Step |
Hyp |
Ref |
Expression |
1 |
|
2re |
|- 2 e. RR |
2 |
|
fzfid |
|- ( N e. NN -> ( 1 ... N ) e. Fin ) |
3 |
|
elfzuz |
|- ( n e. ( 1 ... N ) -> n e. ( ZZ>= ` 1 ) ) |
4 |
3
|
adantl |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> n e. ( ZZ>= ` 1 ) ) |
5 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
6 |
4 5
|
eleqtrrdi |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> n e. NN ) |
7 |
6
|
nnrpd |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> n e. RR+ ) |
8 |
7
|
relogcld |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( log ` n ) e. RR ) |
9 |
8 6
|
nndivred |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( ( log ` n ) / n ) e. RR ) |
10 |
2 9
|
fsumrecl |
|- ( N e. NN -> sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) e. RR ) |
11 |
|
remulcl |
|- ( ( 2 e. RR /\ sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) e. RR ) -> ( 2 x. sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) ) e. RR ) |
12 |
1 10 11
|
sylancr |
|- ( N e. NN -> ( 2 x. sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) ) e. RR ) |
13 |
|
elfznn |
|- ( i e. ( 1 ... N ) -> i e. NN ) |
14 |
13
|
adantl |
|- ( ( N e. NN /\ i e. ( 1 ... N ) ) -> i e. NN ) |
15 |
14
|
nnrecred |
|- ( ( N e. NN /\ i e. ( 1 ... N ) ) -> ( 1 / i ) e. RR ) |
16 |
2 15
|
fsumrecl |
|- ( N e. NN -> sum_ i e. ( 1 ... N ) ( 1 / i ) e. RR ) |
17 |
16
|
resqcld |
|- ( N e. NN -> ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) e. RR ) |
18 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
19 |
18
|
relogcld |
|- ( N e. NN -> ( log ` N ) e. RR ) |
20 |
|
peano2re |
|- ( ( log ` N ) e. RR -> ( ( log ` N ) + 1 ) e. RR ) |
21 |
19 20
|
syl |
|- ( N e. NN -> ( ( log ` N ) + 1 ) e. RR ) |
22 |
21
|
resqcld |
|- ( N e. NN -> ( ( ( log ` N ) + 1 ) ^ 2 ) e. RR ) |
23 |
10
|
recnd |
|- ( N e. NN -> sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) e. CC ) |
24 |
23
|
2timesd |
|- ( N e. NN -> ( 2 x. sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) ) = ( sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) + sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) ) ) |
25 |
|
fzfid |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( 1 ... n ) e. Fin ) |
26 |
|
elfznn |
|- ( i e. ( 1 ... n ) -> i e. NN ) |
27 |
26
|
adantl |
|- ( ( ( N e. NN /\ n e. ( 1 ... N ) ) /\ i e. ( 1 ... n ) ) -> i e. NN ) |
28 |
27
|
nnrecred |
|- ( ( ( N e. NN /\ n e. ( 1 ... N ) ) /\ i e. ( 1 ... n ) ) -> ( 1 / i ) e. RR ) |
29 |
25 28
|
fsumrecl |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> sum_ i e. ( 1 ... n ) ( 1 / i ) e. RR ) |
30 |
29 6
|
nndivred |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) e. RR ) |
31 |
2 30
|
fsumrecl |
|- ( N e. NN -> sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) e. RR ) |
32 |
|
fzfid |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( 1 ... ( n - 1 ) ) e. Fin ) |
33 |
|
elfznn |
|- ( i e. ( 1 ... ( n - 1 ) ) -> i e. NN ) |
34 |
33
|
adantl |
|- ( ( ( N e. NN /\ n e. ( 1 ... N ) ) /\ i e. ( 1 ... ( n - 1 ) ) ) -> i e. NN ) |
35 |
34
|
nnrecred |
|- ( ( ( N e. NN /\ n e. ( 1 ... N ) ) /\ i e. ( 1 ... ( n - 1 ) ) ) -> ( 1 / i ) e. RR ) |
36 |
32 35
|
fsumrecl |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) e. RR ) |
37 |
36 6
|
nndivred |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) e. RR ) |
38 |
2 37
|
fsumrecl |
|- ( N e. NN -> sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) e. RR ) |
39 |
6
|
nncnd |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> n e. CC ) |
40 |
|
ax-1cn |
|- 1 e. CC |
41 |
|
npcan |
|- ( ( n e. CC /\ 1 e. CC ) -> ( ( n - 1 ) + 1 ) = n ) |
42 |
39 40 41
|
sylancl |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( ( n - 1 ) + 1 ) = n ) |
43 |
42
|
fveq2d |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( log ` ( ( n - 1 ) + 1 ) ) = ( log ` n ) ) |
44 |
43
|
oveq2d |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` ( ( n - 1 ) + 1 ) ) ) = ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` n ) ) ) |
45 |
|
nnm1nn0 |
|- ( n e. NN -> ( n - 1 ) e. NN0 ) |
46 |
|
harmonicbnd3 |
|- ( ( n - 1 ) e. NN0 -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` ( ( n - 1 ) + 1 ) ) ) e. ( 0 [,] gamma ) ) |
47 |
6 45 46
|
3syl |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` ( ( n - 1 ) + 1 ) ) ) e. ( 0 [,] gamma ) ) |
48 |
44 47
|
eqeltrrd |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` n ) ) e. ( 0 [,] gamma ) ) |
49 |
|
0re |
|- 0 e. RR |
50 |
|
emre |
|- gamma e. RR |
51 |
49 50
|
elicc2i |
|- ( ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` n ) ) e. ( 0 [,] gamma ) <-> ( ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` n ) ) e. RR /\ 0 <_ ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` n ) ) /\ ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` n ) ) <_ gamma ) ) |
52 |
51
|
simp2bi |
|- ( ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` n ) ) e. ( 0 [,] gamma ) -> 0 <_ ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` n ) ) ) |
53 |
48 52
|
syl |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> 0 <_ ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` n ) ) ) |
54 |
36 8
|
subge0d |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( 0 <_ ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) - ( log ` n ) ) <-> ( log ` n ) <_ sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) ) |
55 |
53 54
|
mpbid |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( log ` n ) <_ sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) |
56 |
8 36 7 55
|
lediv1dd |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( ( log ` n ) / n ) <_ ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) ) |
57 |
27
|
nnrpd |
|- ( ( ( N e. NN /\ n e. ( 1 ... N ) ) /\ i e. ( 1 ... n ) ) -> i e. RR+ ) |
58 |
57
|
rpreccld |
|- ( ( ( N e. NN /\ n e. ( 1 ... N ) ) /\ i e. ( 1 ... n ) ) -> ( 1 / i ) e. RR+ ) |
59 |
58
|
rpge0d |
|- ( ( ( N e. NN /\ n e. ( 1 ... N ) ) /\ i e. ( 1 ... n ) ) -> 0 <_ ( 1 / i ) ) |
60 |
|
elfzelz |
|- ( n e. ( 1 ... N ) -> n e. ZZ ) |
61 |
60
|
adantl |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> n e. ZZ ) |
62 |
|
peano2zm |
|- ( n e. ZZ -> ( n - 1 ) e. ZZ ) |
63 |
61 62
|
syl |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( n - 1 ) e. ZZ ) |
64 |
6
|
nnred |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> n e. RR ) |
65 |
64
|
lem1d |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( n - 1 ) <_ n ) |
66 |
|
eluz2 |
|- ( n e. ( ZZ>= ` ( n - 1 ) ) <-> ( ( n - 1 ) e. ZZ /\ n e. ZZ /\ ( n - 1 ) <_ n ) ) |
67 |
63 61 65 66
|
syl3anbrc |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> n e. ( ZZ>= ` ( n - 1 ) ) ) |
68 |
|
fzss2 |
|- ( n e. ( ZZ>= ` ( n - 1 ) ) -> ( 1 ... ( n - 1 ) ) C_ ( 1 ... n ) ) |
69 |
67 68
|
syl |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( 1 ... ( n - 1 ) ) C_ ( 1 ... n ) ) |
70 |
25 28 59 69
|
fsumless |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) <_ sum_ i e. ( 1 ... n ) ( 1 / i ) ) |
71 |
6
|
nngt0d |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> 0 < n ) |
72 |
|
lediv1 |
|- ( ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) e. RR /\ sum_ i e. ( 1 ... n ) ( 1 / i ) e. RR /\ ( n e. RR /\ 0 < n ) ) -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) <_ sum_ i e. ( 1 ... n ) ( 1 / i ) <-> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) <_ ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) ) ) |
73 |
36 29 64 71 72
|
syl112anc |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) <_ sum_ i e. ( 1 ... n ) ( 1 / i ) <-> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) <_ ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) ) ) |
74 |
70 73
|
mpbid |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) <_ ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) ) |
75 |
9 37 30 56 74
|
letrd |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( ( log ` n ) / n ) <_ ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) ) |
76 |
2 9 30 75
|
fsumle |
|- ( N e. NN -> sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) <_ sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) ) |
77 |
2 9 37 56
|
fsumle |
|- ( N e. NN -> sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) <_ sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) ) |
78 |
10 10 31 38 76 77
|
le2addd |
|- ( N e. NN -> ( sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) + sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) ) <_ ( sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) + sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) ) ) |
79 |
|
oveq1 |
|- ( m = n -> ( m - 1 ) = ( n - 1 ) ) |
80 |
79
|
oveq2d |
|- ( m = n -> ( 1 ... ( m - 1 ) ) = ( 1 ... ( n - 1 ) ) ) |
81 |
80
|
sumeq1d |
|- ( m = n -> sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) |
82 |
81 81
|
jca |
|- ( m = n -> ( sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) /\ sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) ) |
83 |
|
oveq1 |
|- ( m = ( n + 1 ) -> ( m - 1 ) = ( ( n + 1 ) - 1 ) ) |
84 |
83
|
oveq2d |
|- ( m = ( n + 1 ) -> ( 1 ... ( m - 1 ) ) = ( 1 ... ( ( n + 1 ) - 1 ) ) ) |
85 |
84
|
sumeq1d |
|- ( m = ( n + 1 ) -> sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) ) |
86 |
85 85
|
jca |
|- ( m = ( n + 1 ) -> ( sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) /\ sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) ) ) |
87 |
|
oveq1 |
|- ( m = 1 -> ( m - 1 ) = ( 1 - 1 ) ) |
88 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
89 |
87 88
|
eqtrdi |
|- ( m = 1 -> ( m - 1 ) = 0 ) |
90 |
89
|
oveq2d |
|- ( m = 1 -> ( 1 ... ( m - 1 ) ) = ( 1 ... 0 ) ) |
91 |
|
fz10 |
|- ( 1 ... 0 ) = (/) |
92 |
90 91
|
eqtrdi |
|- ( m = 1 -> ( 1 ... ( m - 1 ) ) = (/) ) |
93 |
92
|
sumeq1d |
|- ( m = 1 -> sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = sum_ i e. (/) ( 1 / i ) ) |
94 |
|
sum0 |
|- sum_ i e. (/) ( 1 / i ) = 0 |
95 |
93 94
|
eqtrdi |
|- ( m = 1 -> sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = 0 ) |
96 |
95 95
|
jca |
|- ( m = 1 -> ( sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = 0 /\ sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = 0 ) ) |
97 |
|
oveq1 |
|- ( m = ( N + 1 ) -> ( m - 1 ) = ( ( N + 1 ) - 1 ) ) |
98 |
97
|
oveq2d |
|- ( m = ( N + 1 ) -> ( 1 ... ( m - 1 ) ) = ( 1 ... ( ( N + 1 ) - 1 ) ) ) |
99 |
98
|
sumeq1d |
|- ( m = ( N + 1 ) -> sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) ) |
100 |
99 99
|
jca |
|- ( m = ( N + 1 ) -> ( sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) /\ sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) ) ) |
101 |
|
peano2nn |
|- ( N e. NN -> ( N + 1 ) e. NN ) |
102 |
101 5
|
eleqtrdi |
|- ( N e. NN -> ( N + 1 ) e. ( ZZ>= ` 1 ) ) |
103 |
|
fzfid |
|- ( ( N e. NN /\ m e. ( 1 ... ( N + 1 ) ) ) -> ( 1 ... ( m - 1 ) ) e. Fin ) |
104 |
|
elfznn |
|- ( i e. ( 1 ... ( m - 1 ) ) -> i e. NN ) |
105 |
104
|
adantl |
|- ( ( ( N e. NN /\ m e. ( 1 ... ( N + 1 ) ) ) /\ i e. ( 1 ... ( m - 1 ) ) ) -> i e. NN ) |
106 |
105
|
nnrecred |
|- ( ( ( N e. NN /\ m e. ( 1 ... ( N + 1 ) ) ) /\ i e. ( 1 ... ( m - 1 ) ) ) -> ( 1 / i ) e. RR ) |
107 |
103 106
|
fsumrecl |
|- ( ( N e. NN /\ m e. ( 1 ... ( N + 1 ) ) ) -> sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) e. RR ) |
108 |
107
|
recnd |
|- ( ( N e. NN /\ m e. ( 1 ... ( N + 1 ) ) ) -> sum_ i e. ( 1 ... ( m - 1 ) ) ( 1 / i ) e. CC ) |
109 |
82 86 96 100 102 108 108
|
fsumparts |
|- ( N e. NN -> sum_ n e. ( 1 ..^ ( N + 1 ) ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) x. ( sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) - sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) ) = ( ( ( sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) x. sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) ) - ( 0 x. 0 ) ) - sum_ n e. ( 1 ..^ ( N + 1 ) ) ( ( sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) - sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) x. sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) ) ) ) |
110 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
111 |
|
fzval3 |
|- ( N e. ZZ -> ( 1 ... N ) = ( 1 ..^ ( N + 1 ) ) ) |
112 |
110 111
|
syl |
|- ( N e. NN -> ( 1 ... N ) = ( 1 ..^ ( N + 1 ) ) ) |
113 |
112
|
eqcomd |
|- ( N e. NN -> ( 1 ..^ ( N + 1 ) ) = ( 1 ... N ) ) |
114 |
36
|
recnd |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) e. CC ) |
115 |
6
|
nnrecred |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( 1 / n ) e. RR ) |
116 |
115
|
recnd |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( 1 / n ) e. CC ) |
117 |
|
pncan |
|- ( ( n e. CC /\ 1 e. CC ) -> ( ( n + 1 ) - 1 ) = n ) |
118 |
39 40 117
|
sylancl |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( ( n + 1 ) - 1 ) = n ) |
119 |
118
|
oveq2d |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( 1 ... ( ( n + 1 ) - 1 ) ) = ( 1 ... n ) ) |
120 |
119
|
sumeq1d |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... n ) ( 1 / i ) ) |
121 |
28
|
recnd |
|- ( ( ( N e. NN /\ n e. ( 1 ... N ) ) /\ i e. ( 1 ... n ) ) -> ( 1 / i ) e. CC ) |
122 |
|
oveq2 |
|- ( i = n -> ( 1 / i ) = ( 1 / n ) ) |
123 |
4 121 122
|
fsumm1 |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> sum_ i e. ( 1 ... n ) ( 1 / i ) = ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) + ( 1 / n ) ) ) |
124 |
120 123
|
eqtrd |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) = ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) + ( 1 / n ) ) ) |
125 |
114 116 124
|
mvrladdd |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) - sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) = ( 1 / n ) ) |
126 |
125
|
oveq2d |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) x. ( sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) - sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) ) = ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) x. ( 1 / n ) ) ) |
127 |
6
|
nnne0d |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> n =/= 0 ) |
128 |
114 39 127
|
divrecd |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) = ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) x. ( 1 / n ) ) ) |
129 |
126 128
|
eqtr4d |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) x. ( sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) - sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) ) = ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) ) |
130 |
113 129
|
sumeq12rdv |
|- ( N e. NN -> sum_ n e. ( 1 ..^ ( N + 1 ) ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) x. ( sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) - sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) ) = sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) ) |
131 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
132 |
|
pncan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N ) |
133 |
131 40 132
|
sylancl |
|- ( N e. NN -> ( ( N + 1 ) - 1 ) = N ) |
134 |
133
|
oveq2d |
|- ( N e. NN -> ( 1 ... ( ( N + 1 ) - 1 ) ) = ( 1 ... N ) ) |
135 |
134
|
sumeq1d |
|- ( N e. NN -> sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) = sum_ i e. ( 1 ... N ) ( 1 / i ) ) |
136 |
135 135
|
oveq12d |
|- ( N e. NN -> ( sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) x. sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) ) = ( sum_ i e. ( 1 ... N ) ( 1 / i ) x. sum_ i e. ( 1 ... N ) ( 1 / i ) ) ) |
137 |
16
|
recnd |
|- ( N e. NN -> sum_ i e. ( 1 ... N ) ( 1 / i ) e. CC ) |
138 |
137
|
sqvald |
|- ( N e. NN -> ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) = ( sum_ i e. ( 1 ... N ) ( 1 / i ) x. sum_ i e. ( 1 ... N ) ( 1 / i ) ) ) |
139 |
136 138
|
eqtr4d |
|- ( N e. NN -> ( sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) x. sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) ) = ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) ) |
140 |
|
0cn |
|- 0 e. CC |
141 |
140
|
mul01i |
|- ( 0 x. 0 ) = 0 |
142 |
141
|
a1i |
|- ( N e. NN -> ( 0 x. 0 ) = 0 ) |
143 |
139 142
|
oveq12d |
|- ( N e. NN -> ( ( sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) x. sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) ) - ( 0 x. 0 ) ) = ( ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) - 0 ) ) |
144 |
137
|
sqcld |
|- ( N e. NN -> ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) e. CC ) |
145 |
144
|
subid1d |
|- ( N e. NN -> ( ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) - 0 ) = ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) ) |
146 |
143 145
|
eqtrd |
|- ( N e. NN -> ( ( sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) x. sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) ) - ( 0 x. 0 ) ) = ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) ) |
147 |
125 120
|
oveq12d |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( ( sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) - sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) x. sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) ) = ( ( 1 / n ) x. sum_ i e. ( 1 ... n ) ( 1 / i ) ) ) |
148 |
29
|
recnd |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> sum_ i e. ( 1 ... n ) ( 1 / i ) e. CC ) |
149 |
148 39 127
|
divrec2d |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) = ( ( 1 / n ) x. sum_ i e. ( 1 ... n ) ( 1 / i ) ) ) |
150 |
147 149
|
eqtr4d |
|- ( ( N e. NN /\ n e. ( 1 ... N ) ) -> ( ( sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) - sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) x. sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) ) = ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) ) |
151 |
113 150
|
sumeq12rdv |
|- ( N e. NN -> sum_ n e. ( 1 ..^ ( N + 1 ) ) ( ( sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) - sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) x. sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) ) = sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) ) |
152 |
146 151
|
oveq12d |
|- ( N e. NN -> ( ( ( sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) x. sum_ i e. ( 1 ... ( ( N + 1 ) - 1 ) ) ( 1 / i ) ) - ( 0 x. 0 ) ) - sum_ n e. ( 1 ..^ ( N + 1 ) ) ( ( sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) - sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) ) x. sum_ i e. ( 1 ... ( ( n + 1 ) - 1 ) ) ( 1 / i ) ) ) = ( ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) - sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) ) ) |
153 |
109 130 152
|
3eqtr3rd |
|- ( N e. NN -> ( ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) - sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) ) = sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) ) |
154 |
31
|
recnd |
|- ( N e. NN -> sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) e. CC ) |
155 |
38
|
recnd |
|- ( N e. NN -> sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) e. CC ) |
156 |
144 154 155
|
subaddd |
|- ( N e. NN -> ( ( ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) - sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) ) = sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) <-> ( sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) + sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) ) = ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) ) ) |
157 |
153 156
|
mpbid |
|- ( N e. NN -> ( sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... n ) ( 1 / i ) / n ) + sum_ n e. ( 1 ... N ) ( sum_ i e. ( 1 ... ( n - 1 ) ) ( 1 / i ) / n ) ) = ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) ) |
158 |
78 157
|
breqtrd |
|- ( N e. NN -> ( sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) + sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) ) <_ ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) ) |
159 |
24 158
|
eqbrtrd |
|- ( N e. NN -> ( 2 x. sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) ) <_ ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) ) |
160 |
|
flid |
|- ( N e. ZZ -> ( |_ ` N ) = N ) |
161 |
110 160
|
syl |
|- ( N e. NN -> ( |_ ` N ) = N ) |
162 |
161
|
oveq2d |
|- ( N e. NN -> ( 1 ... ( |_ ` N ) ) = ( 1 ... N ) ) |
163 |
162
|
sumeq1d |
|- ( N e. NN -> sum_ i e. ( 1 ... ( |_ ` N ) ) ( 1 / i ) = sum_ i e. ( 1 ... N ) ( 1 / i ) ) |
164 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
165 |
|
nnge1 |
|- ( N e. NN -> 1 <_ N ) |
166 |
|
harmonicubnd |
|- ( ( N e. RR /\ 1 <_ N ) -> sum_ i e. ( 1 ... ( |_ ` N ) ) ( 1 / i ) <_ ( ( log ` N ) + 1 ) ) |
167 |
164 165 166
|
syl2anc |
|- ( N e. NN -> sum_ i e. ( 1 ... ( |_ ` N ) ) ( 1 / i ) <_ ( ( log ` N ) + 1 ) ) |
168 |
163 167
|
eqbrtrrd |
|- ( N e. NN -> sum_ i e. ( 1 ... N ) ( 1 / i ) <_ ( ( log ` N ) + 1 ) ) |
169 |
14
|
nnrpd |
|- ( ( N e. NN /\ i e. ( 1 ... N ) ) -> i e. RR+ ) |
170 |
169
|
rpreccld |
|- ( ( N e. NN /\ i e. ( 1 ... N ) ) -> ( 1 / i ) e. RR+ ) |
171 |
170
|
rpge0d |
|- ( ( N e. NN /\ i e. ( 1 ... N ) ) -> 0 <_ ( 1 / i ) ) |
172 |
2 15 171
|
fsumge0 |
|- ( N e. NN -> 0 <_ sum_ i e. ( 1 ... N ) ( 1 / i ) ) |
173 |
49
|
a1i |
|- ( N e. NN -> 0 e. RR ) |
174 |
|
log1 |
|- ( log ` 1 ) = 0 |
175 |
|
1rp |
|- 1 e. RR+ |
176 |
|
logleb |
|- ( ( 1 e. RR+ /\ N e. RR+ ) -> ( 1 <_ N <-> ( log ` 1 ) <_ ( log ` N ) ) ) |
177 |
175 18 176
|
sylancr |
|- ( N e. NN -> ( 1 <_ N <-> ( log ` 1 ) <_ ( log ` N ) ) ) |
178 |
165 177
|
mpbid |
|- ( N e. NN -> ( log ` 1 ) <_ ( log ` N ) ) |
179 |
174 178
|
eqbrtrrid |
|- ( N e. NN -> 0 <_ ( log ` N ) ) |
180 |
19
|
lep1d |
|- ( N e. NN -> ( log ` N ) <_ ( ( log ` N ) + 1 ) ) |
181 |
173 19 21 179 180
|
letrd |
|- ( N e. NN -> 0 <_ ( ( log ` N ) + 1 ) ) |
182 |
16 21 172 181
|
le2sqd |
|- ( N e. NN -> ( sum_ i e. ( 1 ... N ) ( 1 / i ) <_ ( ( log ` N ) + 1 ) <-> ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) <_ ( ( ( log ` N ) + 1 ) ^ 2 ) ) ) |
183 |
168 182
|
mpbid |
|- ( N e. NN -> ( sum_ i e. ( 1 ... N ) ( 1 / i ) ^ 2 ) <_ ( ( ( log ` N ) + 1 ) ^ 2 ) ) |
184 |
12 17 22 159 183
|
letrd |
|- ( N e. NN -> ( 2 x. sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) ) <_ ( ( ( log ` N ) + 1 ) ^ 2 ) ) |
185 |
1
|
a1i |
|- ( N e. NN -> 2 e. RR ) |
186 |
|
2pos |
|- 0 < 2 |
187 |
186
|
a1i |
|- ( N e. NN -> 0 < 2 ) |
188 |
|
lemuldiv2 |
|- ( ( sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) e. RR /\ ( ( ( log ` N ) + 1 ) ^ 2 ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 2 x. sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) ) <_ ( ( ( log ` N ) + 1 ) ^ 2 ) <-> sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) <_ ( ( ( ( log ` N ) + 1 ) ^ 2 ) / 2 ) ) ) |
189 |
10 22 185 187 188
|
syl112anc |
|- ( N e. NN -> ( ( 2 x. sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) ) <_ ( ( ( log ` N ) + 1 ) ^ 2 ) <-> sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) <_ ( ( ( ( log ` N ) + 1 ) ^ 2 ) / 2 ) ) ) |
190 |
184 189
|
mpbid |
|- ( N e. NN -> sum_ n e. ( 1 ... N ) ( ( log ` n ) / n ) <_ ( ( ( ( log ` N ) + 1 ) ^ 2 ) / 2 ) ) |