → ( ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ↔ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ) ) ) |
| 5 |
4
|
2rexbidv |
⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ) ) ) |
| 6 |
1 5
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑘 < 𝑥 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ↔ ( 𝑘 < 𝐴 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ) ) ) ) |
| 7 |
6
|
ralbidv |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑥 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ↔ ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝐴 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ) ) ) ) |
| 8 |
|
breq2 |
⊢ ( 𝑥 = 1 → ( 𝑘 < 𝑥 ↔ 𝑘 < 1 ) ) |
| 9 |
|
breq2 |
⊢ ( 𝑥 = 1 → ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 1 ) ) |
| 10 |
9
|
bibi2d |
⊢ ( 𝑥 = 1 → ( ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ↔ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 1 ) ) ) |
| 11 |
10
|
notbid |
⊢ ( 𝑥 = 1 → ( ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ↔ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 1 ) ) ) |
| 12 |
11
|
2rexbidv |
⊢ ( 𝑥 = 1 → ( ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 1 ) ) ) |
| 13 |
8 12
|
imbi12d |
⊢ ( 𝑥 = 1 → ( ( 𝑘 < 𝑥 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ↔ ( 𝑘 < 1 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 1 ) ) ) ) |
| 14 |
13
|
ralbidv |
⊢ ( 𝑥 = 1 → ( ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑥 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ↔ ∀ 𝑘 ∈ ℕ ( 𝑘 < 1 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 1 ) ) ) ) |
| 15 |
|
breq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑘 < 𝑥 ↔ 𝑘 < 𝑦 ) ) |
| 16 |
|
breq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) |
| 17 |
16
|
bibi2d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ↔ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) |
| 18 |
17
|
notbid |
⊢ ( 𝑥 = 𝑦 → ( ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ↔ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) |
| 19 |
18
|
2rexbidv |
⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) |
| 20 |
15 19
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑘 < 𝑥 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ↔ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) ) |
| 21 |
20
|
ralbidv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑥 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ↔ ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) ) |
| 22 |
|
nnnlt1 |
⊢ ( 𝑘 ∈ ℕ → ¬ 𝑘 < 1 ) |
| 23 |
22
|
pm2.21d |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 < 1 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 1 ) ) ) |
| 24 |
23
|
rgen |
⊢ ∀ 𝑘 ∈ ℕ ( 𝑘 < 1 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 1 ) ) |
| 25 |
|
exprmfct |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑞 ∈ ℙ 𝑞 ∥ 𝑥 ) |
| 26 |
|
prmz |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ℤ ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑡 ∈ ℕ ) → 𝑞 ∈ ℤ ) |
| 28 |
|
prmnn |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ℕ ) |
| 29 |
28
|
nnne0d |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ≠ 0 ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑡 ∈ ℕ ) → 𝑞 ≠ 0 ) |
| 31 |
|
nnz |
⊢ ( 𝑡 ∈ ℕ → 𝑡 ∈ ℤ ) |
| 32 |
31
|
adantl |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑡 ∈ ℕ ) → 𝑡 ∈ ℤ ) |
| 33 |
|
dvdsval2 |
⊢ ( ( 𝑞 ∈ ℤ ∧ 𝑞 ≠ 0 ∧ 𝑡 ∈ ℤ ) → ( 𝑞 ∥ 𝑡 ↔ ( 𝑡 / 𝑞 ) ∈ ℤ ) ) |
| 34 |
27 30 32 33
|
syl3anc |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑡 ∈ ℕ ) → ( 𝑞 ∥ 𝑡 ↔ ( 𝑡 / 𝑞 ) ∈ ℤ ) ) |
| 35 |
34
|
biimpd |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑡 ∈ ℕ ) → ( 𝑞 ∥ 𝑡 → ( 𝑡 / 𝑞 ) ∈ ℤ ) ) |
| 36 |
35
|
3ad2antl2 |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ 𝑡 ∈ ℕ ) → ( 𝑞 ∥ 𝑡 → ( 𝑡 / 𝑞 ) ∈ ℤ ) ) |
| 37 |
36
|
adantrl |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) ∧ 𝑡 ∈ ℕ ) ) → ( 𝑞 ∥ 𝑡 → ( 𝑡 / 𝑞 ) ∈ ℤ ) ) |
| 38 |
|
simprr |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( 𝑡 ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℤ ) ) → ( 𝑡 / 𝑞 ) ∈ ℤ ) |
| 39 |
|
nnre |
⊢ ( 𝑡 ∈ ℕ → 𝑡 ∈ ℝ ) |
| 40 |
|
nngt0 |
⊢ ( 𝑡 ∈ ℕ → 0 < 𝑡 ) |
| 41 |
39 40
|
jca |
⊢ ( 𝑡 ∈ ℕ → ( 𝑡 ∈ ℝ ∧ 0 < 𝑡 ) ) |
| 42 |
|
nnre |
⊢ ( 𝑞 ∈ ℕ → 𝑞 ∈ ℝ ) |
| 43 |
|
nngt0 |
⊢ ( 𝑞 ∈ ℕ → 0 < 𝑞 ) |
| 44 |
42 43
|
jca |
⊢ ( 𝑞 ∈ ℕ → ( 𝑞 ∈ ℝ ∧ 0 < 𝑞 ) ) |
| 45 |
28 44
|
syl |
⊢ ( 𝑞 ∈ ℙ → ( 𝑞 ∈ ℝ ∧ 0 < 𝑞 ) ) |
| 46 |
|
divgt0 |
⊢ ( ( ( 𝑡 ∈ ℝ ∧ 0 < 𝑡 ) ∧ ( 𝑞 ∈ ℝ ∧ 0 < 𝑞 ) ) → 0 < ( 𝑡 / 𝑞 ) ) |
| 47 |
41 45 46
|
syl2anr |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑡 ∈ ℕ ) → 0 < ( 𝑡 / 𝑞 ) ) |
| 48 |
47
|
3ad2antl2 |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ 𝑡 ∈ ℕ ) → 0 < ( 𝑡 / 𝑞 ) ) |
| 49 |
48
|
adantrr |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( 𝑡 ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℤ ) ) → 0 < ( 𝑡 / 𝑞 ) ) |
| 50 |
|
elnnz |
⊢ ( ( 𝑡 / 𝑞 ) ∈ ℕ ↔ ( ( 𝑡 / 𝑞 ) ∈ ℤ ∧ 0 < ( 𝑡 / 𝑞 ) ) ) |
| 51 |
38 49 50
|
sylanbrc |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( 𝑡 ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℤ ) ) → ( 𝑡 / 𝑞 ) ∈ ℕ ) |
| 52 |
51
|
expr |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ 𝑡 ∈ ℕ ) → ( ( 𝑡 / 𝑞 ) ∈ ℤ → ( 𝑡 / 𝑞 ) ∈ ℕ ) ) |
| 53 |
52
|
adantrl |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) ∧ 𝑡 ∈ ℕ ) ) → ( ( 𝑡 / 𝑞 ) ∈ ℤ → ( 𝑡 / 𝑞 ) ∈ ℕ ) ) |
| 54 |
26
|
adantr |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑞 ∈ ℤ ) |
| 55 |
29
|
adantr |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑞 ≠ 0 ) |
| 56 |
|
eluzelz |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → 𝑥 ∈ ℤ ) |
| 57 |
56
|
adantl |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑥 ∈ ℤ ) |
| 58 |
|
dvdsval2 |
⊢ ( ( 𝑞 ∈ ℤ ∧ 𝑞 ≠ 0 ∧ 𝑥 ∈ ℤ ) → ( 𝑞 ∥ 𝑥 ↔ ( 𝑥 / 𝑞 ) ∈ ℤ ) ) |
| 59 |
54 55 57 58
|
syl3anc |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑞 ∥ 𝑥 ↔ ( 𝑥 / 𝑞 ) ∈ ℤ ) ) |
| 60 |
|
eluzelre |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → 𝑥 ∈ ℝ ) |
| 61 |
|
2z |
⊢ 2 ∈ ℤ |
| 62 |
61
|
eluz1i |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑥 ∈ ℤ ∧ 2 ≤ 𝑥 ) ) |
| 63 |
|
2pos |
⊢ 0 < 2 |
| 64 |
|
zre |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℝ ) |
| 65 |
|
0re |
⊢ 0 ∈ ℝ |
| 66 |
|
2re |
⊢ 2 ∈ ℝ |
| 67 |
|
ltletr |
⊢ ( ( 0 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 0 < 2 ∧ 2 ≤ 𝑥 ) → 0 < 𝑥 ) ) |
| 68 |
65 66 67
|
mp3an12 |
⊢ ( 𝑥 ∈ ℝ → ( ( 0 < 2 ∧ 2 ≤ 𝑥 ) → 0 < 𝑥 ) ) |
| 69 |
64 68
|
syl |
⊢ ( 𝑥 ∈ ℤ → ( ( 0 < 2 ∧ 2 ≤ 𝑥 ) → 0 < 𝑥 ) ) |
| 70 |
63 69
|
mpani |
⊢ ( 𝑥 ∈ ℤ → ( 2 ≤ 𝑥 → 0 < 𝑥 ) ) |
| 71 |
70
|
imp |
⊢ ( ( 𝑥 ∈ ℤ ∧ 2 ≤ 𝑥 ) → 0 < 𝑥 ) |
| 72 |
62 71
|
sylbi |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → 0 < 𝑥 ) |
| 73 |
60 72
|
jca |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) |
| 74 |
|
divgt0 |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ∧ ( 𝑞 ∈ ℝ ∧ 0 < 𝑞 ) ) → 0 < ( 𝑥 / 𝑞 ) ) |
| 75 |
73 45 74
|
syl2anr |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) → 0 < ( 𝑥 / 𝑞 ) ) |
| 76 |
75
|
a1d |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑥 / 𝑞 ) ∈ ℤ → 0 < ( 𝑥 / 𝑞 ) ) ) |
| 77 |
76
|
ancld |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑥 / 𝑞 ) ∈ ℤ → ( ( 𝑥 / 𝑞 ) ∈ ℤ ∧ 0 < ( 𝑥 / 𝑞 ) ) ) ) |
| 78 |
|
elnnz |
⊢ ( ( 𝑥 / 𝑞 ) ∈ ℕ ↔ ( ( 𝑥 / 𝑞 ) ∈ ℤ ∧ 0 < ( 𝑥 / 𝑞 ) ) ) |
| 79 |
77 78
|
imbitrrdi |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑥 / 𝑞 ) ∈ ℤ → ( 𝑥 / 𝑞 ) ∈ ℕ ) ) |
| 80 |
59 79
|
sylbid |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑞 ∥ 𝑥 → ( 𝑥 / 𝑞 ) ∈ ℕ ) ) |
| 81 |
80
|
ancoms |
⊢ ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) → ( 𝑞 ∥ 𝑥 → ( 𝑥 / 𝑞 ) ∈ ℕ ) ) |
| 82 |
|
breq1 |
⊢ ( 𝑦 = ( 𝑥 / 𝑞 ) → ( 𝑦 < 𝑥 ↔ ( 𝑥 / 𝑞 ) < 𝑥 ) ) |
| 83 |
|
breq2 |
⊢ ( 𝑦 = ( 𝑥 / 𝑞 ) → ( 𝑘 < 𝑦 ↔ 𝑘 < ( 𝑥 / 𝑞 ) ) ) |
| 84 |
|
breq2 |
⊢ ( 𝑦 = ( 𝑥 / 𝑞 ) → ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) |
| 85 |
84
|
bibi2d |
⊢ ( 𝑦 = ( 𝑥 / 𝑞 ) → ( ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ↔ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) |
| 86 |
85
|
notbid |
⊢ ( 𝑦 = ( 𝑥 / 𝑞 ) → ( ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ↔ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) |
| 87 |
86
|
2rexbidv |
⊢ ( 𝑦 = ( 𝑥 / 𝑞 ) → ( ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) |
| 88 |
83 87
|
imbi12d |
⊢ ( 𝑦 = ( 𝑥 / 𝑞 ) → ( ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ↔ ( 𝑘 < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) ) |
| 89 |
88
|
ralbidv |
⊢ ( 𝑦 = ( 𝑥 / 𝑞 ) → ( ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ↔ ∀ 𝑘 ∈ ℕ ( 𝑘 < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) ) |
| 90 |
82 89
|
imbi12d |
⊢ ( 𝑦 = ( 𝑥 / 𝑞 ) → ( ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) ↔ ( ( 𝑥 / 𝑞 ) < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) ) ) |
| 91 |
90
|
rspcv |
⊢ ( ( 𝑥 / 𝑞 ) ∈ ℕ → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) → ( ( 𝑥 / 𝑞 ) < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) ) ) |
| 92 |
91
|
3ad2ant1 |
⊢ ( ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) → ( ( 𝑥 / 𝑞 ) < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) ) ) |
| 93 |
92
|
adantl |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) → ( ( 𝑥 / 𝑞 ) < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) ) ) |
| 94 |
|
eluzelcn |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → 𝑥 ∈ ℂ ) |
| 95 |
94
|
mullidd |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → ( 1 · 𝑥 ) = 𝑥 ) |
| 96 |
95
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → ( 1 · 𝑥 ) = 𝑥 ) |
| 97 |
|
prmgt1 |
⊢ ( 𝑞 ∈ ℙ → 1 < 𝑞 ) |
| 98 |
97
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → 1 < 𝑞 ) |
| 99 |
|
1red |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → 1 ∈ ℝ ) |
| 100 |
28
|
nnred |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ℝ ) |
| 101 |
100
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → 𝑞 ∈ ℝ ) |
| 102 |
60
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → 𝑥 ∈ ℝ ) |
| 103 |
72
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → 0 < 𝑥 ) |
| 104 |
|
ltmul1 |
⊢ ( ( 1 ∈ ℝ ∧ 𝑞 ∈ ℝ ∧ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) → ( 1 < 𝑞 ↔ ( 1 · 𝑥 ) < ( 𝑞 · 𝑥 ) ) ) |
| 105 |
99 101 102 103 104
|
syl112anc |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → ( 1 < 𝑞 ↔ ( 1 · 𝑥 ) < ( 𝑞 · 𝑥 ) ) ) |
| 106 |
98 105
|
mpbid |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → ( 1 · 𝑥 ) < ( 𝑞 · 𝑥 ) ) |
| 107 |
96 106
|
eqbrtrrd |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → 𝑥 < ( 𝑞 · 𝑥 ) ) |
| 108 |
28 43
|
syl |
⊢ ( 𝑞 ∈ ℙ → 0 < 𝑞 ) |
| 109 |
108
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → 0 < 𝑞 ) |
| 110 |
|
ltdivmul |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ( 𝑞 ∈ ℝ ∧ 0 < 𝑞 ) ) → ( ( 𝑥 / 𝑞 ) < 𝑥 ↔ 𝑥 < ( 𝑞 · 𝑥 ) ) ) |
| 111 |
102 102 101 109 110
|
syl112anc |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → ( ( 𝑥 / 𝑞 ) < 𝑥 ↔ 𝑥 < ( 𝑞 · 𝑥 ) ) ) |
| 112 |
107 111
|
mpbird |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → ( 𝑥 / 𝑞 ) < 𝑥 ) |
| 113 |
|
breq1 |
⊢ ( 𝑘 = ( 𝑡 / 𝑞 ) → ( 𝑘 < ( 𝑥 / 𝑞 ) ↔ ( 𝑡 / 𝑞 ) < ( 𝑥 / 𝑞 ) ) ) |
| 114 |
|
breq2 |
⊢ ( 𝑘 = ( 𝑡 / 𝑞 ) → ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ) ) |
| 115 |
114
|
bibi1d |
⊢ ( 𝑘 = ( 𝑡 / 𝑞 ) → ( ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ↔ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) |
| 116 |
115
|
notbid |
⊢ ( 𝑘 = ( 𝑡 / 𝑞 ) → ( ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ↔ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) |
| 117 |
116
|
2rexbidv |
⊢ ( 𝑘 = ( 𝑡 / 𝑞 ) → ( ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) |
| 118 |
113 117
|
imbi12d |
⊢ ( 𝑘 = ( 𝑡 / 𝑞 ) → ( ( 𝑘 < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ↔ ( ( 𝑡 / 𝑞 ) < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) ) |
| 119 |
118
|
rspcv |
⊢ ( ( 𝑡 / 𝑞 ) ∈ ℕ → ( ∀ 𝑘 ∈ ℕ ( 𝑘 < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) → ( ( 𝑡 / 𝑞 ) < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) ) |
| 120 |
119
|
3ad2ant2 |
⊢ ( ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) → ( ∀ 𝑘 ∈ ℕ ( 𝑘 < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) → ( ( 𝑡 / 𝑞 ) < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) ) |
| 121 |
120
|
adantl |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → ( ∀ 𝑘 ∈ ℕ ( 𝑘 < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) → ( ( 𝑡 / 𝑞 ) < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) ) |
| 122 |
39
|
3ad2ant3 |
⊢ ( ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) → 𝑡 ∈ ℝ ) |
| 123 |
122
|
adantl |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → 𝑡 ∈ ℝ ) |
| 124 |
|
ltdiv1 |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ( 𝑞 ∈ ℝ ∧ 0 < 𝑞 ) ) → ( 𝑡 < 𝑥 ↔ ( 𝑡 / 𝑞 ) < ( 𝑥 / 𝑞 ) ) ) |
| 125 |
123 102 101 109 124
|
syl112anc |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → ( 𝑡 < 𝑥 ↔ ( 𝑡 / 𝑞 ) < ( 𝑥 / 𝑞 ) ) ) |
| 126 |
125
|
biimpa |
⊢ ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) → ( 𝑡 / 𝑞 ) < ( 𝑥 / 𝑞 ) ) |
| 127 |
|
simprll |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) → 𝑝 ∈ ℙ ) |
| 128 |
|
peano2nn |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ ) |
| 129 |
128
|
adantl |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℕ ) |
| 130 |
129
|
ad2antrl |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) → ( 𝑛 + 1 ) ∈ ℕ ) |
| 131 |
26
|
ad4antlr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → 𝑞 ∈ ℤ ) |
| 132 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
| 133 |
132
|
ad2antll |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → 𝑛 ∈ ℕ0 ) |
| 134 |
|
zexpcl |
⊢ ( ( 𝑞 ∈ ℤ ∧ 𝑛 ∈ ℕ0 ) → ( 𝑞 ↑ 𝑛 ) ∈ ℤ ) |
| 135 |
131 133 134
|
syl2anc |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( 𝑞 ↑ 𝑛 ) ∈ ℤ ) |
| 136 |
|
nnz |
⊢ ( ( 𝑡 / 𝑞 ) ∈ ℕ → ( 𝑡 / 𝑞 ) ∈ ℤ ) |
| 137 |
136
|
3ad2ant2 |
⊢ ( ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) → ( 𝑡 / 𝑞 ) ∈ ℤ ) |
| 138 |
137
|
ad3antlr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( 𝑡 / 𝑞 ) ∈ ℤ ) |
| 139 |
29
|
ad4antlr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → 𝑞 ≠ 0 ) |
| 140 |
|
dvdsmulcr |
⊢ ( ( ( 𝑞 ↑ 𝑛 ) ∈ ℤ ∧ ( 𝑡 / 𝑞 ) ∈ ℤ ∧ ( 𝑞 ∈ ℤ ∧ 𝑞 ≠ 0 ) ) → ( ( ( 𝑞 ↑ 𝑛 ) · 𝑞 ) ∥ ( ( 𝑡 / 𝑞 ) · 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ) ) |
| 141 |
135 138 131 139 140
|
syl112anc |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( ( ( 𝑞 ↑ 𝑛 ) · 𝑞 ) ∥ ( ( 𝑡 / 𝑞 ) · 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ) ) |
| 142 |
28
|
nncnd |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ℂ ) |
| 143 |
142
|
ad4antlr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → 𝑞 ∈ ℂ ) |
| 144 |
143 133
|
expp1d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( 𝑞 ↑ ( 𝑛 + 1 ) ) = ( ( 𝑞 ↑ 𝑛 ) · 𝑞 ) ) |
| 145 |
144
|
eqcomd |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝑞 ↑ 𝑛 ) · 𝑞 ) = ( 𝑞 ↑ ( 𝑛 + 1 ) ) ) |
| 146 |
|
nncn |
⊢ ( 𝑡 ∈ ℕ → 𝑡 ∈ ℂ ) |
| 147 |
146
|
3ad2ant3 |
⊢ ( ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) → 𝑡 ∈ ℂ ) |
| 148 |
147
|
ad3antlr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → 𝑡 ∈ ℂ ) |
| 149 |
148 143 139
|
divcan1d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝑡 / 𝑞 ) · 𝑞 ) = 𝑡 ) |
| 150 |
145 149
|
breq12d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( ( ( 𝑞 ↑ 𝑛 ) · 𝑞 ) ∥ ( ( 𝑡 / 𝑞 ) · 𝑞 ) ↔ ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑡 ) ) |
| 151 |
141 150
|
bitr3d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑡 ) ) |
| 152 |
|
nnz |
⊢ ( ( 𝑥 / 𝑞 ) ∈ ℕ → ( 𝑥 / 𝑞 ) ∈ ℤ ) |
| 153 |
152
|
3ad2ant1 |
⊢ ( ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) → ( 𝑥 / 𝑞 ) ∈ ℤ ) |
| 154 |
153
|
ad3antlr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( 𝑥 / 𝑞 ) ∈ ℤ ) |
| 155 |
|
dvdsmulcr |
⊢ ( ( ( 𝑞 ↑ 𝑛 ) ∈ ℤ ∧ ( 𝑥 / 𝑞 ) ∈ ℤ ∧ ( 𝑞 ∈ ℤ ∧ 𝑞 ≠ 0 ) ) → ( ( ( 𝑞 ↑ 𝑛 ) · 𝑞 ) ∥ ( ( 𝑥 / 𝑞 ) · 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) |
| 156 |
135 154 131 139 155
|
syl112anc |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( ( ( 𝑞 ↑ 𝑛 ) · 𝑞 ) ∥ ( ( 𝑥 / 𝑞 ) · 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) |
| 157 |
94
|
ad4antr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → 𝑥 ∈ ℂ ) |
| 158 |
157 143 139
|
divcan1d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝑥 / 𝑞 ) · 𝑞 ) = 𝑥 ) |
| 159 |
145 158
|
breq12d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( ( ( 𝑞 ↑ 𝑛 ) · 𝑞 ) ∥ ( ( 𝑥 / 𝑞 ) · 𝑞 ) ↔ ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑥 ) ) |
| 160 |
156 159
|
bitr3d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ↔ ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑥 ) ) |
| 161 |
151 160
|
bibi12d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( ( ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ↔ ( ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑡 ↔ ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑥 ) ) ) |
| 162 |
161
|
notbid |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( ¬ ( ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ↔ ¬ ( ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑡 ↔ ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑥 ) ) ) |
| 163 |
162
|
biimpd |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( ¬ ( ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) → ¬ ( ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑡 ↔ ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑥 ) ) ) |
| 164 |
163
|
impr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) → ¬ ( ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑡 ↔ ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑥 ) ) |
| 165 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑞 ↑ 𝑚 ) = ( 𝑞 ↑ ( 𝑛 + 1 ) ) ) |
| 166 |
165
|
breq1d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑡 ) ) |
| 167 |
165
|
breq1d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ↔ ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑥 ) ) |
| 168 |
166 167
|
bibi12d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ( ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑡 ↔ ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑥 ) ) ) |
| 169 |
168
|
notbid |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ¬ ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ¬ ( ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑡 ↔ ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑥 ) ) ) |
| 170 |
169
|
rspcev |
⊢ ( ( ( 𝑛 + 1 ) ∈ ℕ ∧ ¬ ( ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑡 ↔ ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑥 ) ) → ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ) ) |
| 171 |
130 164 170
|
syl2anc |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) → ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ) ) |
| 172 |
|
oveq1 |
⊢ ( 𝑝 = 𝑞 → ( 𝑝 ↑ 𝑛 ) = ( 𝑞 ↑ 𝑛 ) ) |
| 173 |
172
|
breq1d |
⊢ ( 𝑝 = 𝑞 → ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ) ) |
| 174 |
172
|
breq1d |
⊢ ( 𝑝 = 𝑞 → ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) |
| 175 |
173 174
|
bibi12d |
⊢ ( 𝑝 = 𝑞 → ( ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ↔ ( ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) |
| 176 |
175
|
notbid |
⊢ ( 𝑝 = 𝑞 → ( ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ↔ ¬ ( ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) |
| 177 |
176
|
anbi2d |
⊢ ( 𝑝 = 𝑞 → ( ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ↔ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) ) |
| 178 |
177
|
anbi2d |
⊢ ( 𝑝 = 𝑞 → ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) ↔ ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) ) ) |
| 179 |
|
oveq1 |
⊢ ( 𝑝 = 𝑞 → ( 𝑝 ↑ 𝑚 ) = ( 𝑞 ↑ 𝑚 ) ) |
| 180 |
179
|
breq1d |
⊢ ( 𝑝 = 𝑞 → ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ) ) |
| 181 |
179
|
breq1d |
⊢ ( 𝑝 = 𝑞 → ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ) ) |
| 182 |
180 181
|
bibi12d |
⊢ ( 𝑝 = 𝑞 → ( ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
| 183 |
182
|
notbid |
⊢ ( 𝑝 = 𝑞 → ( ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ¬ ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
| 184 |
183
|
rexbidv |
⊢ ( 𝑝 = 𝑞 → ( ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
| 185 |
178 184
|
imbi12d |
⊢ ( 𝑝 = 𝑞 → ( ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) → ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) ↔ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) → ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) |
| 186 |
171 185
|
mpbiri |
⊢ ( 𝑝 = 𝑞 → ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) → ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
| 187 |
186
|
com12 |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) → ( 𝑝 = 𝑞 → ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
| 188 |
|
simplr |
⊢ ( ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) → 𝑛 ∈ ℕ ) |
| 189 |
188
|
ad2antlr |
⊢ ( ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) ∧ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) → 𝑛 ∈ ℕ ) |
| 190 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
| 191 |
190
|
adantr |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) → 𝑝 ∈ ℤ ) |
| 192 |
191
|
ad2antrl |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → 𝑝 ∈ ℤ ) |
| 193 |
132
|
adantl |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ0 ) |
| 194 |
193
|
ad2antrl |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → 𝑛 ∈ ℕ0 ) |
| 195 |
|
zexpcl |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑛 ∈ ℕ0 ) → ( 𝑝 ↑ 𝑛 ) ∈ ℤ ) |
| 196 |
192 194 195
|
syl2anc |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( 𝑝 ↑ 𝑛 ) ∈ ℤ ) |
| 197 |
26
|
ad4antlr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → 𝑞 ∈ ℤ ) |
| 198 |
137
|
ad3antlr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( 𝑡 / 𝑞 ) ∈ ℤ ) |
| 199 |
|
dvdsmultr2 |
⊢ ( ( ( 𝑝 ↑ 𝑛 ) ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ ( 𝑡 / 𝑞 ) ∈ ℤ ) → ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) → ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑞 · ( 𝑡 / 𝑞 ) ) ) ) |
| 200 |
196 197 198 199
|
syl3anc |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) → ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑞 · ( 𝑡 / 𝑞 ) ) ) ) |
| 201 |
196 197
|
gcdcomd |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ( 𝑝 ↑ 𝑛 ) gcd 𝑞 ) = ( 𝑞 gcd ( 𝑝 ↑ 𝑛 ) ) ) |
| 202 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → 𝑞 ∈ ℙ ) |
| 203 |
|
simprl |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → 𝑝 ∈ ℙ ) |
| 204 |
|
simprr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → 𝑛 ∈ ℕ ) |
| 205 |
|
prmdvdsexpb |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) → ( 𝑞 ∥ ( 𝑝 ↑ 𝑛 ) ↔ 𝑞 = 𝑝 ) ) |
| 206 |
|
equcom |
⊢ ( 𝑞 = 𝑝 ↔ 𝑝 = 𝑞 ) |
| 207 |
205 206
|
bitrdi |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) → ( 𝑞 ∥ ( 𝑝 ↑ 𝑛 ) ↔ 𝑝 = 𝑞 ) ) |
| 208 |
207
|
biimpd |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) → ( 𝑞 ∥ ( 𝑝 ↑ 𝑛 ) → 𝑝 = 𝑞 ) ) |
| 209 |
202 203 204 208
|
syl3anc |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( 𝑞 ∥ ( 𝑝 ↑ 𝑛 ) → 𝑝 = 𝑞 ) ) |
| 210 |
209
|
con3d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( ¬ 𝑝 = 𝑞 → ¬ 𝑞 ∥ ( 𝑝 ↑ 𝑛 ) ) ) |
| 211 |
210
|
impr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ¬ 𝑞 ∥ ( 𝑝 ↑ 𝑛 ) ) |
| 212 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → 𝑞 ∈ ℙ ) |
| 213 |
|
coprm |
⊢ ( ( 𝑞 ∈ ℙ ∧ ( 𝑝 ↑ 𝑛 ) ∈ ℤ ) → ( ¬ 𝑞 ∥ ( 𝑝 ↑ 𝑛 ) ↔ ( 𝑞 gcd ( 𝑝 ↑ 𝑛 ) ) = 1 ) ) |
| 214 |
212 196 213
|
syl2anc |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ¬ 𝑞 ∥ ( 𝑝 ↑ 𝑛 ) ↔ ( 𝑞 gcd ( 𝑝 ↑ 𝑛 ) ) = 1 ) ) |
| 215 |
211 214
|
mpbid |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( 𝑞 gcd ( 𝑝 ↑ 𝑛 ) ) = 1 ) |
| 216 |
201 215
|
eqtrd |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ( 𝑝 ↑ 𝑛 ) gcd 𝑞 ) = 1 ) |
| 217 |
|
coprmdvds |
⊢ ( ( ( 𝑝 ↑ 𝑛 ) ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ ( 𝑡 / 𝑞 ) ∈ ℤ ) → ( ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑞 · ( 𝑡 / 𝑞 ) ) ∧ ( ( 𝑝 ↑ 𝑛 ) gcd 𝑞 ) = 1 ) → ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ) ) |
| 218 |
196 197 198 217
|
syl3anc |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑞 · ( 𝑡 / 𝑞 ) ) ∧ ( ( 𝑝 ↑ 𝑛 ) gcd 𝑞 ) = 1 ) → ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ) ) |
| 219 |
216 218
|
mpan2d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑞 · ( 𝑡 / 𝑞 ) ) → ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ) ) |
| 220 |
200 219
|
impbid |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑞 · ( 𝑡 / 𝑞 ) ) ) ) |
| 221 |
147
|
ad3antlr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → 𝑡 ∈ ℂ ) |
| 222 |
142
|
ad4antlr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → 𝑞 ∈ ℂ ) |
| 223 |
29
|
ad4antlr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → 𝑞 ≠ 0 ) |
| 224 |
221 222 223
|
divcan2d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( 𝑞 · ( 𝑡 / 𝑞 ) ) = 𝑡 ) |
| 225 |
224
|
breq2d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑞 · ( 𝑡 / 𝑞 ) ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑡 ) ) |
| 226 |
220 225
|
bitrd |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑡 ) ) |
| 227 |
153
|
ad3antlr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( 𝑥 / 𝑞 ) ∈ ℤ ) |
| 228 |
|
dvdsmultr2 |
⊢ ( ( ( 𝑝 ↑ 𝑛 ) ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ ( 𝑥 / 𝑞 ) ∈ ℤ ) → ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) → ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑞 · ( 𝑥 / 𝑞 ) ) ) ) |
| 229 |
196 197 227 228
|
syl3anc |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) → ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑞 · ( 𝑥 / 𝑞 ) ) ) ) |
| 230 |
|
coprmdvds |
⊢ ( ( ( 𝑝 ↑ 𝑛 ) ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ ( 𝑥 / 𝑞 ) ∈ ℤ ) → ( ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑞 · ( 𝑥 / 𝑞 ) ) ∧ ( ( 𝑝 ↑ 𝑛 ) gcd 𝑞 ) = 1 ) → ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) |
| 231 |
196 197 227 230
|
syl3anc |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑞 · ( 𝑥 / 𝑞 ) ) ∧ ( ( 𝑝 ↑ 𝑛 ) gcd 𝑞 ) = 1 ) → ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) |
| 232 |
216 231
|
mpan2d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑞 · ( 𝑥 / 𝑞 ) ) → ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) |
| 233 |
229 232
|
impbid |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑞 · ( 𝑥 / 𝑞 ) ) ) ) |
| 234 |
94
|
ad4antr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → 𝑥 ∈ ℂ ) |
| 235 |
234 222 223
|
divcan2d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( 𝑞 · ( 𝑥 / 𝑞 ) ) = 𝑥 ) |
| 236 |
235
|
breq2d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑞 · ( 𝑥 / 𝑞 ) ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) |
| 237 |
233 236
|
bitrd |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) |
| 238 |
226 237
|
bibi12d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ↔ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ) |
| 239 |
238
|
notbid |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ↔ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ) |
| 240 |
239
|
biimpa |
⊢ ( ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) ∧ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) → ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) |
| 241 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝑝 ↑ 𝑚 ) = ( 𝑝 ↑ 𝑛 ) ) |
| 242 |
241
|
breq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑡 ) ) |
| 243 |
241
|
breq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) |
| 244 |
242 243
|
bibi12d |
⊢ ( 𝑚 = 𝑛 → ( ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ) |
| 245 |
244
|
notbid |
⊢ ( 𝑚 = 𝑛 → ( ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ) |
| 246 |
245
|
rspcev |
⊢ ( ( 𝑛 ∈ ℕ ∧ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) → ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) |
| 247 |
189 240 246
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) ∧ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) → ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) |
| 248 |
247
|
ex |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) → ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
| 249 |
248
|
expr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( ¬ 𝑝 = 𝑞 → ( ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) → ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) |
| 250 |
249
|
com23 |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) → ( ¬ 𝑝 = 𝑞 → ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) |
| 251 |
250
|
impr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) → ( ¬ 𝑝 = 𝑞 → ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
| 252 |
187 251
|
pm2.61d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) → ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) |
| 253 |
|
oveq1 |
⊢ ( 𝑟 = 𝑝 → ( 𝑟 ↑ 𝑚 ) = ( 𝑝 ↑ 𝑚 ) ) |
| 254 |
253
|
breq1d |
⊢ ( 𝑟 = 𝑝 → ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ) ) |
| 255 |
253
|
breq1d |
⊢ ( 𝑟 = 𝑝 → ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) |
| 256 |
254 255
|
bibi12d |
⊢ ( 𝑟 = 𝑝 → ( ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
| 257 |
256
|
notbid |
⊢ ( 𝑟 = 𝑝 → ( ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
| 258 |
257
|
rexbidv |
⊢ ( 𝑟 = 𝑝 → ( ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
| 259 |
258
|
rspcev |
⊢ ( ( 𝑝 ∈ ℙ ∧ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) |
| 260 |
127 252 259
|
syl2anc |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) |
| 261 |
260
|
exp32 |
⊢ ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) → ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) → ( ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) |
| 262 |
261
|
rexlimdvv |
⊢ ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) → ( ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
| 263 |
126 262
|
embantd |
⊢ ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) → ( ( ( 𝑡 / 𝑞 ) < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
| 264 |
263
|
ex |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → ( 𝑡 < 𝑥 → ( ( ( 𝑡 / 𝑞 ) < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) |
| 265 |
264
|
com23 |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → ( ( ( 𝑡 / 𝑞 ) < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) → ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) |
| 266 |
121 265
|
syld |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → ( ∀ 𝑘 ∈ ℕ ( 𝑘 < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) → ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) |
| 267 |
112 266
|
embantd |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → ( ( ( 𝑥 / 𝑞 ) < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) → ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) |
| 268 |
93 267
|
syld |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) → ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) |
| 269 |
268
|
3exp2 |
⊢ ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) → ( ( 𝑥 / 𝑞 ) ∈ ℕ → ( ( 𝑡 / 𝑞 ) ∈ ℕ → ( 𝑡 ∈ ℕ → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) → ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) ) ) ) |
| 270 |
81 269
|
syld |
⊢ ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) → ( 𝑞 ∥ 𝑥 → ( ( 𝑡 / 𝑞 ) ∈ ℕ → ( 𝑡 ∈ ℕ → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) → ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) ) ) ) |
| 271 |
270
|
3impia |
⊢ ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) → ( ( 𝑡 / 𝑞 ) ∈ ℕ → ( 𝑡 ∈ ℕ → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) → ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) ) ) |
| 272 |
271
|
com24 |
⊢ ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) → ( 𝑡 ∈ ℕ → ( ( 𝑡 / 𝑞 ) ∈ ℕ → ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) ) ) |
| 273 |
272
|
imp32 |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) ∧ 𝑡 ∈ ℕ ) ) → ( ( 𝑡 / 𝑞 ) ∈ ℕ → ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) |
| 274 |
37 53 273
|
3syld |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) ∧ 𝑡 ∈ ℕ ) ) → ( 𝑞 ∥ 𝑡 → ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) |
| 275 |
|
simpl2 |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( 𝑡 ∈ ℕ ∧ ( ¬ 𝑞 ∥ 𝑡 ∧ 𝑡 < 𝑥 ) ) ) → 𝑞 ∈ ℙ ) |
| 276 |
|
1nn |
⊢ 1 ∈ ℕ |
| 277 |
276
|
a1i |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( 𝑡 ∈ ℕ ∧ ( ¬ 𝑞 ∥ 𝑡 ∧ 𝑡 < 𝑥 ) ) ) → 1 ∈ ℕ ) |
| 278 |
142
|
exp1d |
⊢ ( 𝑞 ∈ ℙ → ( 𝑞 ↑ 1 ) = 𝑞 ) |
| 279 |
278
|
breq1d |
⊢ ( 𝑞 ∈ ℙ → ( ( 𝑞 ↑ 1 ) ∥ 𝑡 ↔ 𝑞 ∥ 𝑡 ) ) |
| 280 |
279
|
notbid |
⊢ ( 𝑞 ∈ ℙ → ( ¬ ( 𝑞 ↑ 1 ) ∥ 𝑡 ↔ ¬ 𝑞 ∥ 𝑡 ) ) |
| 281 |
280
|
biimpar |
⊢ ( ( 𝑞 ∈ ℙ ∧ ¬ 𝑞 ∥ 𝑡 ) → ¬ ( 𝑞 ↑ 1 ) ∥ 𝑡 ) |
| 282 |
281
|
3ad2antl2 |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ¬ 𝑞 ∥ 𝑡 ) → ¬ ( 𝑞 ↑ 1 ) ∥ 𝑡 ) |
| 283 |
282
|
adantrr |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( ¬ 𝑞 ∥ 𝑡 ∧ 𝑡 < 𝑥 ) ) → ¬ ( 𝑞 ↑ 1 ) ∥ 𝑡 ) |
| 284 |
283
|
adantrl |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( 𝑡 ∈ ℕ ∧ ( ¬ 𝑞 ∥ 𝑡 ∧ 𝑡 < 𝑥 ) ) ) → ¬ ( 𝑞 ↑ 1 ) ∥ 𝑡 ) |
| 285 |
278
|
breq1d |
⊢ ( 𝑞 ∈ ℙ → ( ( 𝑞 ↑ 1 ) ∥ 𝑥 ↔ 𝑞 ∥ 𝑥 ) ) |
| 286 |
285
|
biimpar |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) → ( 𝑞 ↑ 1 ) ∥ 𝑥 ) |
| 287 |
286
|
3adant1 |
⊢ ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) → ( 𝑞 ↑ 1 ) ∥ 𝑥 ) |
| 288 |
|
idd |
⊢ ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) → ( ( ( 𝑞 ↑ 1 ) ∥ 𝑥 → ( 𝑞 ↑ 1 ) ∥ 𝑡 ) → ( ( 𝑞 ↑ 1 ) ∥ 𝑥 → ( 𝑞 ↑ 1 ) ∥ 𝑡 ) ) ) |
| 289 |
287 288
|
mpid |
⊢ ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) → ( ( ( 𝑞 ↑ 1 ) ∥ 𝑥 → ( 𝑞 ↑ 1 ) ∥ 𝑡 ) → ( 𝑞 ↑ 1 ) ∥ 𝑡 ) ) |
| 290 |
289
|
adantr |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( 𝑡 ∈ ℕ ∧ ( ¬ 𝑞 ∥ 𝑡 ∧ 𝑡 < 𝑥 ) ) ) → ( ( ( 𝑞 ↑ 1 ) ∥ 𝑥 → ( 𝑞 ↑ 1 ) ∥ 𝑡 ) → ( 𝑞 ↑ 1 ) ∥ 𝑡 ) ) |
| 291 |
284 290
|
mtod |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( 𝑡 ∈ ℕ ∧ ( ¬ 𝑞 ∥ 𝑡 ∧ 𝑡 < 𝑥 ) ) ) → ¬ ( ( 𝑞 ↑ 1 ) ∥ 𝑥 → ( 𝑞 ↑ 1 ) ∥ 𝑡 ) ) |
| 292 |
|
biimpr |
⊢ ( ( ( 𝑞 ↑ 1 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 1 ) ∥ 𝑥 ) → ( ( 𝑞 ↑ 1 ) ∥ 𝑥 → ( 𝑞 ↑ 1 ) ∥ 𝑡 ) ) |
| 293 |
291 292
|
nsyl |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( 𝑡 ∈ ℕ ∧ ( ¬ 𝑞 ∥ 𝑡 ∧ 𝑡 < 𝑥 ) ) ) → ¬ ( ( 𝑞 ↑ 1 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 1 ) ∥ 𝑥 ) ) |
| 294 |
|
oveq1 |
⊢ ( 𝑟 = 𝑞 → ( 𝑟 ↑ 𝑚 ) = ( 𝑞 ↑ 𝑚 ) ) |
| 295 |
294
|
breq1d |
⊢ ( 𝑟 = 𝑞 → ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ) ) |
| 296 |
294
|
breq1d |
⊢ ( 𝑟 = 𝑞 → ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ) ) |
| 297 |
295 296
|
bibi12d |
⊢ ( 𝑟 = 𝑞 → ( ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
| 298 |
297
|
notbid |
⊢ ( 𝑟 = 𝑞 → ( ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ¬ ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
| 299 |
|
oveq2 |
⊢ ( 𝑚 = 1 → ( 𝑞 ↑ 𝑚 ) = ( 𝑞 ↑ 1 ) ) |
| 300 |
299
|
breq1d |
⊢ ( 𝑚 = 1 → ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 1 ) ∥ 𝑡 ) ) |
| 301 |
299
|
breq1d |
⊢ ( 𝑚 = 1 → ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ↔ ( 𝑞 ↑ 1 ) ∥ 𝑥 ) ) |
| 302 |
300 301
|
bibi12d |
⊢ ( 𝑚 = 1 → ( ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ( ( 𝑞 ↑ 1 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 1 ) ∥ 𝑥 ) ) ) |
| 303 |
302
|
notbid |
⊢ ( 𝑚 = 1 → ( ¬ ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ¬ ( ( 𝑞 ↑ 1 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 1 ) ∥ 𝑥 ) ) ) |
| 304 |
298 303
|
rspc2ev |
⊢ ( ( 𝑞 ∈ ℙ ∧ 1 ∈ ℕ ∧ ¬ ( ( 𝑞 ↑ 1 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 1 ) ∥ 𝑥 ) ) → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) |
| 305 |
275 277 293 304
|
syl3anc |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( 𝑡 ∈ ℕ ∧ ( ¬ 𝑞 ∥ 𝑡 ∧ 𝑡 < 𝑥 ) ) ) → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) |
| 306 |
305
|
expr |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ 𝑡 ∈ ℕ ) → ( ( ¬ 𝑞 ∥ 𝑡 ∧ 𝑡 < 𝑥 ) → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
| 307 |
306
|
expd |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ 𝑡 ∈ ℕ ) → ( ¬ 𝑞 ∥ 𝑡 → ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) |
| 308 |
307
|
adantrl |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) ∧ 𝑡 ∈ ℕ ) ) → ( ¬ 𝑞 ∥ 𝑡 → ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) |
| 309 |
274 308
|
pm2.61d |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) ∧ 𝑡 ∈ ℕ ) ) → ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
| 310 |
309
|
expr |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) ) → ( 𝑡 ∈ ℕ → ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) |
| 311 |
310
|
ralrimiv |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) ) → ∀ 𝑡 ∈ ℕ ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
| 312 |
|
breq1 |
⊢ ( 𝑡 = 𝑘 → ( 𝑡 < 𝑥 ↔ 𝑘 < 𝑥 ) ) |
| 313 |
|
breq2 |
⊢ ( 𝑡 = 𝑘 → ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑘 ) ) |
| 314 |
313
|
bibi1d |
⊢ ( 𝑡 = 𝑘 → ( ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑘 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
| 315 |
314
|
notbid |
⊢ ( 𝑡 = 𝑘 → ( ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑘 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
| 316 |
315
|
2rexbidv |
⊢ ( 𝑡 = 𝑘 → ( ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑘 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
| 317 |
253
|
breq1d |
⊢ ( 𝑟 = 𝑝 → ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑘 ) ) |
| 318 |
317 255
|
bibi12d |
⊢ ( 𝑟 = 𝑝 → ( ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑘 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
| 319 |
318
|
notbid |
⊢ ( 𝑟 = 𝑝 → ( ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑘 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
| 320 |
241
|
breq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ) ) |
| 321 |
320 243
|
bibi12d |
⊢ ( 𝑚 = 𝑛 → ( ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ) |
| 322 |
321
|
notbid |
⊢ ( 𝑚 = 𝑛 → ( ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ) |
| 323 |
319 322
|
cbvrex2vw |
⊢ ( ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑘 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) |
| 324 |
316 323
|
bitrdi |
⊢ ( 𝑡 = 𝑘 → ( ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ) |
| 325 |
312 324
|
imbi12d |
⊢ ( 𝑡 = 𝑘 → ( ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ↔ ( 𝑘 < 𝑥 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ) ) |
| 326 |
325
|
cbvralvw |
⊢ ( ∀ 𝑡 ∈ ℕ ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ↔ ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑥 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ) |
| 327 |
311 326
|
sylib |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) ) → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑥 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ) |
| 328 |
327
|
3exp1 |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑞 ∈ ℙ → ( 𝑞 ∥ 𝑥 → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑥 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ) ) ) ) |
| 329 |
328
|
rexlimdv |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → ( ∃ 𝑞 ∈ ℙ 𝑞 ∥ 𝑥 → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑥 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ) ) ) |
| 330 |
25 329
|
mpd |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑥 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ) ) |
| 331 |
14 21 24 330
|
indstr2 |
⊢ ( 𝑥 ∈ ℕ → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑥 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ) |
| 332 |
7 331
|
vtoclga |
⊢ ( 𝐴 ∈ ℕ → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝐴 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ) ) ) |