| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑘  <  𝑥  ↔  𝑘  <  𝐴 ) ) | 
						
							| 2 |  | breq2 | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑥  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐴 ) ) | 
						
							| 3 | 2 | bibi2d | ⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 )  ↔  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐴 ) ) ) | 
						
							| 4 | 3 | notbid | ⊢ ( 𝑥  =  𝐴  →  ( ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 )  ↔  ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐴 ) ) ) | 
						
							| 5 | 4 | 2rexbidv | ⊢ ( 𝑥  =  𝐴  →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 )  ↔  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐴 ) ) ) | 
						
							| 6 | 1 5 | imbi12d | ⊢ ( 𝑥  =  𝐴  →  ( ( 𝑘  <  𝑥  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 ) )  ↔  ( 𝑘  <  𝐴  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐴 ) ) ) ) | 
						
							| 7 | 6 | ralbidv | ⊢ ( 𝑥  =  𝐴  →  ( ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑥  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 ) )  ↔  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝐴  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐴 ) ) ) ) | 
						
							| 8 |  | breq2 | ⊢ ( 𝑥  =  1  →  ( 𝑘  <  𝑥  ↔  𝑘  <  1 ) ) | 
						
							| 9 |  | breq2 | ⊢ ( 𝑥  =  1  →  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑥  ↔  ( 𝑝 ↑ 𝑛 )  ∥  1 ) ) | 
						
							| 10 | 9 | bibi2d | ⊢ ( 𝑥  =  1  →  ( ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 )  ↔  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  1 ) ) ) | 
						
							| 11 | 10 | notbid | ⊢ ( 𝑥  =  1  →  ( ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 )  ↔  ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  1 ) ) ) | 
						
							| 12 | 11 | 2rexbidv | ⊢ ( 𝑥  =  1  →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 )  ↔  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  1 ) ) ) | 
						
							| 13 | 8 12 | imbi12d | ⊢ ( 𝑥  =  1  →  ( ( 𝑘  <  𝑥  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 ) )  ↔  ( 𝑘  <  1  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  1 ) ) ) ) | 
						
							| 14 | 13 | ralbidv | ⊢ ( 𝑥  =  1  →  ( ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑥  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 ) )  ↔  ∀ 𝑘  ∈  ℕ ( 𝑘  <  1  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  1 ) ) ) ) | 
						
							| 15 |  | breq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑘  <  𝑥  ↔  𝑘  <  𝑦 ) ) | 
						
							| 16 |  | breq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑥  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 ) ) | 
						
							| 17 | 16 | bibi2d | ⊢ ( 𝑥  =  𝑦  →  ( ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 )  ↔  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 ) ) ) | 
						
							| 18 | 17 | notbid | ⊢ ( 𝑥  =  𝑦  →  ( ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 )  ↔  ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 ) ) ) | 
						
							| 19 | 18 | 2rexbidv | ⊢ ( 𝑥  =  𝑦  →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 )  ↔  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 ) ) ) | 
						
							| 20 | 15 19 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑘  <  𝑥  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 ) )  ↔  ( 𝑘  <  𝑦  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 ) ) ) ) | 
						
							| 21 | 20 | ralbidv | ⊢ ( 𝑥  =  𝑦  →  ( ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑥  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 ) )  ↔  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑦  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 ) ) ) ) | 
						
							| 22 |  | nnnlt1 | ⊢ ( 𝑘  ∈  ℕ  →  ¬  𝑘  <  1 ) | 
						
							| 23 | 22 | pm2.21d | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝑘  <  1  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  1 ) ) ) | 
						
							| 24 | 23 | rgen | ⊢ ∀ 𝑘  ∈  ℕ ( 𝑘  <  1  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  1 ) ) | 
						
							| 25 |  | exprmfct | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  →  ∃ 𝑞  ∈  ℙ 𝑞  ∥  𝑥 ) | 
						
							| 26 |  | prmz | ⊢ ( 𝑞  ∈  ℙ  →  𝑞  ∈  ℤ ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝑞  ∈  ℙ  ∧  𝑡  ∈  ℕ )  →  𝑞  ∈  ℤ ) | 
						
							| 28 |  | prmnn | ⊢ ( 𝑞  ∈  ℙ  →  𝑞  ∈  ℕ ) | 
						
							| 29 | 28 | nnne0d | ⊢ ( 𝑞  ∈  ℙ  →  𝑞  ≠  0 ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝑞  ∈  ℙ  ∧  𝑡  ∈  ℕ )  →  𝑞  ≠  0 ) | 
						
							| 31 |  | nnz | ⊢ ( 𝑡  ∈  ℕ  →  𝑡  ∈  ℤ ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( 𝑞  ∈  ℙ  ∧  𝑡  ∈  ℕ )  →  𝑡  ∈  ℤ ) | 
						
							| 33 |  | dvdsval2 | ⊢ ( ( 𝑞  ∈  ℤ  ∧  𝑞  ≠  0  ∧  𝑡  ∈  ℤ )  →  ( 𝑞  ∥  𝑡  ↔  ( 𝑡  /  𝑞 )  ∈  ℤ ) ) | 
						
							| 34 | 27 30 32 33 | syl3anc | ⊢ ( ( 𝑞  ∈  ℙ  ∧  𝑡  ∈  ℕ )  →  ( 𝑞  ∥  𝑡  ↔  ( 𝑡  /  𝑞 )  ∈  ℤ ) ) | 
						
							| 35 | 34 | biimpd | ⊢ ( ( 𝑞  ∈  ℙ  ∧  𝑡  ∈  ℕ )  →  ( 𝑞  ∥  𝑡  →  ( 𝑡  /  𝑞 )  ∈  ℤ ) ) | 
						
							| 36 | 35 | 3ad2antl2 | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  ∧  𝑡  ∈  ℕ )  →  ( 𝑞  ∥  𝑡  →  ( 𝑡  /  𝑞 )  ∈  ℤ ) ) | 
						
							| 37 | 36 | adantrl | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  ∧  ( ∀ 𝑦  ∈  ℕ ( 𝑦  <  𝑥  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑦  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 ) ) )  ∧  𝑡  ∈  ℕ ) )  →  ( 𝑞  ∥  𝑡  →  ( 𝑡  /  𝑞 )  ∈  ℤ ) ) | 
						
							| 38 |  | simprr | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  ∧  ( 𝑡  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℤ ) )  →  ( 𝑡  /  𝑞 )  ∈  ℤ ) | 
						
							| 39 |  | nnre | ⊢ ( 𝑡  ∈  ℕ  →  𝑡  ∈  ℝ ) | 
						
							| 40 |  | nngt0 | ⊢ ( 𝑡  ∈  ℕ  →  0  <  𝑡 ) | 
						
							| 41 | 39 40 | jca | ⊢ ( 𝑡  ∈  ℕ  →  ( 𝑡  ∈  ℝ  ∧  0  <  𝑡 ) ) | 
						
							| 42 |  | nnre | ⊢ ( 𝑞  ∈  ℕ  →  𝑞  ∈  ℝ ) | 
						
							| 43 |  | nngt0 | ⊢ ( 𝑞  ∈  ℕ  →  0  <  𝑞 ) | 
						
							| 44 | 42 43 | jca | ⊢ ( 𝑞  ∈  ℕ  →  ( 𝑞  ∈  ℝ  ∧  0  <  𝑞 ) ) | 
						
							| 45 | 28 44 | syl | ⊢ ( 𝑞  ∈  ℙ  →  ( 𝑞  ∈  ℝ  ∧  0  <  𝑞 ) ) | 
						
							| 46 |  | divgt0 | ⊢ ( ( ( 𝑡  ∈  ℝ  ∧  0  <  𝑡 )  ∧  ( 𝑞  ∈  ℝ  ∧  0  <  𝑞 ) )  →  0  <  ( 𝑡  /  𝑞 ) ) | 
						
							| 47 | 41 45 46 | syl2anr | ⊢ ( ( 𝑞  ∈  ℙ  ∧  𝑡  ∈  ℕ )  →  0  <  ( 𝑡  /  𝑞 ) ) | 
						
							| 48 | 47 | 3ad2antl2 | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  ∧  𝑡  ∈  ℕ )  →  0  <  ( 𝑡  /  𝑞 ) ) | 
						
							| 49 | 48 | adantrr | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  ∧  ( 𝑡  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℤ ) )  →  0  <  ( 𝑡  /  𝑞 ) ) | 
						
							| 50 |  | elnnz | ⊢ ( ( 𝑡  /  𝑞 )  ∈  ℕ  ↔  ( ( 𝑡  /  𝑞 )  ∈  ℤ  ∧  0  <  ( 𝑡  /  𝑞 ) ) ) | 
						
							| 51 | 38 49 50 | sylanbrc | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  ∧  ( 𝑡  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℤ ) )  →  ( 𝑡  /  𝑞 )  ∈  ℕ ) | 
						
							| 52 | 51 | expr | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  ∧  𝑡  ∈  ℕ )  →  ( ( 𝑡  /  𝑞 )  ∈  ℤ  →  ( 𝑡  /  𝑞 )  ∈  ℕ ) ) | 
						
							| 53 | 52 | adantrl | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  ∧  ( ∀ 𝑦  ∈  ℕ ( 𝑦  <  𝑥  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑦  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 ) ) )  ∧  𝑡  ∈  ℕ ) )  →  ( ( 𝑡  /  𝑞 )  ∈  ℤ  →  ( 𝑡  /  𝑞 )  ∈  ℕ ) ) | 
						
							| 54 | 26 | adantr | ⊢ ( ( 𝑞  ∈  ℙ  ∧  𝑥  ∈  ( ℤ≥ ‘ 2 ) )  →  𝑞  ∈  ℤ ) | 
						
							| 55 | 29 | adantr | ⊢ ( ( 𝑞  ∈  ℙ  ∧  𝑥  ∈  ( ℤ≥ ‘ 2 ) )  →  𝑞  ≠  0 ) | 
						
							| 56 |  | eluzelz | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  →  𝑥  ∈  ℤ ) | 
						
							| 57 | 56 | adantl | ⊢ ( ( 𝑞  ∈  ℙ  ∧  𝑥  ∈  ( ℤ≥ ‘ 2 ) )  →  𝑥  ∈  ℤ ) | 
						
							| 58 |  | dvdsval2 | ⊢ ( ( 𝑞  ∈  ℤ  ∧  𝑞  ≠  0  ∧  𝑥  ∈  ℤ )  →  ( 𝑞  ∥  𝑥  ↔  ( 𝑥  /  𝑞 )  ∈  ℤ ) ) | 
						
							| 59 | 54 55 57 58 | syl3anc | ⊢ ( ( 𝑞  ∈  ℙ  ∧  𝑥  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝑞  ∥  𝑥  ↔  ( 𝑥  /  𝑞 )  ∈  ℤ ) ) | 
						
							| 60 |  | eluzelre | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  →  𝑥  ∈  ℝ ) | 
						
							| 61 |  | 2z | ⊢ 2  ∈  ℤ | 
						
							| 62 | 61 | eluz1i | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ↔  ( 𝑥  ∈  ℤ  ∧  2  ≤  𝑥 ) ) | 
						
							| 63 |  | 2pos | ⊢ 0  <  2 | 
						
							| 64 |  | zre | ⊢ ( 𝑥  ∈  ℤ  →  𝑥  ∈  ℝ ) | 
						
							| 65 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 66 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 67 |  | ltletr | ⊢ ( ( 0  ∈  ℝ  ∧  2  ∈  ℝ  ∧  𝑥  ∈  ℝ )  →  ( ( 0  <  2  ∧  2  ≤  𝑥 )  →  0  <  𝑥 ) ) | 
						
							| 68 | 65 66 67 | mp3an12 | ⊢ ( 𝑥  ∈  ℝ  →  ( ( 0  <  2  ∧  2  ≤  𝑥 )  →  0  <  𝑥 ) ) | 
						
							| 69 | 64 68 | syl | ⊢ ( 𝑥  ∈  ℤ  →  ( ( 0  <  2  ∧  2  ≤  𝑥 )  →  0  <  𝑥 ) ) | 
						
							| 70 | 63 69 | mpani | ⊢ ( 𝑥  ∈  ℤ  →  ( 2  ≤  𝑥  →  0  <  𝑥 ) ) | 
						
							| 71 | 70 | imp | ⊢ ( ( 𝑥  ∈  ℤ  ∧  2  ≤  𝑥 )  →  0  <  𝑥 ) | 
						
							| 72 | 62 71 | sylbi | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  →  0  <  𝑥 ) | 
						
							| 73 | 60 72 | jca | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑥  ∈  ℝ  ∧  0  <  𝑥 ) ) | 
						
							| 74 |  | divgt0 | ⊢ ( ( ( 𝑥  ∈  ℝ  ∧  0  <  𝑥 )  ∧  ( 𝑞  ∈  ℝ  ∧  0  <  𝑞 ) )  →  0  <  ( 𝑥  /  𝑞 ) ) | 
						
							| 75 | 73 45 74 | syl2anr | ⊢ ( ( 𝑞  ∈  ℙ  ∧  𝑥  ∈  ( ℤ≥ ‘ 2 ) )  →  0  <  ( 𝑥  /  𝑞 ) ) | 
						
							| 76 | 75 | a1d | ⊢ ( ( 𝑞  ∈  ℙ  ∧  𝑥  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( 𝑥  /  𝑞 )  ∈  ℤ  →  0  <  ( 𝑥  /  𝑞 ) ) ) | 
						
							| 77 | 76 | ancld | ⊢ ( ( 𝑞  ∈  ℙ  ∧  𝑥  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( 𝑥  /  𝑞 )  ∈  ℤ  →  ( ( 𝑥  /  𝑞 )  ∈  ℤ  ∧  0  <  ( 𝑥  /  𝑞 ) ) ) ) | 
						
							| 78 |  | elnnz | ⊢ ( ( 𝑥  /  𝑞 )  ∈  ℕ  ↔  ( ( 𝑥  /  𝑞 )  ∈  ℤ  ∧  0  <  ( 𝑥  /  𝑞 ) ) ) | 
						
							| 79 | 77 78 | imbitrrdi | ⊢ ( ( 𝑞  ∈  ℙ  ∧  𝑥  ∈  ( ℤ≥ ‘ 2 ) )  →  ( ( 𝑥  /  𝑞 )  ∈  ℤ  →  ( 𝑥  /  𝑞 )  ∈  ℕ ) ) | 
						
							| 80 | 59 79 | sylbid | ⊢ ( ( 𝑞  ∈  ℙ  ∧  𝑥  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝑞  ∥  𝑥  →  ( 𝑥  /  𝑞 )  ∈  ℕ ) ) | 
						
							| 81 | 80 | ancoms | ⊢ ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  →  ( 𝑞  ∥  𝑥  →  ( 𝑥  /  𝑞 )  ∈  ℕ ) ) | 
						
							| 82 |  | breq1 | ⊢ ( 𝑦  =  ( 𝑥  /  𝑞 )  →  ( 𝑦  <  𝑥  ↔  ( 𝑥  /  𝑞 )  <  𝑥 ) ) | 
						
							| 83 |  | breq2 | ⊢ ( 𝑦  =  ( 𝑥  /  𝑞 )  →  ( 𝑘  <  𝑦  ↔  𝑘  <  ( 𝑥  /  𝑞 ) ) ) | 
						
							| 84 |  | breq2 | ⊢ ( 𝑦  =  ( 𝑥  /  𝑞 )  →  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑦  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) | 
						
							| 85 | 84 | bibi2d | ⊢ ( 𝑦  =  ( 𝑥  /  𝑞 )  →  ( ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 )  ↔  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) ) | 
						
							| 86 | 85 | notbid | ⊢ ( 𝑦  =  ( 𝑥  /  𝑞 )  →  ( ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 )  ↔  ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) ) | 
						
							| 87 | 86 | 2rexbidv | ⊢ ( 𝑦  =  ( 𝑥  /  𝑞 )  →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 )  ↔  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) ) | 
						
							| 88 | 83 87 | imbi12d | ⊢ ( 𝑦  =  ( 𝑥  /  𝑞 )  →  ( ( 𝑘  <  𝑦  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 ) )  ↔  ( 𝑘  <  ( 𝑥  /  𝑞 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) ) ) | 
						
							| 89 | 88 | ralbidv | ⊢ ( 𝑦  =  ( 𝑥  /  𝑞 )  →  ( ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑦  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 ) )  ↔  ∀ 𝑘  ∈  ℕ ( 𝑘  <  ( 𝑥  /  𝑞 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) ) ) | 
						
							| 90 | 82 89 | imbi12d | ⊢ ( 𝑦  =  ( 𝑥  /  𝑞 )  →  ( ( 𝑦  <  𝑥  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑦  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 ) ) )  ↔  ( ( 𝑥  /  𝑞 )  <  𝑥  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  ( 𝑥  /  𝑞 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) ) ) ) | 
						
							| 91 | 90 | rspcv | ⊢ ( ( 𝑥  /  𝑞 )  ∈  ℕ  →  ( ∀ 𝑦  ∈  ℕ ( 𝑦  <  𝑥  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑦  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 ) ) )  →  ( ( 𝑥  /  𝑞 )  <  𝑥  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  ( 𝑥  /  𝑞 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) ) ) ) | 
						
							| 92 | 91 | 3ad2ant1 | ⊢ ( ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ )  →  ( ∀ 𝑦  ∈  ℕ ( 𝑦  <  𝑥  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑦  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 ) ) )  →  ( ( 𝑥  /  𝑞 )  <  𝑥  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  ( 𝑥  /  𝑞 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) ) ) ) | 
						
							| 93 | 92 | adantl | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  →  ( ∀ 𝑦  ∈  ℕ ( 𝑦  <  𝑥  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑦  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 ) ) )  →  ( ( 𝑥  /  𝑞 )  <  𝑥  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  ( 𝑥  /  𝑞 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) ) ) ) | 
						
							| 94 |  | eluzelcn | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  →  𝑥  ∈  ℂ ) | 
						
							| 95 | 94 | mullidd | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  →  ( 1  ·  𝑥 )  =  𝑥 ) | 
						
							| 96 | 95 | ad2antrr | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  →  ( 1  ·  𝑥 )  =  𝑥 ) | 
						
							| 97 |  | prmgt1 | ⊢ ( 𝑞  ∈  ℙ  →  1  <  𝑞 ) | 
						
							| 98 | 97 | ad2antlr | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  →  1  <  𝑞 ) | 
						
							| 99 |  | 1red | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  →  1  ∈  ℝ ) | 
						
							| 100 | 28 | nnred | ⊢ ( 𝑞  ∈  ℙ  →  𝑞  ∈  ℝ ) | 
						
							| 101 | 100 | ad2antlr | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  →  𝑞  ∈  ℝ ) | 
						
							| 102 | 60 | ad2antrr | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  →  𝑥  ∈  ℝ ) | 
						
							| 103 | 72 | ad2antrr | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  →  0  <  𝑥 ) | 
						
							| 104 |  | ltmul1 | ⊢ ( ( 1  ∈  ℝ  ∧  𝑞  ∈  ℝ  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  𝑥 ) )  →  ( 1  <  𝑞  ↔  ( 1  ·  𝑥 )  <  ( 𝑞  ·  𝑥 ) ) ) | 
						
							| 105 | 99 101 102 103 104 | syl112anc | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  →  ( 1  <  𝑞  ↔  ( 1  ·  𝑥 )  <  ( 𝑞  ·  𝑥 ) ) ) | 
						
							| 106 | 98 105 | mpbid | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  →  ( 1  ·  𝑥 )  <  ( 𝑞  ·  𝑥 ) ) | 
						
							| 107 | 96 106 | eqbrtrrd | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  →  𝑥  <  ( 𝑞  ·  𝑥 ) ) | 
						
							| 108 | 28 43 | syl | ⊢ ( 𝑞  ∈  ℙ  →  0  <  𝑞 ) | 
						
							| 109 | 108 | ad2antlr | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  →  0  <  𝑞 ) | 
						
							| 110 |  | ltdivmul | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑥  ∈  ℝ  ∧  ( 𝑞  ∈  ℝ  ∧  0  <  𝑞 ) )  →  ( ( 𝑥  /  𝑞 )  <  𝑥  ↔  𝑥  <  ( 𝑞  ·  𝑥 ) ) ) | 
						
							| 111 | 102 102 101 109 110 | syl112anc | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  →  ( ( 𝑥  /  𝑞 )  <  𝑥  ↔  𝑥  <  ( 𝑞  ·  𝑥 ) ) ) | 
						
							| 112 | 107 111 | mpbird | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  →  ( 𝑥  /  𝑞 )  <  𝑥 ) | 
						
							| 113 |  | breq1 | ⊢ ( 𝑘  =  ( 𝑡  /  𝑞 )  →  ( 𝑘  <  ( 𝑥  /  𝑞 )  ↔  ( 𝑡  /  𝑞 )  <  ( 𝑥  /  𝑞 ) ) ) | 
						
							| 114 |  | breq2 | ⊢ ( 𝑘  =  ( 𝑡  /  𝑞 )  →  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 ) ) ) | 
						
							| 115 | 114 | bibi1d | ⊢ ( 𝑘  =  ( 𝑡  /  𝑞 )  →  ( ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) )  ↔  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) ) | 
						
							| 116 | 115 | notbid | ⊢ ( 𝑘  =  ( 𝑡  /  𝑞 )  →  ( ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) )  ↔  ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) ) | 
						
							| 117 | 116 | 2rexbidv | ⊢ ( 𝑘  =  ( 𝑡  /  𝑞 )  →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) )  ↔  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) ) | 
						
							| 118 | 113 117 | imbi12d | ⊢ ( 𝑘  =  ( 𝑡  /  𝑞 )  →  ( ( 𝑘  <  ( 𝑥  /  𝑞 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) )  ↔  ( ( 𝑡  /  𝑞 )  <  ( 𝑥  /  𝑞 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) ) ) | 
						
							| 119 | 118 | rspcv | ⊢ ( ( 𝑡  /  𝑞 )  ∈  ℕ  →  ( ∀ 𝑘  ∈  ℕ ( 𝑘  <  ( 𝑥  /  𝑞 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) )  →  ( ( 𝑡  /  𝑞 )  <  ( 𝑥  /  𝑞 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) ) ) | 
						
							| 120 | 119 | 3ad2ant2 | ⊢ ( ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ )  →  ( ∀ 𝑘  ∈  ℕ ( 𝑘  <  ( 𝑥  /  𝑞 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) )  →  ( ( 𝑡  /  𝑞 )  <  ( 𝑥  /  𝑞 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) ) ) | 
						
							| 121 | 120 | adantl | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  →  ( ∀ 𝑘  ∈  ℕ ( 𝑘  <  ( 𝑥  /  𝑞 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) )  →  ( ( 𝑡  /  𝑞 )  <  ( 𝑥  /  𝑞 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) ) ) | 
						
							| 122 | 39 | 3ad2ant3 | ⊢ ( ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ )  →  𝑡  ∈  ℝ ) | 
						
							| 123 | 122 | adantl | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  →  𝑡  ∈  ℝ ) | 
						
							| 124 |  | ltdiv1 | ⊢ ( ( 𝑡  ∈  ℝ  ∧  𝑥  ∈  ℝ  ∧  ( 𝑞  ∈  ℝ  ∧  0  <  𝑞 ) )  →  ( 𝑡  <  𝑥  ↔  ( 𝑡  /  𝑞 )  <  ( 𝑥  /  𝑞 ) ) ) | 
						
							| 125 | 123 102 101 109 124 | syl112anc | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  →  ( 𝑡  <  𝑥  ↔  ( 𝑡  /  𝑞 )  <  ( 𝑥  /  𝑞 ) ) ) | 
						
							| 126 | 125 | biimpa | ⊢ ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  →  ( 𝑡  /  𝑞 )  <  ( 𝑥  /  𝑞 ) ) | 
						
							| 127 |  | simprll | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) )  →  𝑝  ∈  ℙ ) | 
						
							| 128 |  | peano2nn | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 129 | 128 | adantl | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 130 | 129 | ad2antrl | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  ( ( 𝑞 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑞 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) )  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 131 | 26 | ad4antlr | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ ) )  →  𝑞  ∈  ℤ ) | 
						
							| 132 |  | nnnn0 | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℕ0 ) | 
						
							| 133 | 132 | ad2antll | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 134 |  | zexpcl | ⊢ ( ( 𝑞  ∈  ℤ  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑞 ↑ 𝑛 )  ∈  ℤ ) | 
						
							| 135 | 131 133 134 | syl2anc | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ ) )  →  ( 𝑞 ↑ 𝑛 )  ∈  ℤ ) | 
						
							| 136 |  | nnz | ⊢ ( ( 𝑡  /  𝑞 )  ∈  ℕ  →  ( 𝑡  /  𝑞 )  ∈  ℤ ) | 
						
							| 137 | 136 | 3ad2ant2 | ⊢ ( ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ )  →  ( 𝑡  /  𝑞 )  ∈  ℤ ) | 
						
							| 138 | 137 | ad3antlr | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ ) )  →  ( 𝑡  /  𝑞 )  ∈  ℤ ) | 
						
							| 139 | 29 | ad4antlr | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ ) )  →  𝑞  ≠  0 ) | 
						
							| 140 |  | dvdsmulcr | ⊢ ( ( ( 𝑞 ↑ 𝑛 )  ∈  ℤ  ∧  ( 𝑡  /  𝑞 )  ∈  ℤ  ∧  ( 𝑞  ∈  ℤ  ∧  𝑞  ≠  0 ) )  →  ( ( ( 𝑞 ↑ 𝑛 )  ·  𝑞 )  ∥  ( ( 𝑡  /  𝑞 )  ·  𝑞 )  ↔  ( 𝑞 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 ) ) ) | 
						
							| 141 | 135 138 131 139 140 | syl112anc | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ ) )  →  ( ( ( 𝑞 ↑ 𝑛 )  ·  𝑞 )  ∥  ( ( 𝑡  /  𝑞 )  ·  𝑞 )  ↔  ( 𝑞 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 ) ) ) | 
						
							| 142 | 28 | nncnd | ⊢ ( 𝑞  ∈  ℙ  →  𝑞  ∈  ℂ ) | 
						
							| 143 | 142 | ad4antlr | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ ) )  →  𝑞  ∈  ℂ ) | 
						
							| 144 | 143 133 | expp1d | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ ) )  →  ( 𝑞 ↑ ( 𝑛  +  1 ) )  =  ( ( 𝑞 ↑ 𝑛 )  ·  𝑞 ) ) | 
						
							| 145 | 144 | eqcomd | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ ) )  →  ( ( 𝑞 ↑ 𝑛 )  ·  𝑞 )  =  ( 𝑞 ↑ ( 𝑛  +  1 ) ) ) | 
						
							| 146 |  | nncn | ⊢ ( 𝑡  ∈  ℕ  →  𝑡  ∈  ℂ ) | 
						
							| 147 | 146 | 3ad2ant3 | ⊢ ( ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ )  →  𝑡  ∈  ℂ ) | 
						
							| 148 | 147 | ad3antlr | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ ) )  →  𝑡  ∈  ℂ ) | 
						
							| 149 | 148 143 139 | divcan1d | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ ) )  →  ( ( 𝑡  /  𝑞 )  ·  𝑞 )  =  𝑡 ) | 
						
							| 150 | 145 149 | breq12d | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ ) )  →  ( ( ( 𝑞 ↑ 𝑛 )  ·  𝑞 )  ∥  ( ( 𝑡  /  𝑞 )  ·  𝑞 )  ↔  ( 𝑞 ↑ ( 𝑛  +  1 ) )  ∥  𝑡 ) ) | 
						
							| 151 | 141 150 | bitr3d | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ ) )  →  ( ( 𝑞 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑞 ↑ ( 𝑛  +  1 ) )  ∥  𝑡 ) ) | 
						
							| 152 |  | nnz | ⊢ ( ( 𝑥  /  𝑞 )  ∈  ℕ  →  ( 𝑥  /  𝑞 )  ∈  ℤ ) | 
						
							| 153 | 152 | 3ad2ant1 | ⊢ ( ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ )  →  ( 𝑥  /  𝑞 )  ∈  ℤ ) | 
						
							| 154 | 153 | ad3antlr | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ ) )  →  ( 𝑥  /  𝑞 )  ∈  ℤ ) | 
						
							| 155 |  | dvdsmulcr | ⊢ ( ( ( 𝑞 ↑ 𝑛 )  ∈  ℤ  ∧  ( 𝑥  /  𝑞 )  ∈  ℤ  ∧  ( 𝑞  ∈  ℤ  ∧  𝑞  ≠  0 ) )  →  ( ( ( 𝑞 ↑ 𝑛 )  ·  𝑞 )  ∥  ( ( 𝑥  /  𝑞 )  ·  𝑞 )  ↔  ( 𝑞 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) | 
						
							| 156 | 135 154 131 139 155 | syl112anc | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ ) )  →  ( ( ( 𝑞 ↑ 𝑛 )  ·  𝑞 )  ∥  ( ( 𝑥  /  𝑞 )  ·  𝑞 )  ↔  ( 𝑞 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) | 
						
							| 157 | 94 | ad4antr | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ ) )  →  𝑥  ∈  ℂ ) | 
						
							| 158 | 157 143 139 | divcan1d | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ ) )  →  ( ( 𝑥  /  𝑞 )  ·  𝑞 )  =  𝑥 ) | 
						
							| 159 | 145 158 | breq12d | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ ) )  →  ( ( ( 𝑞 ↑ 𝑛 )  ·  𝑞 )  ∥  ( ( 𝑥  /  𝑞 )  ·  𝑞 )  ↔  ( 𝑞 ↑ ( 𝑛  +  1 ) )  ∥  𝑥 ) ) | 
						
							| 160 | 156 159 | bitr3d | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ ) )  →  ( ( 𝑞 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 )  ↔  ( 𝑞 ↑ ( 𝑛  +  1 ) )  ∥  𝑥 ) ) | 
						
							| 161 | 151 160 | bibi12d | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ ) )  →  ( ( ( 𝑞 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑞 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) )  ↔  ( ( 𝑞 ↑ ( 𝑛  +  1 ) )  ∥  𝑡  ↔  ( 𝑞 ↑ ( 𝑛  +  1 ) )  ∥  𝑥 ) ) ) | 
						
							| 162 | 161 | notbid | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ ) )  →  ( ¬  ( ( 𝑞 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑞 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) )  ↔  ¬  ( ( 𝑞 ↑ ( 𝑛  +  1 ) )  ∥  𝑡  ↔  ( 𝑞 ↑ ( 𝑛  +  1 ) )  ∥  𝑥 ) ) ) | 
						
							| 163 | 162 | biimpd | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ ) )  →  ( ¬  ( ( 𝑞 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑞 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) )  →  ¬  ( ( 𝑞 ↑ ( 𝑛  +  1 ) )  ∥  𝑡  ↔  ( 𝑞 ↑ ( 𝑛  +  1 ) )  ∥  𝑥 ) ) ) | 
						
							| 164 | 163 | impr | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  ( ( 𝑞 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑞 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) )  →  ¬  ( ( 𝑞 ↑ ( 𝑛  +  1 ) )  ∥  𝑡  ↔  ( 𝑞 ↑ ( 𝑛  +  1 ) )  ∥  𝑥 ) ) | 
						
							| 165 |  | oveq2 | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( 𝑞 ↑ 𝑚 )  =  ( 𝑞 ↑ ( 𝑛  +  1 ) ) ) | 
						
							| 166 | 165 | breq1d | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( ( 𝑞 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑞 ↑ ( 𝑛  +  1 ) )  ∥  𝑡 ) ) | 
						
							| 167 | 165 | breq1d | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( ( 𝑞 ↑ 𝑚 )  ∥  𝑥  ↔  ( 𝑞 ↑ ( 𝑛  +  1 ) )  ∥  𝑥 ) ) | 
						
							| 168 | 166 167 | bibi12d | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( ( ( 𝑞 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑞 ↑ 𝑚 )  ∥  𝑥 )  ↔  ( ( 𝑞 ↑ ( 𝑛  +  1 ) )  ∥  𝑡  ↔  ( 𝑞 ↑ ( 𝑛  +  1 ) )  ∥  𝑥 ) ) ) | 
						
							| 169 | 168 | notbid | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( ¬  ( ( 𝑞 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑞 ↑ 𝑚 )  ∥  𝑥 )  ↔  ¬  ( ( 𝑞 ↑ ( 𝑛  +  1 ) )  ∥  𝑡  ↔  ( 𝑞 ↑ ( 𝑛  +  1 ) )  ∥  𝑥 ) ) ) | 
						
							| 170 | 169 | rspcev | ⊢ ( ( ( 𝑛  +  1 )  ∈  ℕ  ∧  ¬  ( ( 𝑞 ↑ ( 𝑛  +  1 ) )  ∥  𝑡  ↔  ( 𝑞 ↑ ( 𝑛  +  1 ) )  ∥  𝑥 ) )  →  ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑞 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑞 ↑ 𝑚 )  ∥  𝑥 ) ) | 
						
							| 171 | 130 164 170 | syl2anc | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  ( ( 𝑞 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑞 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) )  →  ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑞 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑞 ↑ 𝑚 )  ∥  𝑥 ) ) | 
						
							| 172 |  | oveq1 | ⊢ ( 𝑝  =  𝑞  →  ( 𝑝 ↑ 𝑛 )  =  ( 𝑞 ↑ 𝑛 ) ) | 
						
							| 173 | 172 | breq1d | ⊢ ( 𝑝  =  𝑞  →  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑞 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 ) ) ) | 
						
							| 174 | 172 | breq1d | ⊢ ( 𝑝  =  𝑞  →  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 )  ↔  ( 𝑞 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) | 
						
							| 175 | 173 174 | bibi12d | ⊢ ( 𝑝  =  𝑞  →  ( ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) )  ↔  ( ( 𝑞 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑞 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) ) | 
						
							| 176 | 175 | notbid | ⊢ ( 𝑝  =  𝑞  →  ( ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) )  ↔  ¬  ( ( 𝑞 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑞 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) ) | 
						
							| 177 | 176 | anbi2d | ⊢ ( 𝑝  =  𝑞  →  ( ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) )  ↔  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  ( ( 𝑞 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑞 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) ) ) | 
						
							| 178 | 177 | anbi2d | ⊢ ( 𝑝  =  𝑞  →  ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) )  ↔  ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  ( ( 𝑞 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑞 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) ) ) ) | 
						
							| 179 |  | oveq1 | ⊢ ( 𝑝  =  𝑞  →  ( 𝑝 ↑ 𝑚 )  =  ( 𝑞 ↑ 𝑚 ) ) | 
						
							| 180 | 179 | breq1d | ⊢ ( 𝑝  =  𝑞  →  ( ( 𝑝 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑞 ↑ 𝑚 )  ∥  𝑡 ) ) | 
						
							| 181 | 179 | breq1d | ⊢ ( 𝑝  =  𝑞  →  ( ( 𝑝 ↑ 𝑚 )  ∥  𝑥  ↔  ( 𝑞 ↑ 𝑚 )  ∥  𝑥 ) ) | 
						
							| 182 | 180 181 | bibi12d | ⊢ ( 𝑝  =  𝑞  →  ( ( ( 𝑝 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑝 ↑ 𝑚 )  ∥  𝑥 )  ↔  ( ( 𝑞 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑞 ↑ 𝑚 )  ∥  𝑥 ) ) ) | 
						
							| 183 | 182 | notbid | ⊢ ( 𝑝  =  𝑞  →  ( ¬  ( ( 𝑝 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑝 ↑ 𝑚 )  ∥  𝑥 )  ↔  ¬  ( ( 𝑞 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑞 ↑ 𝑚 )  ∥  𝑥 ) ) ) | 
						
							| 184 | 183 | rexbidv | ⊢ ( 𝑝  =  𝑞  →  ( ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑝 ↑ 𝑚 )  ∥  𝑥 )  ↔  ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑞 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑞 ↑ 𝑚 )  ∥  𝑥 ) ) ) | 
						
							| 185 | 178 184 | imbi12d | ⊢ ( 𝑝  =  𝑞  →  ( ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) )  →  ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑝 ↑ 𝑚 )  ∥  𝑥 ) )  ↔  ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  ( ( 𝑞 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑞 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) )  →  ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑞 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑞 ↑ 𝑚 )  ∥  𝑥 ) ) ) ) | 
						
							| 186 | 171 185 | mpbiri | ⊢ ( 𝑝  =  𝑞  →  ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) )  →  ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑝 ↑ 𝑚 )  ∥  𝑥 ) ) ) | 
						
							| 187 | 186 | com12 | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) )  →  ( 𝑝  =  𝑞  →  ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑝 ↑ 𝑚 )  ∥  𝑥 ) ) ) | 
						
							| 188 |  | simplr | ⊢ ( ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 )  →  𝑛  ∈  ℕ ) | 
						
							| 189 | 188 | ad2antlr | ⊢ ( ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  ∧  ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 190 |  | prmz | ⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℤ ) | 
						
							| 191 | 190 | adantr | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  →  𝑝  ∈  ℤ ) | 
						
							| 192 | 191 | ad2antrl | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  𝑝  ∈  ℤ ) | 
						
							| 193 | 132 | adantl | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ0 ) | 
						
							| 194 | 193 | ad2antrl | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 195 |  | zexpcl | ⊢ ( ( 𝑝  ∈  ℤ  ∧  𝑛  ∈  ℕ0 )  →  ( 𝑝 ↑ 𝑛 )  ∈  ℤ ) | 
						
							| 196 | 192 194 195 | syl2anc | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  ( 𝑝 ↑ 𝑛 )  ∈  ℤ ) | 
						
							| 197 | 26 | ad4antlr | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  𝑞  ∈  ℤ ) | 
						
							| 198 | 137 | ad3antlr | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  ( 𝑡  /  𝑞 )  ∈  ℤ ) | 
						
							| 199 |  | dvdsmultr2 | ⊢ ( ( ( 𝑝 ↑ 𝑛 )  ∈  ℤ  ∧  𝑞  ∈  ℤ  ∧  ( 𝑡  /  𝑞 )  ∈  ℤ )  →  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  →  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑞  ·  ( 𝑡  /  𝑞 ) ) ) ) | 
						
							| 200 | 196 197 198 199 | syl3anc | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  →  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑞  ·  ( 𝑡  /  𝑞 ) ) ) ) | 
						
							| 201 | 196 197 | gcdcomd | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  ( ( 𝑝 ↑ 𝑛 )  gcd  𝑞 )  =  ( 𝑞  gcd  ( 𝑝 ↑ 𝑛 ) ) ) | 
						
							| 202 |  | simp-4r | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ ) )  →  𝑞  ∈  ℙ ) | 
						
							| 203 |  | simprl | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ ) )  →  𝑝  ∈  ℙ ) | 
						
							| 204 |  | simprr | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ ) )  →  𝑛  ∈  ℕ ) | 
						
							| 205 |  | prmdvdsexpb | ⊢ ( ( 𝑞  ∈  ℙ  ∧  𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  →  ( 𝑞  ∥  ( 𝑝 ↑ 𝑛 )  ↔  𝑞  =  𝑝 ) ) | 
						
							| 206 |  | equcom | ⊢ ( 𝑞  =  𝑝  ↔  𝑝  =  𝑞 ) | 
						
							| 207 | 205 206 | bitrdi | ⊢ ( ( 𝑞  ∈  ℙ  ∧  𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  →  ( 𝑞  ∥  ( 𝑝 ↑ 𝑛 )  ↔  𝑝  =  𝑞 ) ) | 
						
							| 208 | 207 | biimpd | ⊢ ( ( 𝑞  ∈  ℙ  ∧  𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  →  ( 𝑞  ∥  ( 𝑝 ↑ 𝑛 )  →  𝑝  =  𝑞 ) ) | 
						
							| 209 | 202 203 204 208 | syl3anc | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ ) )  →  ( 𝑞  ∥  ( 𝑝 ↑ 𝑛 )  →  𝑝  =  𝑞 ) ) | 
						
							| 210 | 209 | con3d | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ ) )  →  ( ¬  𝑝  =  𝑞  →  ¬  𝑞  ∥  ( 𝑝 ↑ 𝑛 ) ) ) | 
						
							| 211 | 210 | impr | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  ¬  𝑞  ∥  ( 𝑝 ↑ 𝑛 ) ) | 
						
							| 212 |  | simp-4r | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  𝑞  ∈  ℙ ) | 
						
							| 213 |  | coprm | ⊢ ( ( 𝑞  ∈  ℙ  ∧  ( 𝑝 ↑ 𝑛 )  ∈  ℤ )  →  ( ¬  𝑞  ∥  ( 𝑝 ↑ 𝑛 )  ↔  ( 𝑞  gcd  ( 𝑝 ↑ 𝑛 ) )  =  1 ) ) | 
						
							| 214 | 212 196 213 | syl2anc | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  ( ¬  𝑞  ∥  ( 𝑝 ↑ 𝑛 )  ↔  ( 𝑞  gcd  ( 𝑝 ↑ 𝑛 ) )  =  1 ) ) | 
						
							| 215 | 211 214 | mpbid | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  ( 𝑞  gcd  ( 𝑝 ↑ 𝑛 ) )  =  1 ) | 
						
							| 216 | 201 215 | eqtrd | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  ( ( 𝑝 ↑ 𝑛 )  gcd  𝑞 )  =  1 ) | 
						
							| 217 |  | coprmdvds | ⊢ ( ( ( 𝑝 ↑ 𝑛 )  ∈  ℤ  ∧  𝑞  ∈  ℤ  ∧  ( 𝑡  /  𝑞 )  ∈  ℤ )  →  ( ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑞  ·  ( 𝑡  /  𝑞 ) )  ∧  ( ( 𝑝 ↑ 𝑛 )  gcd  𝑞 )  =  1 )  →  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 ) ) ) | 
						
							| 218 | 196 197 198 217 | syl3anc | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  ( ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑞  ·  ( 𝑡  /  𝑞 ) )  ∧  ( ( 𝑝 ↑ 𝑛 )  gcd  𝑞 )  =  1 )  →  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 ) ) ) | 
						
							| 219 | 216 218 | mpan2d | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑞  ·  ( 𝑡  /  𝑞 ) )  →  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 ) ) ) | 
						
							| 220 | 200 219 | impbid | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑞  ·  ( 𝑡  /  𝑞 ) ) ) ) | 
						
							| 221 | 147 | ad3antlr | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  𝑡  ∈  ℂ ) | 
						
							| 222 | 142 | ad4antlr | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  𝑞  ∈  ℂ ) | 
						
							| 223 | 29 | ad4antlr | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  𝑞  ≠  0 ) | 
						
							| 224 | 221 222 223 | divcan2d | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  ( 𝑞  ·  ( 𝑡  /  𝑞 ) )  =  𝑡 ) | 
						
							| 225 | 224 | breq2d | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑞  ·  ( 𝑡  /  𝑞 ) )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑡 ) ) | 
						
							| 226 | 220 225 | bitrd | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑡 ) ) | 
						
							| 227 | 153 | ad3antlr | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  ( 𝑥  /  𝑞 )  ∈  ℤ ) | 
						
							| 228 |  | dvdsmultr2 | ⊢ ( ( ( 𝑝 ↑ 𝑛 )  ∈  ℤ  ∧  𝑞  ∈  ℤ  ∧  ( 𝑥  /  𝑞 )  ∈  ℤ )  →  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 )  →  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑞  ·  ( 𝑥  /  𝑞 ) ) ) ) | 
						
							| 229 | 196 197 227 228 | syl3anc | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 )  →  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑞  ·  ( 𝑥  /  𝑞 ) ) ) ) | 
						
							| 230 |  | coprmdvds | ⊢ ( ( ( 𝑝 ↑ 𝑛 )  ∈  ℤ  ∧  𝑞  ∈  ℤ  ∧  ( 𝑥  /  𝑞 )  ∈  ℤ )  →  ( ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑞  ·  ( 𝑥  /  𝑞 ) )  ∧  ( ( 𝑝 ↑ 𝑛 )  gcd  𝑞 )  =  1 )  →  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) | 
						
							| 231 | 196 197 227 230 | syl3anc | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  ( ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑞  ·  ( 𝑥  /  𝑞 ) )  ∧  ( ( 𝑝 ↑ 𝑛 )  gcd  𝑞 )  =  1 )  →  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) | 
						
							| 232 | 216 231 | mpan2d | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑞  ·  ( 𝑥  /  𝑞 ) )  →  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) | 
						
							| 233 | 229 232 | impbid | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑞  ·  ( 𝑥  /  𝑞 ) ) ) ) | 
						
							| 234 | 94 | ad4antr | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  𝑥  ∈  ℂ ) | 
						
							| 235 | 234 222 223 | divcan2d | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  ( 𝑞  ·  ( 𝑥  /  𝑞 ) )  =  𝑥 ) | 
						
							| 236 | 235 | breq2d | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑞  ·  ( 𝑥  /  𝑞 ) )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 ) ) | 
						
							| 237 | 233 236 | bitrd | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 ) ) | 
						
							| 238 | 226 237 | bibi12d | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  ( ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) )  ↔  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑡  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 ) ) ) | 
						
							| 239 | 238 | notbid | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  ( ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) )  ↔  ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑡  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 ) ) ) | 
						
							| 240 | 239 | biimpa | ⊢ ( ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  ∧  ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) )  →  ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑡  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 ) ) | 
						
							| 241 |  | oveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑝 ↑ 𝑚 )  =  ( 𝑝 ↑ 𝑛 ) ) | 
						
							| 242 | 241 | breq1d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑝 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑡 ) ) | 
						
							| 243 | 241 | breq1d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑝 ↑ 𝑚 )  ∥  𝑥  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 ) ) | 
						
							| 244 | 242 243 | bibi12d | ⊢ ( 𝑚  =  𝑛  →  ( ( ( 𝑝 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑝 ↑ 𝑚 )  ∥  𝑥 )  ↔  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑡  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 ) ) ) | 
						
							| 245 | 244 | notbid | ⊢ ( 𝑚  =  𝑛  →  ( ¬  ( ( 𝑝 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑝 ↑ 𝑚 )  ∥  𝑥 )  ↔  ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑡  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 ) ) ) | 
						
							| 246 | 245 | rspcev | ⊢ ( ( 𝑛  ∈  ℕ  ∧  ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑡  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 ) )  →  ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑝 ↑ 𝑚 )  ∥  𝑥 ) ) | 
						
							| 247 | 189 240 246 | syl2anc | ⊢ ( ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  ∧  ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) )  →  ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑝 ↑ 𝑚 )  ∥  𝑥 ) ) | 
						
							| 248 | 247 | ex | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  𝑝  =  𝑞 ) )  →  ( ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) )  →  ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑝 ↑ 𝑚 )  ∥  𝑥 ) ) ) | 
						
							| 249 | 248 | expr | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ ) )  →  ( ¬  𝑝  =  𝑞  →  ( ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) )  →  ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑝 ↑ 𝑚 )  ∥  𝑥 ) ) ) ) | 
						
							| 250 | 249 | com23 | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ ) )  →  ( ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) )  →  ( ¬  𝑝  =  𝑞  →  ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑝 ↑ 𝑚 )  ∥  𝑥 ) ) ) ) | 
						
							| 251 | 250 | impr | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) )  →  ( ¬  𝑝  =  𝑞  →  ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑝 ↑ 𝑚 )  ∥  𝑥 ) ) ) | 
						
							| 252 | 187 251 | pm2.61d | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) )  →  ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑝 ↑ 𝑚 )  ∥  𝑥 ) ) | 
						
							| 253 |  | oveq1 | ⊢ ( 𝑟  =  𝑝  →  ( 𝑟 ↑ 𝑚 )  =  ( 𝑝 ↑ 𝑚 ) ) | 
						
							| 254 | 253 | breq1d | ⊢ ( 𝑟  =  𝑝  →  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑝 ↑ 𝑚 )  ∥  𝑡 ) ) | 
						
							| 255 | 253 | breq1d | ⊢ ( 𝑟  =  𝑝  →  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑥  ↔  ( 𝑝 ↑ 𝑚 )  ∥  𝑥 ) ) | 
						
							| 256 | 254 255 | bibi12d | ⊢ ( 𝑟  =  𝑝  →  ( ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 )  ↔  ( ( 𝑝 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑝 ↑ 𝑚 )  ∥  𝑥 ) ) ) | 
						
							| 257 | 256 | notbid | ⊢ ( 𝑟  =  𝑝  →  ( ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 )  ↔  ¬  ( ( 𝑝 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑝 ↑ 𝑚 )  ∥  𝑥 ) ) ) | 
						
							| 258 | 257 | rexbidv | ⊢ ( 𝑟  =  𝑝  →  ( ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 )  ↔  ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑝 ↑ 𝑚 )  ∥  𝑥 ) ) ) | 
						
							| 259 | 258 | rspcev | ⊢ ( ( 𝑝  ∈  ℙ  ∧  ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑝 ↑ 𝑚 )  ∥  𝑥 ) )  →  ∃ 𝑟  ∈  ℙ ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 ) ) | 
						
							| 260 | 127 252 259 | syl2anc | ⊢ ( ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  ∧  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  ∧  ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) )  →  ∃ 𝑟  ∈  ℙ ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 ) ) | 
						
							| 261 | 260 | exp32 | ⊢ ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  →  ( ( 𝑝  ∈  ℙ  ∧  𝑛  ∈  ℕ )  →  ( ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) )  →  ∃ 𝑟  ∈  ℙ ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 ) ) ) ) | 
						
							| 262 | 261 | rexlimdvv | ⊢ ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  →  ( ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) )  →  ∃ 𝑟  ∈  ℙ ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 ) ) ) | 
						
							| 263 | 126 262 | embantd | ⊢ ( ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  ∧  𝑡  <  𝑥 )  →  ( ( ( 𝑡  /  𝑞 )  <  ( 𝑥  /  𝑞 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) )  →  ∃ 𝑟  ∈  ℙ ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 ) ) ) | 
						
							| 264 | 263 | ex | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  →  ( 𝑡  <  𝑥  →  ( ( ( 𝑡  /  𝑞 )  <  ( 𝑥  /  𝑞 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) )  →  ∃ 𝑟  ∈  ℙ ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 ) ) ) ) | 
						
							| 265 | 264 | com23 | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  →  ( ( ( 𝑡  /  𝑞 )  <  ( 𝑥  /  𝑞 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑡  /  𝑞 )  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) )  →  ( 𝑡  <  𝑥  →  ∃ 𝑟  ∈  ℙ ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 ) ) ) ) | 
						
							| 266 | 121 265 | syld | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  →  ( ∀ 𝑘  ∈  ℕ ( 𝑘  <  ( 𝑥  /  𝑞 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) )  →  ( 𝑡  <  𝑥  →  ∃ 𝑟  ∈  ℙ ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 ) ) ) ) | 
						
							| 267 | 112 266 | embantd | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  →  ( ( ( 𝑥  /  𝑞 )  <  𝑥  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  ( 𝑥  /  𝑞 )  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  ( 𝑥  /  𝑞 ) ) ) )  →  ( 𝑡  <  𝑥  →  ∃ 𝑟  ∈  ℙ ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 ) ) ) ) | 
						
							| 268 | 93 267 | syld | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  ∧  ( ( 𝑥  /  𝑞 )  ∈  ℕ  ∧  ( 𝑡  /  𝑞 )  ∈  ℕ  ∧  𝑡  ∈  ℕ ) )  →  ( ∀ 𝑦  ∈  ℕ ( 𝑦  <  𝑥  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑦  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 ) ) )  →  ( 𝑡  <  𝑥  →  ∃ 𝑟  ∈  ℙ ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 ) ) ) ) | 
						
							| 269 | 268 | 3exp2 | ⊢ ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  →  ( ( 𝑥  /  𝑞 )  ∈  ℕ  →  ( ( 𝑡  /  𝑞 )  ∈  ℕ  →  ( 𝑡  ∈  ℕ  →  ( ∀ 𝑦  ∈  ℕ ( 𝑦  <  𝑥  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑦  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 ) ) )  →  ( 𝑡  <  𝑥  →  ∃ 𝑟  ∈  ℙ ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 ) ) ) ) ) ) ) | 
						
							| 270 | 81 269 | syld | ⊢ ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ )  →  ( 𝑞  ∥  𝑥  →  ( ( 𝑡  /  𝑞 )  ∈  ℕ  →  ( 𝑡  ∈  ℕ  →  ( ∀ 𝑦  ∈  ℕ ( 𝑦  <  𝑥  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑦  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 ) ) )  →  ( 𝑡  <  𝑥  →  ∃ 𝑟  ∈  ℙ ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 ) ) ) ) ) ) ) | 
						
							| 271 | 270 | 3impia | ⊢ ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  →  ( ( 𝑡  /  𝑞 )  ∈  ℕ  →  ( 𝑡  ∈  ℕ  →  ( ∀ 𝑦  ∈  ℕ ( 𝑦  <  𝑥  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑦  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 ) ) )  →  ( 𝑡  <  𝑥  →  ∃ 𝑟  ∈  ℙ ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 ) ) ) ) ) ) | 
						
							| 272 | 271 | com24 | ⊢ ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  →  ( ∀ 𝑦  ∈  ℕ ( 𝑦  <  𝑥  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑦  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 ) ) )  →  ( 𝑡  ∈  ℕ  →  ( ( 𝑡  /  𝑞 )  ∈  ℕ  →  ( 𝑡  <  𝑥  →  ∃ 𝑟  ∈  ℙ ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 ) ) ) ) ) ) | 
						
							| 273 | 272 | imp32 | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  ∧  ( ∀ 𝑦  ∈  ℕ ( 𝑦  <  𝑥  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑦  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 ) ) )  ∧  𝑡  ∈  ℕ ) )  →  ( ( 𝑡  /  𝑞 )  ∈  ℕ  →  ( 𝑡  <  𝑥  →  ∃ 𝑟  ∈  ℙ ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 ) ) ) ) | 
						
							| 274 | 37 53 273 | 3syld | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  ∧  ( ∀ 𝑦  ∈  ℕ ( 𝑦  <  𝑥  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑦  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 ) ) )  ∧  𝑡  ∈  ℕ ) )  →  ( 𝑞  ∥  𝑡  →  ( 𝑡  <  𝑥  →  ∃ 𝑟  ∈  ℙ ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 ) ) ) ) | 
						
							| 275 |  | simpl2 | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  ∧  ( 𝑡  ∈  ℕ  ∧  ( ¬  𝑞  ∥  𝑡  ∧  𝑡  <  𝑥 ) ) )  →  𝑞  ∈  ℙ ) | 
						
							| 276 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 277 | 276 | a1i | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  ∧  ( 𝑡  ∈  ℕ  ∧  ( ¬  𝑞  ∥  𝑡  ∧  𝑡  <  𝑥 ) ) )  →  1  ∈  ℕ ) | 
						
							| 278 | 142 | exp1d | ⊢ ( 𝑞  ∈  ℙ  →  ( 𝑞 ↑ 1 )  =  𝑞 ) | 
						
							| 279 | 278 | breq1d | ⊢ ( 𝑞  ∈  ℙ  →  ( ( 𝑞 ↑ 1 )  ∥  𝑡  ↔  𝑞  ∥  𝑡 ) ) | 
						
							| 280 | 279 | notbid | ⊢ ( 𝑞  ∈  ℙ  →  ( ¬  ( 𝑞 ↑ 1 )  ∥  𝑡  ↔  ¬  𝑞  ∥  𝑡 ) ) | 
						
							| 281 | 280 | biimpar | ⊢ ( ( 𝑞  ∈  ℙ  ∧  ¬  𝑞  ∥  𝑡 )  →  ¬  ( 𝑞 ↑ 1 )  ∥  𝑡 ) | 
						
							| 282 | 281 | 3ad2antl2 | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  ∧  ¬  𝑞  ∥  𝑡 )  →  ¬  ( 𝑞 ↑ 1 )  ∥  𝑡 ) | 
						
							| 283 | 282 | adantrr | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  ∧  ( ¬  𝑞  ∥  𝑡  ∧  𝑡  <  𝑥 ) )  →  ¬  ( 𝑞 ↑ 1 )  ∥  𝑡 ) | 
						
							| 284 | 283 | adantrl | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  ∧  ( 𝑡  ∈  ℕ  ∧  ( ¬  𝑞  ∥  𝑡  ∧  𝑡  <  𝑥 ) ) )  →  ¬  ( 𝑞 ↑ 1 )  ∥  𝑡 ) | 
						
							| 285 | 278 | breq1d | ⊢ ( 𝑞  ∈  ℙ  →  ( ( 𝑞 ↑ 1 )  ∥  𝑥  ↔  𝑞  ∥  𝑥 ) ) | 
						
							| 286 | 285 | biimpar | ⊢ ( ( 𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  →  ( 𝑞 ↑ 1 )  ∥  𝑥 ) | 
						
							| 287 | 286 | 3adant1 | ⊢ ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  →  ( 𝑞 ↑ 1 )  ∥  𝑥 ) | 
						
							| 288 |  | idd | ⊢ ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  →  ( ( ( 𝑞 ↑ 1 )  ∥  𝑥  →  ( 𝑞 ↑ 1 )  ∥  𝑡 )  →  ( ( 𝑞 ↑ 1 )  ∥  𝑥  →  ( 𝑞 ↑ 1 )  ∥  𝑡 ) ) ) | 
						
							| 289 | 287 288 | mpid | ⊢ ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  →  ( ( ( 𝑞 ↑ 1 )  ∥  𝑥  →  ( 𝑞 ↑ 1 )  ∥  𝑡 )  →  ( 𝑞 ↑ 1 )  ∥  𝑡 ) ) | 
						
							| 290 | 289 | adantr | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  ∧  ( 𝑡  ∈  ℕ  ∧  ( ¬  𝑞  ∥  𝑡  ∧  𝑡  <  𝑥 ) ) )  →  ( ( ( 𝑞 ↑ 1 )  ∥  𝑥  →  ( 𝑞 ↑ 1 )  ∥  𝑡 )  →  ( 𝑞 ↑ 1 )  ∥  𝑡 ) ) | 
						
							| 291 | 284 290 | mtod | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  ∧  ( 𝑡  ∈  ℕ  ∧  ( ¬  𝑞  ∥  𝑡  ∧  𝑡  <  𝑥 ) ) )  →  ¬  ( ( 𝑞 ↑ 1 )  ∥  𝑥  →  ( 𝑞 ↑ 1 )  ∥  𝑡 ) ) | 
						
							| 292 |  | biimpr | ⊢ ( ( ( 𝑞 ↑ 1 )  ∥  𝑡  ↔  ( 𝑞 ↑ 1 )  ∥  𝑥 )  →  ( ( 𝑞 ↑ 1 )  ∥  𝑥  →  ( 𝑞 ↑ 1 )  ∥  𝑡 ) ) | 
						
							| 293 | 291 292 | nsyl | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  ∧  ( 𝑡  ∈  ℕ  ∧  ( ¬  𝑞  ∥  𝑡  ∧  𝑡  <  𝑥 ) ) )  →  ¬  ( ( 𝑞 ↑ 1 )  ∥  𝑡  ↔  ( 𝑞 ↑ 1 )  ∥  𝑥 ) ) | 
						
							| 294 |  | oveq1 | ⊢ ( 𝑟  =  𝑞  →  ( 𝑟 ↑ 𝑚 )  =  ( 𝑞 ↑ 𝑚 ) ) | 
						
							| 295 | 294 | breq1d | ⊢ ( 𝑟  =  𝑞  →  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑞 ↑ 𝑚 )  ∥  𝑡 ) ) | 
						
							| 296 | 294 | breq1d | ⊢ ( 𝑟  =  𝑞  →  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑥  ↔  ( 𝑞 ↑ 𝑚 )  ∥  𝑥 ) ) | 
						
							| 297 | 295 296 | bibi12d | ⊢ ( 𝑟  =  𝑞  →  ( ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 )  ↔  ( ( 𝑞 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑞 ↑ 𝑚 )  ∥  𝑥 ) ) ) | 
						
							| 298 | 297 | notbid | ⊢ ( 𝑟  =  𝑞  →  ( ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 )  ↔  ¬  ( ( 𝑞 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑞 ↑ 𝑚 )  ∥  𝑥 ) ) ) | 
						
							| 299 |  | oveq2 | ⊢ ( 𝑚  =  1  →  ( 𝑞 ↑ 𝑚 )  =  ( 𝑞 ↑ 1 ) ) | 
						
							| 300 | 299 | breq1d | ⊢ ( 𝑚  =  1  →  ( ( 𝑞 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑞 ↑ 1 )  ∥  𝑡 ) ) | 
						
							| 301 | 299 | breq1d | ⊢ ( 𝑚  =  1  →  ( ( 𝑞 ↑ 𝑚 )  ∥  𝑥  ↔  ( 𝑞 ↑ 1 )  ∥  𝑥 ) ) | 
						
							| 302 | 300 301 | bibi12d | ⊢ ( 𝑚  =  1  →  ( ( ( 𝑞 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑞 ↑ 𝑚 )  ∥  𝑥 )  ↔  ( ( 𝑞 ↑ 1 )  ∥  𝑡  ↔  ( 𝑞 ↑ 1 )  ∥  𝑥 ) ) ) | 
						
							| 303 | 302 | notbid | ⊢ ( 𝑚  =  1  →  ( ¬  ( ( 𝑞 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑞 ↑ 𝑚 )  ∥  𝑥 )  ↔  ¬  ( ( 𝑞 ↑ 1 )  ∥  𝑡  ↔  ( 𝑞 ↑ 1 )  ∥  𝑥 ) ) ) | 
						
							| 304 | 298 303 | rspc2ev | ⊢ ( ( 𝑞  ∈  ℙ  ∧  1  ∈  ℕ  ∧  ¬  ( ( 𝑞 ↑ 1 )  ∥  𝑡  ↔  ( 𝑞 ↑ 1 )  ∥  𝑥 ) )  →  ∃ 𝑟  ∈  ℙ ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 ) ) | 
						
							| 305 | 275 277 293 304 | syl3anc | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  ∧  ( 𝑡  ∈  ℕ  ∧  ( ¬  𝑞  ∥  𝑡  ∧  𝑡  <  𝑥 ) ) )  →  ∃ 𝑟  ∈  ℙ ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 ) ) | 
						
							| 306 | 305 | expr | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  ∧  𝑡  ∈  ℕ )  →  ( ( ¬  𝑞  ∥  𝑡  ∧  𝑡  <  𝑥 )  →  ∃ 𝑟  ∈  ℙ ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 ) ) ) | 
						
							| 307 | 306 | expd | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  ∧  𝑡  ∈  ℕ )  →  ( ¬  𝑞  ∥  𝑡  →  ( 𝑡  <  𝑥  →  ∃ 𝑟  ∈  ℙ ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 ) ) ) ) | 
						
							| 308 | 307 | adantrl | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  ∧  ( ∀ 𝑦  ∈  ℕ ( 𝑦  <  𝑥  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑦  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 ) ) )  ∧  𝑡  ∈  ℕ ) )  →  ( ¬  𝑞  ∥  𝑡  →  ( 𝑡  <  𝑥  →  ∃ 𝑟  ∈  ℙ ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 ) ) ) ) | 
						
							| 309 | 274 308 | pm2.61d | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  ∧  ( ∀ 𝑦  ∈  ℕ ( 𝑦  <  𝑥  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑦  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 ) ) )  ∧  𝑡  ∈  ℕ ) )  →  ( 𝑡  <  𝑥  →  ∃ 𝑟  ∈  ℙ ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 ) ) ) | 
						
							| 310 | 309 | expr | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  ∧  ∀ 𝑦  ∈  ℕ ( 𝑦  <  𝑥  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑦  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 ) ) ) )  →  ( 𝑡  ∈  ℕ  →  ( 𝑡  <  𝑥  →  ∃ 𝑟  ∈  ℙ ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 ) ) ) ) | 
						
							| 311 | 310 | ralrimiv | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  ∧  ∀ 𝑦  ∈  ℕ ( 𝑦  <  𝑥  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑦  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 ) ) ) )  →  ∀ 𝑡  ∈  ℕ ( 𝑡  <  𝑥  →  ∃ 𝑟  ∈  ℙ ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 ) ) ) | 
						
							| 312 |  | breq1 | ⊢ ( 𝑡  =  𝑘  →  ( 𝑡  <  𝑥  ↔  𝑘  <  𝑥 ) ) | 
						
							| 313 |  | breq2 | ⊢ ( 𝑡  =  𝑘  →  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑘 ) ) | 
						
							| 314 | 313 | bibi1d | ⊢ ( 𝑡  =  𝑘  →  ( ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 )  ↔  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑘  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 ) ) ) | 
						
							| 315 | 314 | notbid | ⊢ ( 𝑡  =  𝑘  →  ( ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 )  ↔  ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑘  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 ) ) ) | 
						
							| 316 | 315 | 2rexbidv | ⊢ ( 𝑡  =  𝑘  →  ( ∃ 𝑟  ∈  ℙ ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 )  ↔  ∃ 𝑟  ∈  ℙ ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑘  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 ) ) ) | 
						
							| 317 | 253 | breq1d | ⊢ ( 𝑟  =  𝑝  →  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑚 )  ∥  𝑘 ) ) | 
						
							| 318 | 317 255 | bibi12d | ⊢ ( 𝑟  =  𝑝  →  ( ( ( 𝑟 ↑ 𝑚 )  ∥  𝑘  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 )  ↔  ( ( 𝑝 ↑ 𝑚 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑚 )  ∥  𝑥 ) ) ) | 
						
							| 319 | 318 | notbid | ⊢ ( 𝑟  =  𝑝  →  ( ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑘  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 )  ↔  ¬  ( ( 𝑝 ↑ 𝑚 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑚 )  ∥  𝑥 ) ) ) | 
						
							| 320 | 241 | breq1d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝑝 ↑ 𝑚 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑘 ) ) | 
						
							| 321 | 320 243 | bibi12d | ⊢ ( 𝑚  =  𝑛  →  ( ( ( 𝑝 ↑ 𝑚 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑚 )  ∥  𝑥 )  ↔  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 ) ) ) | 
						
							| 322 | 321 | notbid | ⊢ ( 𝑚  =  𝑛  →  ( ¬  ( ( 𝑝 ↑ 𝑚 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑚 )  ∥  𝑥 )  ↔  ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 ) ) ) | 
						
							| 323 | 319 322 | cbvrex2vw | ⊢ ( ∃ 𝑟  ∈  ℙ ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑘  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 )  ↔  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 ) ) | 
						
							| 324 | 316 323 | bitrdi | ⊢ ( 𝑡  =  𝑘  →  ( ∃ 𝑟  ∈  ℙ ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 )  ↔  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 ) ) ) | 
						
							| 325 | 312 324 | imbi12d | ⊢ ( 𝑡  =  𝑘  →  ( ( 𝑡  <  𝑥  →  ∃ 𝑟  ∈  ℙ ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 ) )  ↔  ( 𝑘  <  𝑥  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 ) ) ) ) | 
						
							| 326 | 325 | cbvralvw | ⊢ ( ∀ 𝑡  ∈  ℕ ( 𝑡  <  𝑥  →  ∃ 𝑟  ∈  ℙ ∃ 𝑚  ∈  ℕ ¬  ( ( 𝑟 ↑ 𝑚 )  ∥  𝑡  ↔  ( 𝑟 ↑ 𝑚 )  ∥  𝑥 ) )  ↔  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑥  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 ) ) ) | 
						
							| 327 | 311 326 | sylib | ⊢ ( ( ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  ∧  𝑞  ∈  ℙ  ∧  𝑞  ∥  𝑥 )  ∧  ∀ 𝑦  ∈  ℕ ( 𝑦  <  𝑥  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑦  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 ) ) ) )  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑥  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 ) ) ) | 
						
							| 328 | 327 | 3exp1 | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  →  ( 𝑞  ∈  ℙ  →  ( 𝑞  ∥  𝑥  →  ( ∀ 𝑦  ∈  ℕ ( 𝑦  <  𝑥  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑦  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 ) ) )  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑥  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 ) ) ) ) ) ) | 
						
							| 329 | 328 | rexlimdv | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  →  ( ∃ 𝑞  ∈  ℙ 𝑞  ∥  𝑥  →  ( ∀ 𝑦  ∈  ℕ ( 𝑦  <  𝑥  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑦  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 ) ) )  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑥  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 ) ) ) ) ) | 
						
							| 330 | 25 329 | mpd | ⊢ ( 𝑥  ∈  ( ℤ≥ ‘ 2 )  →  ( ∀ 𝑦  ∈  ℕ ( 𝑦  <  𝑥  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑦  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 ) ) )  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑥  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 ) ) ) ) | 
						
							| 331 | 14 21 24 330 | indstr2 | ⊢ ( 𝑥  ∈  ℕ  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝑥  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 ) ) ) | 
						
							| 332 | 7 331 | vtoclga | ⊢ ( 𝐴  ∈  ℕ  →  ∀ 𝑘  ∈  ℕ ( 𝑘  <  𝐴  →  ∃ 𝑝  ∈  ℙ ∃ 𝑛  ∈  ℕ ¬  ( ( 𝑝 ↑ 𝑛 )  ∥  𝑘  ↔  ( 𝑝 ↑ 𝑛 )  ∥  𝐴 ) ) ) |