Step |
Hyp |
Ref |
Expression |
1 |
|
breq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑘 < 𝑥 ↔ 𝑘 < 𝐴 ) ) |
2 |
|
breq2 |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ) ) |
3 |
2
|
bibi2d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ↔ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ) ) ) |
4 |
3
|
notbid |
⊢ ( 𝑥 = 𝐴 → ( ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ↔ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ) ) ) |
5 |
4
|
2rexbidv |
⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ) ) ) |
6 |
1 5
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑘 < 𝑥 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ↔ ( 𝑘 < 𝐴 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ) ) ) ) |
7 |
6
|
ralbidv |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑥 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ↔ ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝐴 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ) ) ) ) |
8 |
|
breq2 |
⊢ ( 𝑥 = 1 → ( 𝑘 < 𝑥 ↔ 𝑘 < 1 ) ) |
9 |
|
breq2 |
⊢ ( 𝑥 = 1 → ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 1 ) ) |
10 |
9
|
bibi2d |
⊢ ( 𝑥 = 1 → ( ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ↔ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 1 ) ) ) |
11 |
10
|
notbid |
⊢ ( 𝑥 = 1 → ( ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ↔ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 1 ) ) ) |
12 |
11
|
2rexbidv |
⊢ ( 𝑥 = 1 → ( ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 1 ) ) ) |
13 |
8 12
|
imbi12d |
⊢ ( 𝑥 = 1 → ( ( 𝑘 < 𝑥 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ↔ ( 𝑘 < 1 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 1 ) ) ) ) |
14 |
13
|
ralbidv |
⊢ ( 𝑥 = 1 → ( ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑥 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ↔ ∀ 𝑘 ∈ ℕ ( 𝑘 < 1 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 1 ) ) ) ) |
15 |
|
breq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑘 < 𝑥 ↔ 𝑘 < 𝑦 ) ) |
16 |
|
breq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) |
17 |
16
|
bibi2d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ↔ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) |
18 |
17
|
notbid |
⊢ ( 𝑥 = 𝑦 → ( ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ↔ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) |
19 |
18
|
2rexbidv |
⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) |
20 |
15 19
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑘 < 𝑥 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ↔ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) ) |
21 |
20
|
ralbidv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑥 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ↔ ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) ) |
22 |
|
nnnlt1 |
⊢ ( 𝑘 ∈ ℕ → ¬ 𝑘 < 1 ) |
23 |
22
|
pm2.21d |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 < 1 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 1 ) ) ) |
24 |
23
|
rgen |
⊢ ∀ 𝑘 ∈ ℕ ( 𝑘 < 1 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 1 ) ) |
25 |
|
exprmfct |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑞 ∈ ℙ 𝑞 ∥ 𝑥 ) |
26 |
|
prmz |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ℤ ) |
27 |
26
|
adantr |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑡 ∈ ℕ ) → 𝑞 ∈ ℤ ) |
28 |
|
prmnn |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ℕ ) |
29 |
28
|
nnne0d |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ≠ 0 ) |
30 |
29
|
adantr |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑡 ∈ ℕ ) → 𝑞 ≠ 0 ) |
31 |
|
nnz |
⊢ ( 𝑡 ∈ ℕ → 𝑡 ∈ ℤ ) |
32 |
31
|
adantl |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑡 ∈ ℕ ) → 𝑡 ∈ ℤ ) |
33 |
|
dvdsval2 |
⊢ ( ( 𝑞 ∈ ℤ ∧ 𝑞 ≠ 0 ∧ 𝑡 ∈ ℤ ) → ( 𝑞 ∥ 𝑡 ↔ ( 𝑡 / 𝑞 ) ∈ ℤ ) ) |
34 |
27 30 32 33
|
syl3anc |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑡 ∈ ℕ ) → ( 𝑞 ∥ 𝑡 ↔ ( 𝑡 / 𝑞 ) ∈ ℤ ) ) |
35 |
34
|
biimpd |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑡 ∈ ℕ ) → ( 𝑞 ∥ 𝑡 → ( 𝑡 / 𝑞 ) ∈ ℤ ) ) |
36 |
35
|
3ad2antl2 |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ 𝑡 ∈ ℕ ) → ( 𝑞 ∥ 𝑡 → ( 𝑡 / 𝑞 ) ∈ ℤ ) ) |
37 |
36
|
adantrl |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) ∧ 𝑡 ∈ ℕ ) ) → ( 𝑞 ∥ 𝑡 → ( 𝑡 / 𝑞 ) ∈ ℤ ) ) |
38 |
|
simprr |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( 𝑡 ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℤ ) ) → ( 𝑡 / 𝑞 ) ∈ ℤ ) |
39 |
|
nnre |
⊢ ( 𝑡 ∈ ℕ → 𝑡 ∈ ℝ ) |
40 |
|
nngt0 |
⊢ ( 𝑡 ∈ ℕ → 0 < 𝑡 ) |
41 |
39 40
|
jca |
⊢ ( 𝑡 ∈ ℕ → ( 𝑡 ∈ ℝ ∧ 0 < 𝑡 ) ) |
42 |
|
nnre |
⊢ ( 𝑞 ∈ ℕ → 𝑞 ∈ ℝ ) |
43 |
|
nngt0 |
⊢ ( 𝑞 ∈ ℕ → 0 < 𝑞 ) |
44 |
42 43
|
jca |
⊢ ( 𝑞 ∈ ℕ → ( 𝑞 ∈ ℝ ∧ 0 < 𝑞 ) ) |
45 |
28 44
|
syl |
⊢ ( 𝑞 ∈ ℙ → ( 𝑞 ∈ ℝ ∧ 0 < 𝑞 ) ) |
46 |
|
divgt0 |
⊢ ( ( ( 𝑡 ∈ ℝ ∧ 0 < 𝑡 ) ∧ ( 𝑞 ∈ ℝ ∧ 0 < 𝑞 ) ) → 0 < ( 𝑡 / 𝑞 ) ) |
47 |
41 45 46
|
syl2anr |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑡 ∈ ℕ ) → 0 < ( 𝑡 / 𝑞 ) ) |
48 |
47
|
3ad2antl2 |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ 𝑡 ∈ ℕ ) → 0 < ( 𝑡 / 𝑞 ) ) |
49 |
48
|
adantrr |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( 𝑡 ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℤ ) ) → 0 < ( 𝑡 / 𝑞 ) ) |
50 |
|
elnnz |
⊢ ( ( 𝑡 / 𝑞 ) ∈ ℕ ↔ ( ( 𝑡 / 𝑞 ) ∈ ℤ ∧ 0 < ( 𝑡 / 𝑞 ) ) ) |
51 |
38 49 50
|
sylanbrc |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( 𝑡 ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℤ ) ) → ( 𝑡 / 𝑞 ) ∈ ℕ ) |
52 |
51
|
expr |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ 𝑡 ∈ ℕ ) → ( ( 𝑡 / 𝑞 ) ∈ ℤ → ( 𝑡 / 𝑞 ) ∈ ℕ ) ) |
53 |
52
|
adantrl |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) ∧ 𝑡 ∈ ℕ ) ) → ( ( 𝑡 / 𝑞 ) ∈ ℤ → ( 𝑡 / 𝑞 ) ∈ ℕ ) ) |
54 |
26
|
adantr |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑞 ∈ ℤ ) |
55 |
29
|
adantr |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑞 ≠ 0 ) |
56 |
|
eluzelz |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → 𝑥 ∈ ℤ ) |
57 |
56
|
adantl |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) → 𝑥 ∈ ℤ ) |
58 |
|
dvdsval2 |
⊢ ( ( 𝑞 ∈ ℤ ∧ 𝑞 ≠ 0 ∧ 𝑥 ∈ ℤ ) → ( 𝑞 ∥ 𝑥 ↔ ( 𝑥 / 𝑞 ) ∈ ℤ ) ) |
59 |
54 55 57 58
|
syl3anc |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑞 ∥ 𝑥 ↔ ( 𝑥 / 𝑞 ) ∈ ℤ ) ) |
60 |
|
eluzelre |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → 𝑥 ∈ ℝ ) |
61 |
|
2z |
⊢ 2 ∈ ℤ |
62 |
61
|
eluz1i |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑥 ∈ ℤ ∧ 2 ≤ 𝑥 ) ) |
63 |
|
2pos |
⊢ 0 < 2 |
64 |
|
zre |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℝ ) |
65 |
|
0re |
⊢ 0 ∈ ℝ |
66 |
|
2re |
⊢ 2 ∈ ℝ |
67 |
|
ltletr |
⊢ ( ( 0 ∈ ℝ ∧ 2 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 0 < 2 ∧ 2 ≤ 𝑥 ) → 0 < 𝑥 ) ) |
68 |
65 66 67
|
mp3an12 |
⊢ ( 𝑥 ∈ ℝ → ( ( 0 < 2 ∧ 2 ≤ 𝑥 ) → 0 < 𝑥 ) ) |
69 |
64 68
|
syl |
⊢ ( 𝑥 ∈ ℤ → ( ( 0 < 2 ∧ 2 ≤ 𝑥 ) → 0 < 𝑥 ) ) |
70 |
63 69
|
mpani |
⊢ ( 𝑥 ∈ ℤ → ( 2 ≤ 𝑥 → 0 < 𝑥 ) ) |
71 |
70
|
imp |
⊢ ( ( 𝑥 ∈ ℤ ∧ 2 ≤ 𝑥 ) → 0 < 𝑥 ) |
72 |
62 71
|
sylbi |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → 0 < 𝑥 ) |
73 |
60 72
|
jca |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) |
74 |
|
divgt0 |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ∧ ( 𝑞 ∈ ℝ ∧ 0 < 𝑞 ) ) → 0 < ( 𝑥 / 𝑞 ) ) |
75 |
73 45 74
|
syl2anr |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) → 0 < ( 𝑥 / 𝑞 ) ) |
76 |
75
|
a1d |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑥 / 𝑞 ) ∈ ℤ → 0 < ( 𝑥 / 𝑞 ) ) ) |
77 |
76
|
ancld |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑥 / 𝑞 ) ∈ ℤ → ( ( 𝑥 / 𝑞 ) ∈ ℤ ∧ 0 < ( 𝑥 / 𝑞 ) ) ) ) |
78 |
|
elnnz |
⊢ ( ( 𝑥 / 𝑞 ) ∈ ℕ ↔ ( ( 𝑥 / 𝑞 ) ∈ ℤ ∧ 0 < ( 𝑥 / 𝑞 ) ) ) |
79 |
77 78
|
syl6ibr |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) → ( ( 𝑥 / 𝑞 ) ∈ ℤ → ( 𝑥 / 𝑞 ) ∈ ℕ ) ) |
80 |
59 79
|
sylbid |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑥 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑞 ∥ 𝑥 → ( 𝑥 / 𝑞 ) ∈ ℕ ) ) |
81 |
80
|
ancoms |
⊢ ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) → ( 𝑞 ∥ 𝑥 → ( 𝑥 / 𝑞 ) ∈ ℕ ) ) |
82 |
|
breq1 |
⊢ ( 𝑦 = ( 𝑥 / 𝑞 ) → ( 𝑦 < 𝑥 ↔ ( 𝑥 / 𝑞 ) < 𝑥 ) ) |
83 |
|
breq2 |
⊢ ( 𝑦 = ( 𝑥 / 𝑞 ) → ( 𝑘 < 𝑦 ↔ 𝑘 < ( 𝑥 / 𝑞 ) ) ) |
84 |
|
breq2 |
⊢ ( 𝑦 = ( 𝑥 / 𝑞 ) → ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) |
85 |
84
|
bibi2d |
⊢ ( 𝑦 = ( 𝑥 / 𝑞 ) → ( ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ↔ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) |
86 |
85
|
notbid |
⊢ ( 𝑦 = ( 𝑥 / 𝑞 ) → ( ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ↔ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) |
87 |
86
|
2rexbidv |
⊢ ( 𝑦 = ( 𝑥 / 𝑞 ) → ( ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) |
88 |
83 87
|
imbi12d |
⊢ ( 𝑦 = ( 𝑥 / 𝑞 ) → ( ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ↔ ( 𝑘 < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) ) |
89 |
88
|
ralbidv |
⊢ ( 𝑦 = ( 𝑥 / 𝑞 ) → ( ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ↔ ∀ 𝑘 ∈ ℕ ( 𝑘 < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) ) |
90 |
82 89
|
imbi12d |
⊢ ( 𝑦 = ( 𝑥 / 𝑞 ) → ( ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) ↔ ( ( 𝑥 / 𝑞 ) < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) ) ) |
91 |
90
|
rspcv |
⊢ ( ( 𝑥 / 𝑞 ) ∈ ℕ → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) → ( ( 𝑥 / 𝑞 ) < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) ) ) |
92 |
91
|
3ad2ant1 |
⊢ ( ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) → ( ( 𝑥 / 𝑞 ) < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) ) ) |
93 |
92
|
adantl |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) → ( ( 𝑥 / 𝑞 ) < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) ) ) |
94 |
|
eluzelcn |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → 𝑥 ∈ ℂ ) |
95 |
94
|
mulid2d |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → ( 1 · 𝑥 ) = 𝑥 ) |
96 |
95
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → ( 1 · 𝑥 ) = 𝑥 ) |
97 |
|
prmgt1 |
⊢ ( 𝑞 ∈ ℙ → 1 < 𝑞 ) |
98 |
97
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → 1 < 𝑞 ) |
99 |
|
1red |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → 1 ∈ ℝ ) |
100 |
28
|
nnred |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ℝ ) |
101 |
100
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → 𝑞 ∈ ℝ ) |
102 |
60
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → 𝑥 ∈ ℝ ) |
103 |
72
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → 0 < 𝑥 ) |
104 |
|
ltmul1 |
⊢ ( ( 1 ∈ ℝ ∧ 𝑞 ∈ ℝ ∧ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) → ( 1 < 𝑞 ↔ ( 1 · 𝑥 ) < ( 𝑞 · 𝑥 ) ) ) |
105 |
99 101 102 103 104
|
syl112anc |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → ( 1 < 𝑞 ↔ ( 1 · 𝑥 ) < ( 𝑞 · 𝑥 ) ) ) |
106 |
98 105
|
mpbid |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → ( 1 · 𝑥 ) < ( 𝑞 · 𝑥 ) ) |
107 |
96 106
|
eqbrtrrd |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → 𝑥 < ( 𝑞 · 𝑥 ) ) |
108 |
28 43
|
syl |
⊢ ( 𝑞 ∈ ℙ → 0 < 𝑞 ) |
109 |
108
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → 0 < 𝑞 ) |
110 |
|
ltdivmul |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ( 𝑞 ∈ ℝ ∧ 0 < 𝑞 ) ) → ( ( 𝑥 / 𝑞 ) < 𝑥 ↔ 𝑥 < ( 𝑞 · 𝑥 ) ) ) |
111 |
102 102 101 109 110
|
syl112anc |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → ( ( 𝑥 / 𝑞 ) < 𝑥 ↔ 𝑥 < ( 𝑞 · 𝑥 ) ) ) |
112 |
107 111
|
mpbird |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → ( 𝑥 / 𝑞 ) < 𝑥 ) |
113 |
|
breq1 |
⊢ ( 𝑘 = ( 𝑡 / 𝑞 ) → ( 𝑘 < ( 𝑥 / 𝑞 ) ↔ ( 𝑡 / 𝑞 ) < ( 𝑥 / 𝑞 ) ) ) |
114 |
|
breq2 |
⊢ ( 𝑘 = ( 𝑡 / 𝑞 ) → ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ) ) |
115 |
114
|
bibi1d |
⊢ ( 𝑘 = ( 𝑡 / 𝑞 ) → ( ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ↔ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) |
116 |
115
|
notbid |
⊢ ( 𝑘 = ( 𝑡 / 𝑞 ) → ( ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ↔ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) |
117 |
116
|
2rexbidv |
⊢ ( 𝑘 = ( 𝑡 / 𝑞 ) → ( ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) |
118 |
113 117
|
imbi12d |
⊢ ( 𝑘 = ( 𝑡 / 𝑞 ) → ( ( 𝑘 < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ↔ ( ( 𝑡 / 𝑞 ) < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) ) |
119 |
118
|
rspcv |
⊢ ( ( 𝑡 / 𝑞 ) ∈ ℕ → ( ∀ 𝑘 ∈ ℕ ( 𝑘 < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) → ( ( 𝑡 / 𝑞 ) < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) ) |
120 |
119
|
3ad2ant2 |
⊢ ( ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) → ( ∀ 𝑘 ∈ ℕ ( 𝑘 < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) → ( ( 𝑡 / 𝑞 ) < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) ) |
121 |
120
|
adantl |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → ( ∀ 𝑘 ∈ ℕ ( 𝑘 < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) → ( ( 𝑡 / 𝑞 ) < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) ) |
122 |
39
|
3ad2ant3 |
⊢ ( ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) → 𝑡 ∈ ℝ ) |
123 |
122
|
adantl |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → 𝑡 ∈ ℝ ) |
124 |
|
ltdiv1 |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ( 𝑞 ∈ ℝ ∧ 0 < 𝑞 ) ) → ( 𝑡 < 𝑥 ↔ ( 𝑡 / 𝑞 ) < ( 𝑥 / 𝑞 ) ) ) |
125 |
123 102 101 109 124
|
syl112anc |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → ( 𝑡 < 𝑥 ↔ ( 𝑡 / 𝑞 ) < ( 𝑥 / 𝑞 ) ) ) |
126 |
125
|
biimpa |
⊢ ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) → ( 𝑡 / 𝑞 ) < ( 𝑥 / 𝑞 ) ) |
127 |
|
simprll |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) → 𝑝 ∈ ℙ ) |
128 |
|
peano2nn |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ ) |
129 |
128
|
adantl |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℕ ) |
130 |
129
|
ad2antrl |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) → ( 𝑛 + 1 ) ∈ ℕ ) |
131 |
26
|
ad4antlr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → 𝑞 ∈ ℤ ) |
132 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
133 |
132
|
ad2antll |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → 𝑛 ∈ ℕ0 ) |
134 |
|
zexpcl |
⊢ ( ( 𝑞 ∈ ℤ ∧ 𝑛 ∈ ℕ0 ) → ( 𝑞 ↑ 𝑛 ) ∈ ℤ ) |
135 |
131 133 134
|
syl2anc |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( 𝑞 ↑ 𝑛 ) ∈ ℤ ) |
136 |
|
nnz |
⊢ ( ( 𝑡 / 𝑞 ) ∈ ℕ → ( 𝑡 / 𝑞 ) ∈ ℤ ) |
137 |
136
|
3ad2ant2 |
⊢ ( ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) → ( 𝑡 / 𝑞 ) ∈ ℤ ) |
138 |
137
|
ad3antlr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( 𝑡 / 𝑞 ) ∈ ℤ ) |
139 |
29
|
ad4antlr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → 𝑞 ≠ 0 ) |
140 |
|
dvdsmulcr |
⊢ ( ( ( 𝑞 ↑ 𝑛 ) ∈ ℤ ∧ ( 𝑡 / 𝑞 ) ∈ ℤ ∧ ( 𝑞 ∈ ℤ ∧ 𝑞 ≠ 0 ) ) → ( ( ( 𝑞 ↑ 𝑛 ) · 𝑞 ) ∥ ( ( 𝑡 / 𝑞 ) · 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ) ) |
141 |
135 138 131 139 140
|
syl112anc |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( ( ( 𝑞 ↑ 𝑛 ) · 𝑞 ) ∥ ( ( 𝑡 / 𝑞 ) · 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ) ) |
142 |
28
|
nncnd |
⊢ ( 𝑞 ∈ ℙ → 𝑞 ∈ ℂ ) |
143 |
142
|
ad4antlr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → 𝑞 ∈ ℂ ) |
144 |
143 133
|
expp1d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( 𝑞 ↑ ( 𝑛 + 1 ) ) = ( ( 𝑞 ↑ 𝑛 ) · 𝑞 ) ) |
145 |
144
|
eqcomd |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝑞 ↑ 𝑛 ) · 𝑞 ) = ( 𝑞 ↑ ( 𝑛 + 1 ) ) ) |
146 |
|
nncn |
⊢ ( 𝑡 ∈ ℕ → 𝑡 ∈ ℂ ) |
147 |
146
|
3ad2ant3 |
⊢ ( ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) → 𝑡 ∈ ℂ ) |
148 |
147
|
ad3antlr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → 𝑡 ∈ ℂ ) |
149 |
148 143 139
|
divcan1d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝑡 / 𝑞 ) · 𝑞 ) = 𝑡 ) |
150 |
145 149
|
breq12d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( ( ( 𝑞 ↑ 𝑛 ) · 𝑞 ) ∥ ( ( 𝑡 / 𝑞 ) · 𝑞 ) ↔ ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑡 ) ) |
151 |
141 150
|
bitr3d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑡 ) ) |
152 |
|
nnz |
⊢ ( ( 𝑥 / 𝑞 ) ∈ ℕ → ( 𝑥 / 𝑞 ) ∈ ℤ ) |
153 |
152
|
3ad2ant1 |
⊢ ( ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) → ( 𝑥 / 𝑞 ) ∈ ℤ ) |
154 |
153
|
ad3antlr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( 𝑥 / 𝑞 ) ∈ ℤ ) |
155 |
|
dvdsmulcr |
⊢ ( ( ( 𝑞 ↑ 𝑛 ) ∈ ℤ ∧ ( 𝑥 / 𝑞 ) ∈ ℤ ∧ ( 𝑞 ∈ ℤ ∧ 𝑞 ≠ 0 ) ) → ( ( ( 𝑞 ↑ 𝑛 ) · 𝑞 ) ∥ ( ( 𝑥 / 𝑞 ) · 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) |
156 |
135 154 131 139 155
|
syl112anc |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( ( ( 𝑞 ↑ 𝑛 ) · 𝑞 ) ∥ ( ( 𝑥 / 𝑞 ) · 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) |
157 |
94
|
ad4antr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → 𝑥 ∈ ℂ ) |
158 |
157 143 139
|
divcan1d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝑥 / 𝑞 ) · 𝑞 ) = 𝑥 ) |
159 |
145 158
|
breq12d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( ( ( 𝑞 ↑ 𝑛 ) · 𝑞 ) ∥ ( ( 𝑥 / 𝑞 ) · 𝑞 ) ↔ ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑥 ) ) |
160 |
156 159
|
bitr3d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ↔ ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑥 ) ) |
161 |
151 160
|
bibi12d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( ( ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ↔ ( ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑡 ↔ ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑥 ) ) ) |
162 |
161
|
notbid |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( ¬ ( ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ↔ ¬ ( ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑡 ↔ ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑥 ) ) ) |
163 |
162
|
biimpd |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( ¬ ( ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) → ¬ ( ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑡 ↔ ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑥 ) ) ) |
164 |
163
|
impr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) → ¬ ( ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑡 ↔ ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑥 ) ) |
165 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑞 ↑ 𝑚 ) = ( 𝑞 ↑ ( 𝑛 + 1 ) ) ) |
166 |
165
|
breq1d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑡 ) ) |
167 |
165
|
breq1d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ↔ ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑥 ) ) |
168 |
166 167
|
bibi12d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ( ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑡 ↔ ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑥 ) ) ) |
169 |
168
|
notbid |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ¬ ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ¬ ( ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑡 ↔ ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑥 ) ) ) |
170 |
169
|
rspcev |
⊢ ( ( ( 𝑛 + 1 ) ∈ ℕ ∧ ¬ ( ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑡 ↔ ( 𝑞 ↑ ( 𝑛 + 1 ) ) ∥ 𝑥 ) ) → ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ) ) |
171 |
130 164 170
|
syl2anc |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) → ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ) ) |
172 |
|
oveq1 |
⊢ ( 𝑝 = 𝑞 → ( 𝑝 ↑ 𝑛 ) = ( 𝑞 ↑ 𝑛 ) ) |
173 |
172
|
breq1d |
⊢ ( 𝑝 = 𝑞 → ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ) ) |
174 |
172
|
breq1d |
⊢ ( 𝑝 = 𝑞 → ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) |
175 |
173 174
|
bibi12d |
⊢ ( 𝑝 = 𝑞 → ( ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ↔ ( ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) |
176 |
175
|
notbid |
⊢ ( 𝑝 = 𝑞 → ( ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ↔ ¬ ( ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) |
177 |
176
|
anbi2d |
⊢ ( 𝑝 = 𝑞 → ( ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ↔ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) ) |
178 |
177
|
anbi2d |
⊢ ( 𝑝 = 𝑞 → ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) ↔ ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) ) ) |
179 |
|
oveq1 |
⊢ ( 𝑝 = 𝑞 → ( 𝑝 ↑ 𝑚 ) = ( 𝑞 ↑ 𝑚 ) ) |
180 |
179
|
breq1d |
⊢ ( 𝑝 = 𝑞 → ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ) ) |
181 |
179
|
breq1d |
⊢ ( 𝑝 = 𝑞 → ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ) ) |
182 |
180 181
|
bibi12d |
⊢ ( 𝑝 = 𝑞 → ( ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
183 |
182
|
notbid |
⊢ ( 𝑝 = 𝑞 → ( ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ¬ ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
184 |
183
|
rexbidv |
⊢ ( 𝑝 = 𝑞 → ( ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
185 |
178 184
|
imbi12d |
⊢ ( 𝑝 = 𝑞 → ( ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) → ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) ↔ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑞 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) → ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) |
186 |
171 185
|
mpbiri |
⊢ ( 𝑝 = 𝑞 → ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) → ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
187 |
186
|
com12 |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) → ( 𝑝 = 𝑞 → ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
188 |
|
simplr |
⊢ ( ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) → 𝑛 ∈ ℕ ) |
189 |
188
|
ad2antlr |
⊢ ( ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) ∧ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) → 𝑛 ∈ ℕ ) |
190 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
191 |
190
|
adantr |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) → 𝑝 ∈ ℤ ) |
192 |
191
|
ad2antrl |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → 𝑝 ∈ ℤ ) |
193 |
132
|
adantl |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ0 ) |
194 |
193
|
ad2antrl |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → 𝑛 ∈ ℕ0 ) |
195 |
|
zexpcl |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑛 ∈ ℕ0 ) → ( 𝑝 ↑ 𝑛 ) ∈ ℤ ) |
196 |
192 194 195
|
syl2anc |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( 𝑝 ↑ 𝑛 ) ∈ ℤ ) |
197 |
26
|
ad4antlr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → 𝑞 ∈ ℤ ) |
198 |
137
|
ad3antlr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( 𝑡 / 𝑞 ) ∈ ℤ ) |
199 |
|
dvdsmultr2 |
⊢ ( ( ( 𝑝 ↑ 𝑛 ) ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ ( 𝑡 / 𝑞 ) ∈ ℤ ) → ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) → ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑞 · ( 𝑡 / 𝑞 ) ) ) ) |
200 |
196 197 198 199
|
syl3anc |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) → ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑞 · ( 𝑡 / 𝑞 ) ) ) ) |
201 |
196 197
|
gcdcomd |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ( 𝑝 ↑ 𝑛 ) gcd 𝑞 ) = ( 𝑞 gcd ( 𝑝 ↑ 𝑛 ) ) ) |
202 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → 𝑞 ∈ ℙ ) |
203 |
|
simprl |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → 𝑝 ∈ ℙ ) |
204 |
|
simprr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → 𝑛 ∈ ℕ ) |
205 |
|
prmdvdsexpb |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) → ( 𝑞 ∥ ( 𝑝 ↑ 𝑛 ) ↔ 𝑞 = 𝑝 ) ) |
206 |
|
equcom |
⊢ ( 𝑞 = 𝑝 ↔ 𝑝 = 𝑞 ) |
207 |
205 206
|
bitrdi |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) → ( 𝑞 ∥ ( 𝑝 ↑ 𝑛 ) ↔ 𝑝 = 𝑞 ) ) |
208 |
207
|
biimpd |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) → ( 𝑞 ∥ ( 𝑝 ↑ 𝑛 ) → 𝑝 = 𝑞 ) ) |
209 |
202 203 204 208
|
syl3anc |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( 𝑞 ∥ ( 𝑝 ↑ 𝑛 ) → 𝑝 = 𝑞 ) ) |
210 |
209
|
con3d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( ¬ 𝑝 = 𝑞 → ¬ 𝑞 ∥ ( 𝑝 ↑ 𝑛 ) ) ) |
211 |
210
|
impr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ¬ 𝑞 ∥ ( 𝑝 ↑ 𝑛 ) ) |
212 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → 𝑞 ∈ ℙ ) |
213 |
|
coprm |
⊢ ( ( 𝑞 ∈ ℙ ∧ ( 𝑝 ↑ 𝑛 ) ∈ ℤ ) → ( ¬ 𝑞 ∥ ( 𝑝 ↑ 𝑛 ) ↔ ( 𝑞 gcd ( 𝑝 ↑ 𝑛 ) ) = 1 ) ) |
214 |
212 196 213
|
syl2anc |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ¬ 𝑞 ∥ ( 𝑝 ↑ 𝑛 ) ↔ ( 𝑞 gcd ( 𝑝 ↑ 𝑛 ) ) = 1 ) ) |
215 |
211 214
|
mpbid |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( 𝑞 gcd ( 𝑝 ↑ 𝑛 ) ) = 1 ) |
216 |
201 215
|
eqtrd |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ( 𝑝 ↑ 𝑛 ) gcd 𝑞 ) = 1 ) |
217 |
|
coprmdvds |
⊢ ( ( ( 𝑝 ↑ 𝑛 ) ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ ( 𝑡 / 𝑞 ) ∈ ℤ ) → ( ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑞 · ( 𝑡 / 𝑞 ) ) ∧ ( ( 𝑝 ↑ 𝑛 ) gcd 𝑞 ) = 1 ) → ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ) ) |
218 |
196 197 198 217
|
syl3anc |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑞 · ( 𝑡 / 𝑞 ) ) ∧ ( ( 𝑝 ↑ 𝑛 ) gcd 𝑞 ) = 1 ) → ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ) ) |
219 |
216 218
|
mpan2d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑞 · ( 𝑡 / 𝑞 ) ) → ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ) ) |
220 |
200 219
|
impbid |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑞 · ( 𝑡 / 𝑞 ) ) ) ) |
221 |
147
|
ad3antlr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → 𝑡 ∈ ℂ ) |
222 |
142
|
ad4antlr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → 𝑞 ∈ ℂ ) |
223 |
29
|
ad4antlr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → 𝑞 ≠ 0 ) |
224 |
221 222 223
|
divcan2d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( 𝑞 · ( 𝑡 / 𝑞 ) ) = 𝑡 ) |
225 |
224
|
breq2d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑞 · ( 𝑡 / 𝑞 ) ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑡 ) ) |
226 |
220 225
|
bitrd |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑡 ) ) |
227 |
153
|
ad3antlr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( 𝑥 / 𝑞 ) ∈ ℤ ) |
228 |
|
dvdsmultr2 |
⊢ ( ( ( 𝑝 ↑ 𝑛 ) ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ ( 𝑥 / 𝑞 ) ∈ ℤ ) → ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) → ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑞 · ( 𝑥 / 𝑞 ) ) ) ) |
229 |
196 197 227 228
|
syl3anc |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) → ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑞 · ( 𝑥 / 𝑞 ) ) ) ) |
230 |
|
coprmdvds |
⊢ ( ( ( 𝑝 ↑ 𝑛 ) ∈ ℤ ∧ 𝑞 ∈ ℤ ∧ ( 𝑥 / 𝑞 ) ∈ ℤ ) → ( ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑞 · ( 𝑥 / 𝑞 ) ) ∧ ( ( 𝑝 ↑ 𝑛 ) gcd 𝑞 ) = 1 ) → ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) |
231 |
196 197 227 230
|
syl3anc |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑞 · ( 𝑥 / 𝑞 ) ) ∧ ( ( 𝑝 ↑ 𝑛 ) gcd 𝑞 ) = 1 ) → ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) |
232 |
216 231
|
mpan2d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑞 · ( 𝑥 / 𝑞 ) ) → ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) |
233 |
229 232
|
impbid |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑞 · ( 𝑥 / 𝑞 ) ) ) ) |
234 |
94
|
ad4antr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → 𝑥 ∈ ℂ ) |
235 |
234 222 223
|
divcan2d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( 𝑞 · ( 𝑥 / 𝑞 ) ) = 𝑥 ) |
236 |
235
|
breq2d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑞 · ( 𝑥 / 𝑞 ) ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) |
237 |
233 236
|
bitrd |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) |
238 |
226 237
|
bibi12d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ↔ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ) |
239 |
238
|
notbid |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ↔ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ) |
240 |
239
|
biimpa |
⊢ ( ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) ∧ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) → ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) |
241 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝑝 ↑ 𝑚 ) = ( 𝑝 ↑ 𝑛 ) ) |
242 |
241
|
breq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑡 ) ) |
243 |
241
|
breq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) |
244 |
242 243
|
bibi12d |
⊢ ( 𝑚 = 𝑛 → ( ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ) |
245 |
244
|
notbid |
⊢ ( 𝑚 = 𝑛 → ( ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ) |
246 |
245
|
rspcev |
⊢ ( ( 𝑛 ∈ ℕ ∧ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) → ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) |
247 |
189 240 246
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) ∧ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) → ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) |
248 |
247
|
ex |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑝 = 𝑞 ) ) → ( ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) → ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
249 |
248
|
expr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( ¬ 𝑝 = 𝑞 → ( ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) → ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) |
250 |
249
|
com23 |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ) → ( ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) → ( ¬ 𝑝 = 𝑞 → ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) |
251 |
250
|
impr |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) → ( ¬ 𝑝 = 𝑞 → ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
252 |
187 251
|
pm2.61d |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) → ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) |
253 |
|
oveq1 |
⊢ ( 𝑟 = 𝑝 → ( 𝑟 ↑ 𝑚 ) = ( 𝑝 ↑ 𝑚 ) ) |
254 |
253
|
breq1d |
⊢ ( 𝑟 = 𝑝 → ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ) ) |
255 |
253
|
breq1d |
⊢ ( 𝑟 = 𝑝 → ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) |
256 |
254 255
|
bibi12d |
⊢ ( 𝑟 = 𝑝 → ( ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
257 |
256
|
notbid |
⊢ ( 𝑟 = 𝑝 → ( ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
258 |
257
|
rexbidv |
⊢ ( 𝑟 = 𝑝 → ( ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
259 |
258
|
rspcev |
⊢ ( ( 𝑝 ∈ ℙ ∧ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) |
260 |
127 252 259
|
syl2anc |
⊢ ( ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) ∧ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) |
261 |
260
|
exp32 |
⊢ ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) → ( ( 𝑝 ∈ ℙ ∧ 𝑛 ∈ ℕ ) → ( ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) |
262 |
261
|
rexlimdvv |
⊢ ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) → ( ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
263 |
126 262
|
embantd |
⊢ ( ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) ∧ 𝑡 < 𝑥 ) → ( ( ( 𝑡 / 𝑞 ) < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
264 |
263
|
ex |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → ( 𝑡 < 𝑥 → ( ( ( 𝑡 / 𝑞 ) < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) |
265 |
264
|
com23 |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → ( ( ( 𝑡 / 𝑞 ) < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑡 / 𝑞 ) ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) → ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) |
266 |
121 265
|
syld |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → ( ∀ 𝑘 ∈ ℕ ( 𝑘 < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) → ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) |
267 |
112 266
|
embantd |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → ( ( ( 𝑥 / 𝑞 ) < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < ( 𝑥 / 𝑞 ) → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ ( 𝑥 / 𝑞 ) ) ) ) → ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) |
268 |
93 267
|
syld |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) ∧ ( ( 𝑥 / 𝑞 ) ∈ ℕ ∧ ( 𝑡 / 𝑞 ) ∈ ℕ ∧ 𝑡 ∈ ℕ ) ) → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) → ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) |
269 |
268
|
3exp2 |
⊢ ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) → ( ( 𝑥 / 𝑞 ) ∈ ℕ → ( ( 𝑡 / 𝑞 ) ∈ ℕ → ( 𝑡 ∈ ℕ → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) → ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) ) ) ) |
270 |
81 269
|
syld |
⊢ ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ) → ( 𝑞 ∥ 𝑥 → ( ( 𝑡 / 𝑞 ) ∈ ℕ → ( 𝑡 ∈ ℕ → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) → ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) ) ) ) |
271 |
270
|
3impia |
⊢ ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) → ( ( 𝑡 / 𝑞 ) ∈ ℕ → ( 𝑡 ∈ ℕ → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) → ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) ) ) |
272 |
271
|
com24 |
⊢ ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) → ( 𝑡 ∈ ℕ → ( ( 𝑡 / 𝑞 ) ∈ ℕ → ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) ) ) |
273 |
272
|
imp32 |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) ∧ 𝑡 ∈ ℕ ) ) → ( ( 𝑡 / 𝑞 ) ∈ ℕ → ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) |
274 |
37 53 273
|
3syld |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) ∧ 𝑡 ∈ ℕ ) ) → ( 𝑞 ∥ 𝑡 → ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) |
275 |
|
simpl2 |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( 𝑡 ∈ ℕ ∧ ( ¬ 𝑞 ∥ 𝑡 ∧ 𝑡 < 𝑥 ) ) ) → 𝑞 ∈ ℙ ) |
276 |
|
1nn |
⊢ 1 ∈ ℕ |
277 |
276
|
a1i |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( 𝑡 ∈ ℕ ∧ ( ¬ 𝑞 ∥ 𝑡 ∧ 𝑡 < 𝑥 ) ) ) → 1 ∈ ℕ ) |
278 |
142
|
exp1d |
⊢ ( 𝑞 ∈ ℙ → ( 𝑞 ↑ 1 ) = 𝑞 ) |
279 |
278
|
breq1d |
⊢ ( 𝑞 ∈ ℙ → ( ( 𝑞 ↑ 1 ) ∥ 𝑡 ↔ 𝑞 ∥ 𝑡 ) ) |
280 |
279
|
notbid |
⊢ ( 𝑞 ∈ ℙ → ( ¬ ( 𝑞 ↑ 1 ) ∥ 𝑡 ↔ ¬ 𝑞 ∥ 𝑡 ) ) |
281 |
280
|
biimpar |
⊢ ( ( 𝑞 ∈ ℙ ∧ ¬ 𝑞 ∥ 𝑡 ) → ¬ ( 𝑞 ↑ 1 ) ∥ 𝑡 ) |
282 |
281
|
3ad2antl2 |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ¬ 𝑞 ∥ 𝑡 ) → ¬ ( 𝑞 ↑ 1 ) ∥ 𝑡 ) |
283 |
282
|
adantrr |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( ¬ 𝑞 ∥ 𝑡 ∧ 𝑡 < 𝑥 ) ) → ¬ ( 𝑞 ↑ 1 ) ∥ 𝑡 ) |
284 |
283
|
adantrl |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( 𝑡 ∈ ℕ ∧ ( ¬ 𝑞 ∥ 𝑡 ∧ 𝑡 < 𝑥 ) ) ) → ¬ ( 𝑞 ↑ 1 ) ∥ 𝑡 ) |
285 |
278
|
breq1d |
⊢ ( 𝑞 ∈ ℙ → ( ( 𝑞 ↑ 1 ) ∥ 𝑥 ↔ 𝑞 ∥ 𝑥 ) ) |
286 |
285
|
biimpar |
⊢ ( ( 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) → ( 𝑞 ↑ 1 ) ∥ 𝑥 ) |
287 |
286
|
3adant1 |
⊢ ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) → ( 𝑞 ↑ 1 ) ∥ 𝑥 ) |
288 |
|
idd |
⊢ ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) → ( ( ( 𝑞 ↑ 1 ) ∥ 𝑥 → ( 𝑞 ↑ 1 ) ∥ 𝑡 ) → ( ( 𝑞 ↑ 1 ) ∥ 𝑥 → ( 𝑞 ↑ 1 ) ∥ 𝑡 ) ) ) |
289 |
287 288
|
mpid |
⊢ ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) → ( ( ( 𝑞 ↑ 1 ) ∥ 𝑥 → ( 𝑞 ↑ 1 ) ∥ 𝑡 ) → ( 𝑞 ↑ 1 ) ∥ 𝑡 ) ) |
290 |
289
|
adantr |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( 𝑡 ∈ ℕ ∧ ( ¬ 𝑞 ∥ 𝑡 ∧ 𝑡 < 𝑥 ) ) ) → ( ( ( 𝑞 ↑ 1 ) ∥ 𝑥 → ( 𝑞 ↑ 1 ) ∥ 𝑡 ) → ( 𝑞 ↑ 1 ) ∥ 𝑡 ) ) |
291 |
284 290
|
mtod |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( 𝑡 ∈ ℕ ∧ ( ¬ 𝑞 ∥ 𝑡 ∧ 𝑡 < 𝑥 ) ) ) → ¬ ( ( 𝑞 ↑ 1 ) ∥ 𝑥 → ( 𝑞 ↑ 1 ) ∥ 𝑡 ) ) |
292 |
|
biimpr |
⊢ ( ( ( 𝑞 ↑ 1 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 1 ) ∥ 𝑥 ) → ( ( 𝑞 ↑ 1 ) ∥ 𝑥 → ( 𝑞 ↑ 1 ) ∥ 𝑡 ) ) |
293 |
291 292
|
nsyl |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( 𝑡 ∈ ℕ ∧ ( ¬ 𝑞 ∥ 𝑡 ∧ 𝑡 < 𝑥 ) ) ) → ¬ ( ( 𝑞 ↑ 1 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 1 ) ∥ 𝑥 ) ) |
294 |
|
oveq1 |
⊢ ( 𝑟 = 𝑞 → ( 𝑟 ↑ 𝑚 ) = ( 𝑞 ↑ 𝑚 ) ) |
295 |
294
|
breq1d |
⊢ ( 𝑟 = 𝑞 → ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ) ) |
296 |
294
|
breq1d |
⊢ ( 𝑟 = 𝑞 → ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ) ) |
297 |
295 296
|
bibi12d |
⊢ ( 𝑟 = 𝑞 → ( ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
298 |
297
|
notbid |
⊢ ( 𝑟 = 𝑞 → ( ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ¬ ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
299 |
|
oveq2 |
⊢ ( 𝑚 = 1 → ( 𝑞 ↑ 𝑚 ) = ( 𝑞 ↑ 1 ) ) |
300 |
299
|
breq1d |
⊢ ( 𝑚 = 1 → ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 1 ) ∥ 𝑡 ) ) |
301 |
299
|
breq1d |
⊢ ( 𝑚 = 1 → ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ↔ ( 𝑞 ↑ 1 ) ∥ 𝑥 ) ) |
302 |
300 301
|
bibi12d |
⊢ ( 𝑚 = 1 → ( ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ( ( 𝑞 ↑ 1 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 1 ) ∥ 𝑥 ) ) ) |
303 |
302
|
notbid |
⊢ ( 𝑚 = 1 → ( ¬ ( ( 𝑞 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ¬ ( ( 𝑞 ↑ 1 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 1 ) ∥ 𝑥 ) ) ) |
304 |
298 303
|
rspc2ev |
⊢ ( ( 𝑞 ∈ ℙ ∧ 1 ∈ ℕ ∧ ¬ ( ( 𝑞 ↑ 1 ) ∥ 𝑡 ↔ ( 𝑞 ↑ 1 ) ∥ 𝑥 ) ) → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) |
305 |
275 277 293 304
|
syl3anc |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( 𝑡 ∈ ℕ ∧ ( ¬ 𝑞 ∥ 𝑡 ∧ 𝑡 < 𝑥 ) ) ) → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) |
306 |
305
|
expr |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ 𝑡 ∈ ℕ ) → ( ( ¬ 𝑞 ∥ 𝑡 ∧ 𝑡 < 𝑥 ) → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
307 |
306
|
expd |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ 𝑡 ∈ ℕ ) → ( ¬ 𝑞 ∥ 𝑡 → ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) |
308 |
307
|
adantrl |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) ∧ 𝑡 ∈ ℕ ) ) → ( ¬ 𝑞 ∥ 𝑡 → ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) |
309 |
274 308
|
pm2.61d |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) ∧ 𝑡 ∈ ℕ ) ) → ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
310 |
309
|
expr |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) ) → ( 𝑡 ∈ ℕ → ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) ) |
311 |
310
|
ralrimiv |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) ) → ∀ 𝑡 ∈ ℕ ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
312 |
|
breq1 |
⊢ ( 𝑡 = 𝑘 → ( 𝑡 < 𝑥 ↔ 𝑘 < 𝑥 ) ) |
313 |
|
breq2 |
⊢ ( 𝑡 = 𝑘 → ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑘 ) ) |
314 |
313
|
bibi1d |
⊢ ( 𝑡 = 𝑘 → ( ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑘 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
315 |
314
|
notbid |
⊢ ( 𝑡 = 𝑘 → ( ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑘 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
316 |
315
|
2rexbidv |
⊢ ( 𝑡 = 𝑘 → ( ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑘 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
317 |
253
|
breq1d |
⊢ ( 𝑟 = 𝑝 → ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑘 ) ) |
318 |
317 255
|
bibi12d |
⊢ ( 𝑟 = 𝑝 → ( ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑘 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
319 |
318
|
notbid |
⊢ ( 𝑟 = 𝑝 → ( ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑘 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ) ) |
320 |
241
|
breq1d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ) ) |
321 |
320 243
|
bibi12d |
⊢ ( 𝑚 = 𝑛 → ( ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ) |
322 |
321
|
notbid |
⊢ ( 𝑚 = 𝑛 → ( ¬ ( ( 𝑝 ↑ 𝑚 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ) |
323 |
319 322
|
cbvrex2vw |
⊢ ( ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑘 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) |
324 |
316 323
|
bitrdi |
⊢ ( 𝑡 = 𝑘 → ( ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ↔ ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ) |
325 |
312 324
|
imbi12d |
⊢ ( 𝑡 = 𝑘 → ( ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ↔ ( 𝑘 < 𝑥 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ) ) |
326 |
325
|
cbvralvw |
⊢ ( ∀ 𝑡 ∈ ℕ ( 𝑡 < 𝑥 → ∃ 𝑟 ∈ ℙ ∃ 𝑚 ∈ ℕ ¬ ( ( 𝑟 ↑ 𝑚 ) ∥ 𝑡 ↔ ( 𝑟 ↑ 𝑚 ) ∥ 𝑥 ) ) ↔ ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑥 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ) |
327 |
311 326
|
sylib |
⊢ ( ( ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑞 ∈ ℙ ∧ 𝑞 ∥ 𝑥 ) ∧ ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) ) → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑥 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ) |
328 |
327
|
3exp1 |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑞 ∈ ℙ → ( 𝑞 ∥ 𝑥 → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑥 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ) ) ) ) |
329 |
328
|
rexlimdv |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → ( ∃ 𝑞 ∈ ℙ 𝑞 ∥ 𝑥 → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑥 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ) ) ) |
330 |
25 329
|
mpd |
⊢ ( 𝑥 ∈ ( ℤ≥ ‘ 2 ) → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑦 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑦 ) ) ) → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑥 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ) ) |
331 |
14 21 24 330
|
indstr2 |
⊢ ( 𝑥 ∈ ℕ → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝑥 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝑥 ) ) ) |
332 |
7 331
|
vtoclga |
⊢ ( 𝐴 ∈ ℕ → ∀ 𝑘 ∈ ℕ ( 𝑘 < 𝐴 → ∃ 𝑝 ∈ ℙ ∃ 𝑛 ∈ ℕ ¬ ( ( 𝑝 ↑ 𝑛 ) ∥ 𝑘 ↔ ( 𝑝 ↑ 𝑛 ) ∥ 𝐴 ) ) ) |