| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2re |  |-  2 e. RR | 
						
							| 2 |  | fzfid |  |-  ( N e. NN -> ( 1 ... N ) e. Fin ) | 
						
							| 3 |  | elfzuz |  |-  ( n e. ( 1 ... N ) -> n e. ( ZZ>= ` 1 ) ) | 
						
							| 4 | 3 | adantl |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> n e. ( ZZ>= ` 1 ) ) | 
						
							| 5 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 6 | 4 5 | eleqtrrdi |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> n e. NN ) | 
						
							| 7 | 6 | nnrpd |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> n e. RR+ ) | 
						
							| 8 | 7 | relogcld |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( log ` n ) e. RR ) | 
						
							| 9 | 8 6 | nndivred |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( ( log ` n ) / n ) e. RR ) | 
						
							| 10 | 2 9 | fsumrecl |  |-  ( N e. NN -> sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) e. RR ) | 
						
							| 11 |  | remulcl |  |-  ( ( 2 e. RR /\ sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) e. RR ) -> ( 2 x. sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) ) e. RR ) | 
						
							| 12 | 1 10 11 | sylancr |  |-  ( N e. NN -> ( 2 x. sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) ) e. RR ) | 
						
							| 13 |  | elfznn |  |-  ( i e. ( 1 ... N ) -> i e. NN ) | 
						
							| 14 | 13 | adantl |  |-  ( ( N e. NN /\ i e. ( 1 ... N ) ) -> i e. NN ) | 
						
							| 15 | 14 | nnrecred |  |-  ( ( N e. NN /\ i e. ( 1 ... N ) ) -> ( 1 / i ) e. RR ) | 
						
							| 16 | 2 15 | fsumrecl |  |-  ( N e. NN -> sum_ i e. ( 1 ... N ) ( 1 / i ) e. RR ) | 
						
							| 17 | 16 | resqcld |  |-  ( N e. NN -> ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) e. RR ) | 
						
							| 18 |  | nnrp |  |-  ( N e. NN -> N e. RR+ ) | 
						
							| 19 | 18 | relogcld |  |-  ( N e. NN -> ( log ` N ) e. RR ) | 
						
							| 20 |  | peano2re |  |-  ( ( log ` N ) e. RR -> ( ( log ` N ) + 1 ) e. RR ) | 
						
							| 21 | 19 20 | syl |  |-  ( N e. NN -> ( ( log ` N ) + 1 ) e. RR ) | 
						
							| 22 | 21 | resqcld |  |-  ( N e. NN -> ( ( ( log ` N ) + 1 ) ^ 2 ) e. RR ) | 
						
							| 23 | 10 | recnd |  |-  ( N e. NN -> sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) e. CC ) | 
						
							| 24 | 23 | 2timesd |  |-  ( N e. NN -> ( 2 x. sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) ) = ( sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) + sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) ) ) | 
						
							| 25 |  | fzfid |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( 1 ... n ) e. Fin ) | 
						
							| 26 |  | elfznn |  |-  ( i e. ( 1 ... n ) -> i e. NN ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ( N e. NN /\ n e. ( 1 ... N ) ) /\ i e. ( 1 ... n ) ) -> i e. NN ) | 
						
							| 28 | 27 | nnrecred |  |-  ( ( ( N e. NN /\ n e. ( 1 ... N ) ) /\ i e. ( 1 ... n ) ) -> ( 1 / i ) e. RR ) | 
						
							| 29 | 25 28 | fsumrecl |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> sum_ i e. ( 1 ... n ) ( 1 / i ) e. RR ) | 
						
							| 30 | 29 6 | nndivred |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) e. RR ) | 
						
							| 31 | 2 30 | fsumrecl |  |-  ( N e. NN -> sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) e. RR ) | 
						
							| 32 |  | fzfid |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( 1 ... ( n - 1 ) ) e. Fin ) | 
						
							| 33 |  | elfznn |  |-  ( i e. ( 1 ... ( n - 1 ) ) -> i e. NN ) | 
						
							| 34 | 33 | adantl |  |-  ( ( ( N e. NN /\ n e. ( 1 ... N ) ) /\ i e. ( 1 ... ( n - 1 ) ) ) -> i e. NN ) | 
						
							| 35 | 34 | nnrecred |  |-  ( ( ( N e. NN /\ n e. ( 1 ... N ) ) /\ i e. ( 1 ... ( n - 1 ) ) ) -> ( 1 / i ) e. RR ) | 
						
							| 36 | 32 35 | fsumrecl |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) e. RR ) | 
						
							| 37 | 36 6 | nndivred |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) e. RR ) | 
						
							| 38 | 2 37 | fsumrecl |  |-  ( N e. NN -> sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) e. RR ) | 
						
							| 39 | 6 | nncnd |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> n e. CC ) | 
						
							| 40 |  | ax-1cn |  |-  1 e. CC | 
						
							| 41 |  | npcan |  |-  ( ( n e. CC /\ 1 e. CC ) -> ( ( n - 1 ) + 1 ) = n ) | 
						
							| 42 | 39 40 41 | sylancl |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( ( n - 1 ) + 1 ) = n ) | 
						
							| 43 | 42 | fveq2d |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( log ` ( ( n - 1 ) + 1 ) ) = ( log ` n ) ) | 
						
							| 44 | 43 | oveq2d |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` ( ( n - 1 ) + 1 ) ) ) = ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` n ) ) ) | 
						
							| 45 |  | nnm1nn0 |  |-  ( n e. NN -> ( n - 1 ) e. NN0 ) | 
						
							| 46 |  | harmonicbnd3 |  |-  ( ( n - 1 ) e. NN0 -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` ( ( n - 1 ) + 1 ) ) ) e. ( 0 [,] gamma ) ) | 
						
							| 47 | 6 45 46 | 3syl |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` ( ( n - 1 ) + 1 ) ) ) e. ( 0 [,] gamma ) ) | 
						
							| 48 | 44 47 | eqeltrrd |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` n ) ) e. ( 0 [,] gamma ) ) | 
						
							| 49 |  | 0re |  |-  0 e. RR | 
						
							| 50 |  | emre |  |-  gamma e. RR | 
						
							| 51 | 49 50 | elicc2i |  |-  ( ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` n ) ) e. ( 0 [,] gamma ) <-> ( ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` n ) ) e. RR /\ 0 <_ ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` n ) ) /\ ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` n ) ) <_ gamma ) ) | 
						
							| 52 | 51 | simp2bi |  |-  ( ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` n ) ) e. ( 0 [,] gamma ) -> 0 <_ ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` n ) ) ) | 
						
							| 53 | 48 52 | syl |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> 0 <_ ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` n ) ) ) | 
						
							| 54 | 36 8 | subge0d |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( 0 <_ ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` n ) ) <-> ( log ` n ) <_ sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) ) | 
						
							| 55 | 53 54 | mpbid |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( log ` n ) <_ sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) | 
						
							| 56 | 8 36 7 55 | lediv1dd |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( ( log ` n ) / n ) <_ ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) ) | 
						
							| 57 | 27 | nnrpd |  |-  ( ( ( N e. NN /\ n e. ( 1 ... N ) ) /\ i e. ( 1 ... n ) ) -> i e. RR+ ) | 
						
							| 58 | 57 | rpreccld |  |-  ( ( ( N e. NN /\ n e. ( 1 ... N ) ) /\ i e. ( 1 ... n ) ) -> ( 1 / i ) e. RR+ ) | 
						
							| 59 | 58 | rpge0d |  |-  ( ( ( N e. NN /\ n e. ( 1 ... N ) ) /\ i e. ( 1 ... n ) ) -> 0 <_ ( 1 / i ) ) | 
						
							| 60 |  | elfzelz |  |-  ( n e. ( 1 ... N ) -> n e. ZZ ) | 
						
							| 61 | 60 | adantl |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> n e. ZZ ) | 
						
							| 62 |  | peano2zm |  |-  ( n e. ZZ -> ( n - 1 ) e. ZZ ) | 
						
							| 63 | 61 62 | syl |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( n - 1 ) e. ZZ ) | 
						
							| 64 | 6 | nnred |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> n e. RR ) | 
						
							| 65 | 64 | lem1d |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( n - 1 ) <_ n ) | 
						
							| 66 |  | eluz2 |  |-  ( n e. ( ZZ>= ` ( n - 1 ) ) <-> ( ( n - 1 ) e. ZZ /\ n e. ZZ /\ ( n - 1 ) <_ n ) ) | 
						
							| 67 | 63 61 65 66 | syl3anbrc |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> n e. ( ZZ>= ` ( n - 1 ) ) ) | 
						
							| 68 |  | fzss2 |  |-  ( n e. ( ZZ>= ` ( n - 1 ) ) -> ( 1 ... ( n - 1 ) ) C_ ( 1 ... n ) ) | 
						
							| 69 | 67 68 | syl |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( 1 ... ( n - 1 ) ) C_ ( 1 ... n ) ) | 
						
							| 70 | 25 28 59 69 | fsumless |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) <_ sum_ i e. ( 1 ... n ) ( 1 / i ) ) | 
						
							| 71 | 6 | nngt0d |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> 0 < n ) | 
						
							| 72 |  | lediv1 |  |-  ( ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) e. RR /\ sum_ i e. ( 1 ... n ) ( 1 / i ) e. RR /\ ( n e. RR /\ 0 < n ) ) -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) <_ sum_ i e. ( 1 ... n ) ( 1 / i ) <-> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) <_ ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) ) ) | 
						
							| 73 | 36 29 64 71 72 | syl112anc |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) <_ sum_ i e. ( 1 ... n ) ( 1 / i ) <-> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) <_ ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) ) ) | 
						
							| 74 | 70 73 | mpbid |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) <_ ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) ) | 
						
							| 75 | 9 37 30 56 74 | letrd |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( ( log ` n ) / n ) <_ ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) ) | 
						
							| 76 | 2 9 30 75 | fsumle |  |-  ( N e. NN -> sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) <_ sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) ) | 
						
							| 77 | 2 9 37 56 | fsumle |  |-  ( N e. NN -> sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) <_ sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) ) | 
						
							| 78 | 10 10 31 38 76 77 | le2addd |  |-  ( N e. NN -> ( sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) + sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) ) <_ ( sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) + sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) ) ) | 
						
							| 79 |  | oveq1 |  |-  ( m = n -> ( m - 1 ) = ( n - 1 ) ) | 
						
							| 80 | 79 | oveq2d |  |-  ( m = n -> ( 1 ... ( m - 1 ) ) = ( 1 ... ( n - 1 ) ) ) | 
						
							| 81 | 80 | sumeq1d |  |-  ( m = n -> sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) | 
						
							| 82 | 81 81 | jca |  |-  ( m = n -> ( sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) /\ sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) ) | 
						
							| 83 |  | oveq1 |  |-  ( m = ( n + 1 ) -> ( m - 1 ) = ( ( n + 1 ) - 1 ) ) | 
						
							| 84 | 83 | oveq2d |  |-  ( m = ( n + 1 ) -> ( 1 ... ( m - 1 ) ) = ( 1 ... ( ( n + 1 ) - 1 ) ) ) | 
						
							| 85 | 84 | sumeq1d |  |-  ( m = ( n + 1 ) -> sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) ) | 
						
							| 86 | 85 85 | jca |  |-  ( m = ( n + 1 ) -> ( sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) /\ sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) ) ) | 
						
							| 87 |  | oveq1 |  |-  ( m = 1 -> ( m - 1 ) = ( 1 - 1 ) ) | 
						
							| 88 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 89 | 87 88 | eqtrdi |  |-  ( m = 1 -> ( m - 1 ) = 0 ) | 
						
							| 90 | 89 | oveq2d |  |-  ( m = 1 -> ( 1 ... ( m - 1 ) ) = ( 1 ... 0 ) ) | 
						
							| 91 |  | fz10 |  |-  ( 1 ... 0 ) = (/) | 
						
							| 92 | 90 91 | eqtrdi |  |-  ( m = 1 -> ( 1 ... ( m - 1 ) ) = (/) ) | 
						
							| 93 | 92 | sumeq1d |  |-  ( m = 1 -> sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = sum_ i e. (/) ( 1 / i ) ) | 
						
							| 94 |  | sum0 |  |-  sum_ i e. (/) ( 1 / i ) = 0 | 
						
							| 95 | 93 94 | eqtrdi |  |-  ( m = 1 -> sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = 0 ) | 
						
							| 96 | 95 95 | jca |  |-  ( m = 1 -> ( sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = 0 /\ sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = 0 ) ) | 
						
							| 97 |  | oveq1 |  |-  ( m = ( N + 1 ) -> ( m - 1 ) = ( ( N + 1 ) - 1 ) ) | 
						
							| 98 | 97 | oveq2d |  |-  ( m = ( N + 1 ) -> ( 1 ... ( m - 1 ) ) = ( 1 ... ( ( N + 1 ) - 1 ) ) ) | 
						
							| 99 | 98 | sumeq1d |  |-  ( m = ( N + 1 ) -> sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) ) | 
						
							| 100 | 99 99 | jca |  |-  ( m = ( N + 1 ) -> ( sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) /\ sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) ) ) | 
						
							| 101 |  | peano2nn |  |-  ( N e. NN -> ( N + 1 ) e. NN ) | 
						
							| 102 | 101 5 | eleqtrdi |  |-  ( N e. NN -> ( N + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 103 |  | fzfid |  |-  ( ( N e. NN /\ m e. ( 1 ... ( N + 1 ) ) ) -> ( 1 ... ( m - 1 ) ) e. Fin ) | 
						
							| 104 |  | elfznn |  |-  ( i e. ( 1 ... ( m - 1 ) ) -> i e. NN ) | 
						
							| 105 | 104 | adantl |  |-  ( ( ( N e. NN /\ m e. ( 1 ... ( N + 1 ) ) ) /\ i e. ( 1 ... ( m - 1 ) ) ) -> i e. NN ) | 
						
							| 106 | 105 | nnrecred |  |-  ( ( ( N e. NN /\ m e. ( 1 ... ( N + 1 ) ) ) /\ i e. ( 1 ... ( m - 1 ) ) ) -> ( 1 / i ) e. RR ) | 
						
							| 107 | 103 106 | fsumrecl |  |-  ( ( N e. NN /\ m e. ( 1 ... ( N + 1 ) ) ) -> sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) e. RR ) | 
						
							| 108 | 107 | recnd |  |-  ( ( N e. NN /\ m e. ( 1 ... ( N + 1 ) ) ) -> sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) e. CC ) | 
						
							| 109 | 82 86 96 100 102 108 108 | fsumparts |  |-  ( N e. NN -> sum_ n e. ( 1 ..^ ( N + 1 ) ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) x. ( sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) - sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) ) = ( ( ( sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) x. sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) ) - ( 0 x. 0 ) ) - sum_ n e. ( 1 ..^ ( N + 1 ) ) ( ( sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) - sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) x. sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) ) ) ) | 
						
							| 110 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 111 |  | fzval3 |  |-  ( N e. ZZ -> ( 1 ... N ) = ( 1 ..^ ( N + 1 ) ) ) | 
						
							| 112 | 110 111 | syl |  |-  ( N e. NN -> ( 1 ... N ) = ( 1 ..^ ( N + 1 ) ) ) | 
						
							| 113 | 112 | eqcomd |  |-  ( N e. NN -> ( 1 ..^ ( N + 1 ) ) = ( 1 ... N ) ) | 
						
							| 114 | 36 | recnd |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) e. CC ) | 
						
							| 115 | 6 | nnrecred |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( 1 / n ) e. RR ) | 
						
							| 116 | 115 | recnd |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( 1 / n ) e. CC ) | 
						
							| 117 |  | pncan |  |-  ( ( n e. CC /\ 1 e. CC ) -> ( ( n + 1 ) - 1 ) = n ) | 
						
							| 118 | 39 40 117 | sylancl |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( ( n + 1 ) - 1 ) = n ) | 
						
							| 119 | 118 | oveq2d |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( 1 ... ( ( n + 1 ) - 1 ) ) = ( 1 ... n ) ) | 
						
							| 120 | 119 | sumeq1d |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... n ) ( 1 / i ) ) | 
						
							| 121 | 28 | recnd |  |-  ( ( ( N e. NN /\ n e. ( 1 ... N ) ) /\ i e. ( 1 ... n ) ) -> ( 1 / i ) e. CC ) | 
						
							| 122 |  | oveq2 |  |-  ( i = n -> ( 1 / i ) = ( 1 / n ) ) | 
						
							| 123 | 4 121 122 | fsumm1 |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> sum_ i e. ( 1 ... n ) ( 1 / i ) = ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) + ( 1 / n ) ) ) | 
						
							| 124 | 120 123 | eqtrd |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) = ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) + ( 1 / n ) ) ) | 
						
							| 125 | 114 116 124 | mvrladdd |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) - sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) = ( 1 / n ) ) | 
						
							| 126 | 125 | oveq2d |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) x. ( sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) - sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) ) = ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) x. ( 1 / n ) ) ) | 
						
							| 127 | 6 | nnne0d |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> n =/= 0 ) | 
						
							| 128 | 114 39 127 | divrecd |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) = ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) x. ( 1 / n ) ) ) | 
						
							| 129 | 126 128 | eqtr4d |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) x. ( sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) - sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) ) = ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) ) | 
						
							| 130 | 113 129 | sumeq12rdv |  |-  ( N e. NN -> sum_ n e. ( 1 ..^ ( N + 1 ) ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) x. ( sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) - sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) ) = sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) ) | 
						
							| 131 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 132 |  | pncan |  |-  ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N ) | 
						
							| 133 | 131 40 132 | sylancl |  |-  ( N e. NN -> ( ( N + 1 ) - 1 ) = N ) | 
						
							| 134 | 133 | oveq2d |  |-  ( N e. NN -> ( 1 ... ( ( N + 1 ) - 1 ) ) = ( 1 ... N ) ) | 
						
							| 135 | 134 | sumeq1d |  |-  ( N e. NN -> sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... N ) ( 1 / i ) ) | 
						
							| 136 | 135 135 | oveq12d |  |-  ( N e. NN -> ( sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) x. sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) ) = ( sum_ i e. ( 1 ... N ) ( 1 / i ) x. sum_ i e. ( 1 ... N ) ( 1 / i ) ) ) | 
						
							| 137 | 16 | recnd |  |-  ( N e. NN -> sum_ i e. ( 1 ... N ) ( 1 / i ) e. CC ) | 
						
							| 138 | 137 | sqvald |  |-  ( N e. NN -> ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) = ( sum_ i e. ( 1 ... N ) ( 1 / i ) x. sum_ i e. ( 1 ... N ) ( 1 / i ) ) ) | 
						
							| 139 | 136 138 | eqtr4d |  |-  ( N e. NN -> ( sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) x. sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) ) = ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) ) | 
						
							| 140 |  | 0cn |  |-  0 e. CC | 
						
							| 141 | 140 | mul01i |  |-  ( 0 x. 0 ) = 0 | 
						
							| 142 | 141 | a1i |  |-  ( N e. NN -> ( 0 x. 0 ) = 0 ) | 
						
							| 143 | 139 142 | oveq12d |  |-  ( N e. NN -> ( ( sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) x. sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) ) - ( 0 x. 0 ) ) = ( ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) - 0 ) ) | 
						
							| 144 | 137 | sqcld |  |-  ( N e. NN -> ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) e. CC ) | 
						
							| 145 | 144 | subid1d |  |-  ( N e. NN -> ( ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) - 0 ) = ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) ) | 
						
							| 146 | 143 145 | eqtrd |  |-  ( N e. NN -> ( ( sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) x. sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) ) - ( 0 x. 0 ) ) = ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) ) | 
						
							| 147 | 125 120 | oveq12d |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( ( sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) - sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) x. sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) ) = ( ( 1 / n ) x. sum_ i e. ( 1 ... n ) ( 1 / i ) ) ) | 
						
							| 148 | 29 | recnd |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> sum_ i e. ( 1 ... n ) ( 1 / i ) e. CC ) | 
						
							| 149 | 148 39 127 | divrec2d |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) = ( ( 1 / n ) x. sum_ i e. ( 1 ... n ) ( 1 / i ) ) ) | 
						
							| 150 | 147 149 | eqtr4d |  |-  ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( ( sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) - sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) x. sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) ) = ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) ) | 
						
							| 151 | 113 150 | sumeq12rdv |  |-  ( N e. NN -> sum_ n e. ( 1 ..^ ( N + 1 ) ) ( ( sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) - sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) x. sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) ) = sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) ) | 
						
							| 152 | 146 151 | oveq12d |  |-  ( N e. NN -> ( ( ( sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) x. sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) ) - ( 0 x. 0 ) ) - sum_ n e. ( 1 ..^ ( N + 1 ) ) ( ( sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) - sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) x. sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) ) ) = ( ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) - sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) ) ) | 
						
							| 153 | 109 130 152 | 3eqtr3rd |  |-  ( N e. NN -> ( ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) - sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) ) = sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) ) | 
						
							| 154 | 31 | recnd |  |-  ( N e. NN -> sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) e. CC ) | 
						
							| 155 | 38 | recnd |  |-  ( N e. NN -> sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) e. CC ) | 
						
							| 156 | 144 154 155 | subaddd |  |-  ( N e. NN -> ( ( ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) - sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) ) = sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) <-> ( sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) + sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) ) = ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) ) ) | 
						
							| 157 | 153 156 | mpbid |  |-  ( N e. NN -> ( sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) + sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) ) = ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) ) | 
						
							| 158 | 78 157 | breqtrd |  |-  ( N e. NN -> ( sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) + sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) ) <_ ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) ) | 
						
							| 159 | 24 158 | eqbrtrd |  |-  ( N e. NN -> ( 2 x. sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) ) <_ ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) ) | 
						
							| 160 |  | flid |  |-  ( N e. ZZ -> ( |_ ` N ) = N ) | 
						
							| 161 | 110 160 | syl |  |-  ( N e. NN -> ( |_ ` N ) = N ) | 
						
							| 162 | 161 | oveq2d |  |-  ( N e. NN -> ( 1 ... ( |_ ` N ) ) = ( 1 ... N ) ) | 
						
							| 163 | 162 | sumeq1d |  |-  ( N e. NN -> sum_ i e. ( 1 ... ( |_ ` N ) ) ( 1 / i ) = sum_ i e. ( 1 ... N ) ( 1 / i ) ) | 
						
							| 164 |  | nnre |  |-  ( N e. NN -> N e. RR ) | 
						
							| 165 |  | nnge1 |  |-  ( N e. NN -> 1 <_ N ) | 
						
							| 166 |  | harmonicubnd |  |-  ( ( N e. RR /\ 1 <_ N ) -> sum_ i e. ( 1 ... ( |_ ` N ) ) ( 1 / i ) <_ ( ( log ` N ) + 1 ) ) | 
						
							| 167 | 164 165 166 | syl2anc |  |-  ( N e. NN -> sum_ i e. ( 1 ... ( |_ ` N ) ) ( 1 / i ) <_ ( ( log ` N ) + 1 ) ) | 
						
							| 168 | 163 167 | eqbrtrrd |  |-  ( N e. NN -> sum_ i e. ( 1 ... N ) ( 1 / i ) <_ ( ( log ` N ) + 1 ) ) | 
						
							| 169 | 14 | nnrpd |  |-  ( ( N e. NN /\ i e. ( 1 ... N ) ) -> i e. RR+ ) | 
						
							| 170 | 169 | rpreccld |  |-  ( ( N e. NN /\ i e. ( 1 ... N ) ) -> ( 1 / i ) e. RR+ ) | 
						
							| 171 | 170 | rpge0d |  |-  ( ( N e. NN /\ i e. ( 1 ... N ) ) -> 0 <_ ( 1 / i ) ) | 
						
							| 172 | 2 15 171 | fsumge0 |  |-  ( N e. NN -> 0 <_ sum_ i e. ( 1 ... N ) ( 1 / i ) ) | 
						
							| 173 | 49 | a1i |  |-  ( N e. NN -> 0 e. RR ) | 
						
							| 174 |  | log1 |  |-  ( log ` 1 ) = 0 | 
						
							| 175 |  | 1rp |  |-  1 e. RR+ | 
						
							| 176 |  | logleb |  |-  ( ( 1 e. RR+ /\ N e. RR+ ) -> ( 1 <_ N <-> ( log ` 1 ) <_ ( log ` N ) ) ) | 
						
							| 177 | 175 18 176 | sylancr |  |-  ( N e. NN -> ( 1 <_ N <-> ( log ` 1 ) <_ ( log ` N ) ) ) | 
						
							| 178 | 165 177 | mpbid |  |-  ( N e. NN -> ( log ` 1 ) <_ ( log ` N ) ) | 
						
							| 179 | 174 178 | eqbrtrrid |  |-  ( N e. NN -> 0 <_ ( log ` N ) ) | 
						
							| 180 | 19 | lep1d |  |-  ( N e. NN -> ( log ` N ) <_ ( ( log ` N ) + 1 ) ) | 
						
							| 181 | 173 19 21 179 180 | letrd |  |-  ( N e. NN -> 0 <_ ( ( log ` N ) + 1 ) ) | 
						
							| 182 | 16 21 172 181 | le2sqd |  |-  ( N e. NN -> ( sum_ i e. ( 1 ... N ) ( 1 / i ) <_ ( ( log ` N ) + 1 ) <-> ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) <_ ( ( ( log ` N ) + 1 ) ^ 2 ) ) ) | 
						
							| 183 | 168 182 | mpbid |  |-  ( N e. NN -> ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) <_ ( ( ( log ` N ) + 1 ) ^ 2 ) ) | 
						
							| 184 | 12 17 22 159 183 | letrd |  |-  ( N e. NN -> ( 2 x. sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) ) <_ ( ( ( log ` N ) + 1 ) ^ 2 ) ) | 
						
							| 185 | 1 | a1i |  |-  ( N e. NN -> 2 e. RR ) | 
						
							| 186 |  | 2pos |  |-  0 < 2 | 
						
							| 187 | 186 | a1i |  |-  ( N e. NN -> 0 < 2 ) | 
						
							| 188 |  | lemuldiv2 |  |-  ( ( sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) e. RR /\ ( ( ( log ` N ) + 1 ) ^ 2 ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 2 x. sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) ) <_ ( ( ( log ` N ) + 1 ) ^ 2 ) <-> sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) <_ ( ( ( ( log ` N ) + 1 ) ^ 2 ) / 2 ) ) ) | 
						
							| 189 | 10 22 185 187 188 | syl112anc |  |-  ( N e. NN -> ( ( 2 x. sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) ) <_ ( ( ( log ` N ) + 1 ) ^ 2 ) <-> sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) <_ ( ( ( ( log ` N ) + 1 ) ^ 2 ) / 2 ) ) ) | 
						
							| 190 | 184 189 | mpbid |  |-  ( N e. NN -> sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) <_ ( ( ( ( log ` N ) + 1 ) ^ 2 ) / 2 ) ) |