| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntlem1.r |  |-  R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) | 
						
							| 2 |  | pntlem1.a |  |-  ( ph -> A e. RR+ ) | 
						
							| 3 |  | pntlem1.b |  |-  ( ph -> B e. RR+ ) | 
						
							| 4 |  | pntlem1.l |  |-  ( ph -> L e. ( 0 (,) 1 ) ) | 
						
							| 5 |  | pntlem1.d |  |-  D = ( A + 1 ) | 
						
							| 6 |  | pntlem1.f |  |-  F = ( ( 1 - ( 1 / D ) ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) | 
						
							| 7 |  | pntlem1.u |  |-  ( ph -> U e. RR+ ) | 
						
							| 8 |  | pntlem1.u2 |  |-  ( ph -> U <_ A ) | 
						
							| 9 |  | pntlem1.e |  |-  E = ( U / D ) | 
						
							| 10 |  | pntlem1.k |  |-  K = ( exp ` ( B / E ) ) | 
						
							| 11 |  | pntlem1.y |  |-  ( ph -> ( Y e. RR+ /\ 1 <_ Y ) ) | 
						
							| 12 |  | pntlem1.x |  |-  ( ph -> ( X e. RR+ /\ Y < X ) ) | 
						
							| 13 |  | pntlem1.c |  |-  ( ph -> C e. RR+ ) | 
						
							| 14 |  | pntlem1.w |  |-  W = ( ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) + ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) ) | 
						
							| 15 |  | pntlem1.z |  |-  ( ph -> Z e. ( W [,) +oo ) ) | 
						
							| 16 |  | pntlem1.m |  |-  M = ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) | 
						
							| 17 |  | pntlem1.n |  |-  N = ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) | 
						
							| 18 |  | pntlem1.U |  |-  ( ph -> A. z e. ( Y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ U ) | 
						
							| 19 |  | pntlem1.K |  |-  ( ph -> A. y e. ( X (,) +oo ) E. z e. RR+ ( ( y < z /\ ( ( 1 + ( L x. E ) ) x. z ) < ( K x. y ) ) /\ A. u e. ( z [,] ( ( 1 + ( L x. E ) ) x. z ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) | 
						
							| 20 |  | 2re |  |-  2 e. RR | 
						
							| 21 |  | fzfid |  |-  ( ph -> ( 1 ... ( |_ ` ( Z / Y ) ) ) e. Fin ) | 
						
							| 22 |  | elfznn |  |-  ( n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) -> n e. NN ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> n e. NN ) | 
						
							| 24 | 23 | nnrpd |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> n e. RR+ ) | 
						
							| 25 | 24 | relogcld |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( log ` n ) e. RR ) | 
						
							| 26 | 25 23 | nndivred |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( log ` n ) / n ) e. RR ) | 
						
							| 27 | 21 26 | fsumrecl |  |-  ( ph -> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( log ` n ) / n ) e. RR ) | 
						
							| 28 |  | remulcl |  |-  ( ( 2 e. RR /\ sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( log ` n ) / n ) e. RR ) -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( log ` n ) / n ) ) e. RR ) | 
						
							| 29 | 20 27 28 | sylancr |  |-  ( ph -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( log ` n ) / n ) ) e. RR ) | 
						
							| 30 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | pntlemb |  |-  ( ph -> ( Z e. RR+ /\ ( 1 < Z /\ _e <_ ( sqrt ` Z ) /\ ( sqrt ` Z ) <_ ( Z / Y ) ) /\ ( ( 4 / ( L x. E ) ) <_ ( sqrt ` Z ) /\ ( ( ( log ` X ) / ( log ` K ) ) + 2 ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) /\ ( ( U x. 3 ) + C ) <_ ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) ) | 
						
							| 31 | 30 | simp1d |  |-  ( ph -> Z e. RR+ ) | 
						
							| 32 | 31 | relogcld |  |-  ( ph -> ( log ` Z ) e. RR ) | 
						
							| 33 |  | peano2re |  |-  ( ( log ` Z ) e. RR -> ( ( log ` Z ) + 1 ) e. RR ) | 
						
							| 34 | 32 33 | syl |  |-  ( ph -> ( ( log ` Z ) + 1 ) e. RR ) | 
						
							| 35 | 34 | resqcld |  |-  ( ph -> ( ( ( log ` Z ) + 1 ) ^ 2 ) e. RR ) | 
						
							| 36 |  | 3re |  |-  3 e. RR | 
						
							| 37 |  | readdcl |  |-  ( ( ( log ` Z ) e. RR /\ 3 e. RR ) -> ( ( log ` Z ) + 3 ) e. RR ) | 
						
							| 38 | 32 36 37 | sylancl |  |-  ( ph -> ( ( log ` Z ) + 3 ) e. RR ) | 
						
							| 39 | 38 32 | remulcld |  |-  ( ph -> ( ( ( log ` Z ) + 3 ) x. ( log ` Z ) ) e. RR ) | 
						
							| 40 | 31 | rpred |  |-  ( ph -> Z e. RR ) | 
						
							| 41 | 11 | simpld |  |-  ( ph -> Y e. RR+ ) | 
						
							| 42 | 40 41 | rerpdivcld |  |-  ( ph -> ( Z / Y ) e. RR ) | 
						
							| 43 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 44 | 31 | rpsqrtcld |  |-  ( ph -> ( sqrt ` Z ) e. RR+ ) | 
						
							| 45 | 44 | rpred |  |-  ( ph -> ( sqrt ` Z ) e. RR ) | 
						
							| 46 |  | ere |  |-  _e e. RR | 
						
							| 47 | 46 | a1i |  |-  ( ph -> _e e. RR ) | 
						
							| 48 |  | 1re |  |-  1 e. RR | 
						
							| 49 |  | 1lt2 |  |-  1 < 2 | 
						
							| 50 |  | egt2lt3 |  |-  ( 2 < _e /\ _e < 3 ) | 
						
							| 51 | 50 | simpli |  |-  2 < _e | 
						
							| 52 | 48 20 46 | lttri |  |-  ( ( 1 < 2 /\ 2 < _e ) -> 1 < _e ) | 
						
							| 53 | 49 51 52 | mp2an |  |-  1 < _e | 
						
							| 54 | 48 46 53 | ltleii |  |-  1 <_ _e | 
						
							| 55 | 54 | a1i |  |-  ( ph -> 1 <_ _e ) | 
						
							| 56 | 30 | simp2d |  |-  ( ph -> ( 1 < Z /\ _e <_ ( sqrt ` Z ) /\ ( sqrt ` Z ) <_ ( Z / Y ) ) ) | 
						
							| 57 | 56 | simp2d |  |-  ( ph -> _e <_ ( sqrt ` Z ) ) | 
						
							| 58 | 43 47 45 55 57 | letrd |  |-  ( ph -> 1 <_ ( sqrt ` Z ) ) | 
						
							| 59 | 56 | simp3d |  |-  ( ph -> ( sqrt ` Z ) <_ ( Z / Y ) ) | 
						
							| 60 | 43 45 42 58 59 | letrd |  |-  ( ph -> 1 <_ ( Z / Y ) ) | 
						
							| 61 |  | flge1nn |  |-  ( ( ( Z / Y ) e. RR /\ 1 <_ ( Z / Y ) ) -> ( |_ ` ( Z / Y ) ) e. NN ) | 
						
							| 62 | 42 60 61 | syl2anc |  |-  ( ph -> ( |_ ` ( Z / Y ) ) e. NN ) | 
						
							| 63 | 62 | nnrpd |  |-  ( ph -> ( |_ ` ( Z / Y ) ) e. RR+ ) | 
						
							| 64 | 63 | relogcld |  |-  ( ph -> ( log ` ( |_ ` ( Z / Y ) ) ) e. RR ) | 
						
							| 65 | 64 43 | readdcld |  |-  ( ph -> ( ( log ` ( |_ ` ( Z / Y ) ) ) + 1 ) e. RR ) | 
						
							| 66 | 65 | resqcld |  |-  ( ph -> ( ( ( log ` ( |_ ` ( Z / Y ) ) ) + 1 ) ^ 2 ) e. RR ) | 
						
							| 67 |  | logdivbnd |  |-  ( ( |_ ` ( Z / Y ) ) e. NN -> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( log ` n ) / n ) <_ ( ( ( ( log ` ( |_ ` ( Z / Y ) ) ) + 1 ) ^ 2 ) / 2 ) ) | 
						
							| 68 | 62 67 | syl |  |-  ( ph -> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( log ` n ) / n ) <_ ( ( ( ( log ` ( |_ ` ( Z / Y ) ) ) + 1 ) ^ 2 ) / 2 ) ) | 
						
							| 69 | 20 | a1i |  |-  ( ph -> 2 e. RR ) | 
						
							| 70 |  | 2pos |  |-  0 < 2 | 
						
							| 71 | 70 | a1i |  |-  ( ph -> 0 < 2 ) | 
						
							| 72 |  | lemuldiv2 |  |-  ( ( sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( log ` n ) / n ) e. RR /\ ( ( ( log ` ( |_ ` ( Z / Y ) ) ) + 1 ) ^ 2 ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( log ` n ) / n ) ) <_ ( ( ( log ` ( |_ ` ( Z / Y ) ) ) + 1 ) ^ 2 ) <-> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( log ` n ) / n ) <_ ( ( ( ( log ` ( |_ ` ( Z / Y ) ) ) + 1 ) ^ 2 ) / 2 ) ) ) | 
						
							| 73 | 27 66 69 71 72 | syl112anc |  |-  ( ph -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( log ` n ) / n ) ) <_ ( ( ( log ` ( |_ ` ( Z / Y ) ) ) + 1 ) ^ 2 ) <-> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( log ` n ) / n ) <_ ( ( ( ( log ` ( |_ ` ( Z / Y ) ) ) + 1 ) ^ 2 ) / 2 ) ) ) | 
						
							| 74 | 68 73 | mpbird |  |-  ( ph -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( log ` n ) / n ) ) <_ ( ( ( log ` ( |_ ` ( Z / Y ) ) ) + 1 ) ^ 2 ) ) | 
						
							| 75 |  | reflcl |  |-  ( ( Z / Y ) e. RR -> ( |_ ` ( Z / Y ) ) e. RR ) | 
						
							| 76 | 42 75 | syl |  |-  ( ph -> ( |_ ` ( Z / Y ) ) e. RR ) | 
						
							| 77 |  | flle |  |-  ( ( Z / Y ) e. RR -> ( |_ ` ( Z / Y ) ) <_ ( Z / Y ) ) | 
						
							| 78 | 42 77 | syl |  |-  ( ph -> ( |_ ` ( Z / Y ) ) <_ ( Z / Y ) ) | 
						
							| 79 | 11 | simprd |  |-  ( ph -> 1 <_ Y ) | 
						
							| 80 |  | 1rp |  |-  1 e. RR+ | 
						
							| 81 | 80 | a1i |  |-  ( ph -> 1 e. RR+ ) | 
						
							| 82 | 81 41 31 | lediv2d |  |-  ( ph -> ( 1 <_ Y <-> ( Z / Y ) <_ ( Z / 1 ) ) ) | 
						
							| 83 | 79 82 | mpbid |  |-  ( ph -> ( Z / Y ) <_ ( Z / 1 ) ) | 
						
							| 84 | 40 | recnd |  |-  ( ph -> Z e. CC ) | 
						
							| 85 | 84 | div1d |  |-  ( ph -> ( Z / 1 ) = Z ) | 
						
							| 86 | 83 85 | breqtrd |  |-  ( ph -> ( Z / Y ) <_ Z ) | 
						
							| 87 | 76 42 40 78 86 | letrd |  |-  ( ph -> ( |_ ` ( Z / Y ) ) <_ Z ) | 
						
							| 88 | 63 31 | logled |  |-  ( ph -> ( ( |_ ` ( Z / Y ) ) <_ Z <-> ( log ` ( |_ ` ( Z / Y ) ) ) <_ ( log ` Z ) ) ) | 
						
							| 89 | 87 88 | mpbid |  |-  ( ph -> ( log ` ( |_ ` ( Z / Y ) ) ) <_ ( log ` Z ) ) | 
						
							| 90 | 64 32 43 89 | leadd1dd |  |-  ( ph -> ( ( log ` ( |_ ` ( Z / Y ) ) ) + 1 ) <_ ( ( log ` Z ) + 1 ) ) | 
						
							| 91 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 92 |  | log1 |  |-  ( log ` 1 ) = 0 | 
						
							| 93 | 62 | nnge1d |  |-  ( ph -> 1 <_ ( |_ ` ( Z / Y ) ) ) | 
						
							| 94 |  | logleb |  |-  ( ( 1 e. RR+ /\ ( |_ ` ( Z / Y ) ) e. RR+ ) -> ( 1 <_ ( |_ ` ( Z / Y ) ) <-> ( log ` 1 ) <_ ( log ` ( |_ ` ( Z / Y ) ) ) ) ) | 
						
							| 95 | 80 63 94 | sylancr |  |-  ( ph -> ( 1 <_ ( |_ ` ( Z / Y ) ) <-> ( log ` 1 ) <_ ( log ` ( |_ ` ( Z / Y ) ) ) ) ) | 
						
							| 96 | 93 95 | mpbid |  |-  ( ph -> ( log ` 1 ) <_ ( log ` ( |_ ` ( Z / Y ) ) ) ) | 
						
							| 97 | 92 96 | eqbrtrrid |  |-  ( ph -> 0 <_ ( log ` ( |_ ` ( Z / Y ) ) ) ) | 
						
							| 98 | 64 | lep1d |  |-  ( ph -> ( log ` ( |_ ` ( Z / Y ) ) ) <_ ( ( log ` ( |_ ` ( Z / Y ) ) ) + 1 ) ) | 
						
							| 99 | 91 64 65 97 98 | letrd |  |-  ( ph -> 0 <_ ( ( log ` ( |_ ` ( Z / Y ) ) ) + 1 ) ) | 
						
							| 100 | 91 65 34 99 90 | letrd |  |-  ( ph -> 0 <_ ( ( log ` Z ) + 1 ) ) | 
						
							| 101 | 65 34 99 100 | le2sqd |  |-  ( ph -> ( ( ( log ` ( |_ ` ( Z / Y ) ) ) + 1 ) <_ ( ( log ` Z ) + 1 ) <-> ( ( ( log ` ( |_ ` ( Z / Y ) ) ) + 1 ) ^ 2 ) <_ ( ( ( log ` Z ) + 1 ) ^ 2 ) ) ) | 
						
							| 102 | 90 101 | mpbid |  |-  ( ph -> ( ( ( log ` ( |_ ` ( Z / Y ) ) ) + 1 ) ^ 2 ) <_ ( ( ( log ` Z ) + 1 ) ^ 2 ) ) | 
						
							| 103 | 29 66 35 74 102 | letrd |  |-  ( ph -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( log ` n ) / n ) ) <_ ( ( ( log ` Z ) + 1 ) ^ 2 ) ) | 
						
							| 104 | 32 | resqcld |  |-  ( ph -> ( ( log ` Z ) ^ 2 ) e. RR ) | 
						
							| 105 | 69 32 | remulcld |  |-  ( ph -> ( 2 x. ( log ` Z ) ) e. RR ) | 
						
							| 106 | 104 105 | readdcld |  |-  ( ph -> ( ( ( log ` Z ) ^ 2 ) + ( 2 x. ( log ` Z ) ) ) e. RR ) | 
						
							| 107 |  | loge |  |-  ( log ` _e ) = 1 | 
						
							| 108 | 44 | rpge0d |  |-  ( ph -> 0 <_ ( sqrt ` Z ) ) | 
						
							| 109 | 45 45 108 58 | lemulge12d |  |-  ( ph -> ( sqrt ` Z ) <_ ( ( sqrt ` Z ) x. ( sqrt ` Z ) ) ) | 
						
							| 110 | 31 | rprege0d |  |-  ( ph -> ( Z e. RR /\ 0 <_ Z ) ) | 
						
							| 111 |  | remsqsqrt |  |-  ( ( Z e. RR /\ 0 <_ Z ) -> ( ( sqrt ` Z ) x. ( sqrt ` Z ) ) = Z ) | 
						
							| 112 | 110 111 | syl |  |-  ( ph -> ( ( sqrt ` Z ) x. ( sqrt ` Z ) ) = Z ) | 
						
							| 113 | 109 112 | breqtrd |  |-  ( ph -> ( sqrt ` Z ) <_ Z ) | 
						
							| 114 | 47 45 40 57 113 | letrd |  |-  ( ph -> _e <_ Z ) | 
						
							| 115 |  | epr |  |-  _e e. RR+ | 
						
							| 116 |  | logleb |  |-  ( ( _e e. RR+ /\ Z e. RR+ ) -> ( _e <_ Z <-> ( log ` _e ) <_ ( log ` Z ) ) ) | 
						
							| 117 | 115 31 116 | sylancr |  |-  ( ph -> ( _e <_ Z <-> ( log ` _e ) <_ ( log ` Z ) ) ) | 
						
							| 118 | 114 117 | mpbid |  |-  ( ph -> ( log ` _e ) <_ ( log ` Z ) ) | 
						
							| 119 | 107 118 | eqbrtrrid |  |-  ( ph -> 1 <_ ( log ` Z ) ) | 
						
							| 120 | 43 32 106 119 | leadd2dd |  |-  ( ph -> ( ( ( ( log ` Z ) ^ 2 ) + ( 2 x. ( log ` Z ) ) ) + 1 ) <_ ( ( ( ( log ` Z ) ^ 2 ) + ( 2 x. ( log ` Z ) ) ) + ( log ` Z ) ) ) | 
						
							| 121 | 32 | recnd |  |-  ( ph -> ( log ` Z ) e. CC ) | 
						
							| 122 |  | binom21 |  |-  ( ( log ` Z ) e. CC -> ( ( ( log ` Z ) + 1 ) ^ 2 ) = ( ( ( ( log ` Z ) ^ 2 ) + ( 2 x. ( log ` Z ) ) ) + 1 ) ) | 
						
							| 123 | 121 122 | syl |  |-  ( ph -> ( ( ( log ` Z ) + 1 ) ^ 2 ) = ( ( ( ( log ` Z ) ^ 2 ) + ( 2 x. ( log ` Z ) ) ) + 1 ) ) | 
						
							| 124 | 121 | sqvald |  |-  ( ph -> ( ( log ` Z ) ^ 2 ) = ( ( log ` Z ) x. ( log ` Z ) ) ) | 
						
							| 125 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 126 | 125 | oveq1i |  |-  ( 3 x. ( log ` Z ) ) = ( ( 2 + 1 ) x. ( log ` Z ) ) | 
						
							| 127 |  | 2cnd |  |-  ( ph -> 2 e. CC ) | 
						
							| 128 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 129 | 127 128 121 | adddird |  |-  ( ph -> ( ( 2 + 1 ) x. ( log ` Z ) ) = ( ( 2 x. ( log ` Z ) ) + ( 1 x. ( log ` Z ) ) ) ) | 
						
							| 130 | 126 129 | eqtrid |  |-  ( ph -> ( 3 x. ( log ` Z ) ) = ( ( 2 x. ( log ` Z ) ) + ( 1 x. ( log ` Z ) ) ) ) | 
						
							| 131 | 121 | mullidd |  |-  ( ph -> ( 1 x. ( log ` Z ) ) = ( log ` Z ) ) | 
						
							| 132 | 131 | oveq2d |  |-  ( ph -> ( ( 2 x. ( log ` Z ) ) + ( 1 x. ( log ` Z ) ) ) = ( ( 2 x. ( log ` Z ) ) + ( log ` Z ) ) ) | 
						
							| 133 | 130 132 | eqtr2d |  |-  ( ph -> ( ( 2 x. ( log ` Z ) ) + ( log ` Z ) ) = ( 3 x. ( log ` Z ) ) ) | 
						
							| 134 | 124 133 | oveq12d |  |-  ( ph -> ( ( ( log ` Z ) ^ 2 ) + ( ( 2 x. ( log ` Z ) ) + ( log ` Z ) ) ) = ( ( ( log ` Z ) x. ( log ` Z ) ) + ( 3 x. ( log ` Z ) ) ) ) | 
						
							| 135 | 121 | sqcld |  |-  ( ph -> ( ( log ` Z ) ^ 2 ) e. CC ) | 
						
							| 136 |  | 2cn |  |-  2 e. CC | 
						
							| 137 |  | mulcl |  |-  ( ( 2 e. CC /\ ( log ` Z ) e. CC ) -> ( 2 x. ( log ` Z ) ) e. CC ) | 
						
							| 138 | 136 121 137 | sylancr |  |-  ( ph -> ( 2 x. ( log ` Z ) ) e. CC ) | 
						
							| 139 | 135 138 121 | addassd |  |-  ( ph -> ( ( ( ( log ` Z ) ^ 2 ) + ( 2 x. ( log ` Z ) ) ) + ( log ` Z ) ) = ( ( ( log ` Z ) ^ 2 ) + ( ( 2 x. ( log ` Z ) ) + ( log ` Z ) ) ) ) | 
						
							| 140 |  | 3cn |  |-  3 e. CC | 
						
							| 141 | 140 | a1i |  |-  ( ph -> 3 e. CC ) | 
						
							| 142 | 121 141 121 | adddird |  |-  ( ph -> ( ( ( log ` Z ) + 3 ) x. ( log ` Z ) ) = ( ( ( log ` Z ) x. ( log ` Z ) ) + ( 3 x. ( log ` Z ) ) ) ) | 
						
							| 143 | 134 139 142 | 3eqtr4rd |  |-  ( ph -> ( ( ( log ` Z ) + 3 ) x. ( log ` Z ) ) = ( ( ( ( log ` Z ) ^ 2 ) + ( 2 x. ( log ` Z ) ) ) + ( log ` Z ) ) ) | 
						
							| 144 | 120 123 143 | 3brtr4d |  |-  ( ph -> ( ( ( log ` Z ) + 1 ) ^ 2 ) <_ ( ( ( log ` Z ) + 3 ) x. ( log ` Z ) ) ) | 
						
							| 145 | 29 35 39 103 144 | letrd |  |-  ( ph -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( log ` n ) / n ) ) <_ ( ( ( log ` Z ) + 3 ) x. ( log ` Z ) ) ) | 
						
							| 146 | 29 39 7 | lemul2d |  |-  ( ph -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( log ` n ) / n ) ) <_ ( ( ( log ` Z ) + 3 ) x. ( log ` Z ) ) <-> ( U x. ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( log ` n ) / n ) ) ) <_ ( U x. ( ( ( log ` Z ) + 3 ) x. ( log ` Z ) ) ) ) ) | 
						
							| 147 | 145 146 | mpbid |  |-  ( ph -> ( U x. ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( log ` n ) / n ) ) ) <_ ( U x. ( ( ( log ` Z ) + 3 ) x. ( log ` Z ) ) ) ) | 
						
							| 148 | 7 | rpred |  |-  ( ph -> U e. RR ) | 
						
							| 149 | 148 | adantr |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> U e. RR ) | 
						
							| 150 | 149 | recnd |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> U e. CC ) | 
						
							| 151 | 25 | recnd |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( log ` n ) e. CC ) | 
						
							| 152 | 24 | rpcnne0d |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( n e. CC /\ n =/= 0 ) ) | 
						
							| 153 |  | div23 |  |-  ( ( U e. CC /\ ( log ` n ) e. CC /\ ( n e. CC /\ n =/= 0 ) ) -> ( ( U x. ( log ` n ) ) / n ) = ( ( U / n ) x. ( log ` n ) ) ) | 
						
							| 154 |  | divass |  |-  ( ( U e. CC /\ ( log ` n ) e. CC /\ ( n e. CC /\ n =/= 0 ) ) -> ( ( U x. ( log ` n ) ) / n ) = ( U x. ( ( log ` n ) / n ) ) ) | 
						
							| 155 | 153 154 | eqtr3d |  |-  ( ( U e. CC /\ ( log ` n ) e. CC /\ ( n e. CC /\ n =/= 0 ) ) -> ( ( U / n ) x. ( log ` n ) ) = ( U x. ( ( log ` n ) / n ) ) ) | 
						
							| 156 | 150 151 152 155 | syl3anc |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( U / n ) x. ( log ` n ) ) = ( U x. ( ( log ` n ) / n ) ) ) | 
						
							| 157 | 156 | sumeq2dv |  |-  ( ph -> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) = sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( U x. ( ( log ` n ) / n ) ) ) | 
						
							| 158 | 148 | recnd |  |-  ( ph -> U e. CC ) | 
						
							| 159 | 26 | recnd |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( log ` n ) / n ) e. CC ) | 
						
							| 160 | 21 158 159 | fsummulc2 |  |-  ( ph -> ( U x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( log ` n ) / n ) ) = sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( U x. ( ( log ` n ) / n ) ) ) | 
						
							| 161 | 157 160 | eqtr4d |  |-  ( ph -> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) = ( U x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( log ` n ) / n ) ) ) | 
						
							| 162 | 161 | oveq2d |  |-  ( ph -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) ) = ( 2 x. ( U x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( log ` n ) / n ) ) ) ) | 
						
							| 163 | 27 | recnd |  |-  ( ph -> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( log ` n ) / n ) e. CC ) | 
						
							| 164 | 127 158 163 | mul12d |  |-  ( ph -> ( 2 x. ( U x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( log ` n ) / n ) ) ) = ( U x. ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( log ` n ) / n ) ) ) ) | 
						
							| 165 | 162 164 | eqtrd |  |-  ( ph -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) ) = ( U x. ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( log ` n ) / n ) ) ) ) | 
						
							| 166 | 38 | recnd |  |-  ( ph -> ( ( log ` Z ) + 3 ) e. CC ) | 
						
							| 167 | 158 166 121 | mulassd |  |-  ( ph -> ( ( U x. ( ( log ` Z ) + 3 ) ) x. ( log ` Z ) ) = ( U x. ( ( ( log ` Z ) + 3 ) x. ( log ` Z ) ) ) ) | 
						
							| 168 | 147 165 167 | 3brtr4d |  |-  ( ph -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) ) <_ ( ( U x. ( ( log ` Z ) + 3 ) ) x. ( log ` Z ) ) ) |