| Step | Hyp | Ref | Expression | 
						
							| 1 |  | selberg3lem1.1 |  |-  ( ph -> A e. RR+ ) | 
						
							| 2 |  | selberg3lem1.2 |  |-  ( ph -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( sum_ k e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` k ) x. ( log ` k ) ) - ( ( psi ` y ) x. ( log ` y ) ) ) / y ) ) <_ A ) | 
						
							| 3 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 4 |  | ioossre |  |-  ( 1 (,) +oo ) C_ RR | 
						
							| 5 | 1 | rpcnd |  |-  ( ph -> A e. CC ) | 
						
							| 6 |  | o1const |  |-  ( ( ( 1 (,) +oo ) C_ RR /\ A e. CC ) -> ( x e. ( 1 (,) +oo ) |-> A ) e. O(1) ) | 
						
							| 7 | 4 5 6 | sylancr |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> A ) e. O(1) ) | 
						
							| 8 |  | fzfid |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) | 
						
							| 9 |  | elfznn |  |-  ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) | 
						
							| 11 |  | vmacl |  |-  ( n e. NN -> ( Lam ` n ) e. RR ) | 
						
							| 12 | 10 11 | syl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) | 
						
							| 13 | 12 10 | nndivred |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. RR ) | 
						
							| 14 | 8 13 | fsumrecl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) e. RR ) | 
						
							| 15 |  | elioore |  |-  ( x e. ( 1 (,) +oo ) -> x e. RR ) | 
						
							| 16 |  | eliooord |  |-  ( x e. ( 1 (,) +oo ) -> ( 1 < x /\ x < +oo ) ) | 
						
							| 17 | 16 | simpld |  |-  ( x e. ( 1 (,) +oo ) -> 1 < x ) | 
						
							| 18 | 15 17 | rplogcld |  |-  ( x e. ( 1 (,) +oo ) -> ( log ` x ) e. RR+ ) | 
						
							| 19 |  | rpdivcl |  |-  ( ( A e. RR+ /\ ( log ` x ) e. RR+ ) -> ( A / ( log ` x ) ) e. RR+ ) | 
						
							| 20 | 1 18 19 | syl2an |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( A / ( log ` x ) ) e. RR+ ) | 
						
							| 21 | 20 | rpred |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( A / ( log ` x ) ) e. RR ) | 
						
							| 22 | 14 21 | remulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) e. RR ) | 
						
							| 23 | 22 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) e. CC ) | 
						
							| 24 | 5 | adantr |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> A e. CC ) | 
						
							| 25 | 14 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) e. CC ) | 
						
							| 26 | 18 | adantl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR+ ) | 
						
							| 27 | 26 | rpcnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. CC ) | 
						
							| 28 | 20 | rpcnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( A / ( log ` x ) ) e. CC ) | 
						
							| 29 | 25 27 28 | subdird |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) x. ( A / ( log ` x ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) - ( ( log ` x ) x. ( A / ( log ` x ) ) ) ) ) | 
						
							| 30 | 26 | rpne0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) =/= 0 ) | 
						
							| 31 | 24 27 30 | divcan2d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( log ` x ) x. ( A / ( log ` x ) ) ) = A ) | 
						
							| 32 | 31 | oveq2d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) - ( ( log ` x ) x. ( A / ( log ` x ) ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) - A ) ) | 
						
							| 33 | 29 32 | eqtrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) x. ( A / ( log ` x ) ) ) = ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) - A ) ) | 
						
							| 34 | 33 | mpteq2dva |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) x. ( A / ( log ` x ) ) ) ) = ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) - A ) ) ) | 
						
							| 35 | 26 | rpred |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( log ` x ) e. RR ) | 
						
							| 36 | 14 35 | resubcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) e. RR ) | 
						
							| 37 | 15 | adantl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. RR ) | 
						
							| 38 |  | 0red |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 e. RR ) | 
						
							| 39 |  | 1red |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 e. RR ) | 
						
							| 40 |  | 0lt1 |  |-  0 < 1 | 
						
							| 41 | 40 | a1i |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 < 1 ) | 
						
							| 42 | 17 | adantl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 1 < x ) | 
						
							| 43 | 38 39 37 41 42 | lttrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 < x ) | 
						
							| 44 | 37 43 | elrpd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. RR+ ) | 
						
							| 45 | 44 | ex |  |-  ( ph -> ( x e. ( 1 (,) +oo ) -> x e. RR+ ) ) | 
						
							| 46 | 45 | ssrdv |  |-  ( ph -> ( 1 (,) +oo ) C_ RR+ ) | 
						
							| 47 |  | vmadivsum |  |-  ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) | 
						
							| 48 | 47 | a1i |  |-  ( ph -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) ) | 
						
							| 49 | 46 48 | o1res2 |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) ) e. O(1) ) | 
						
							| 50 | 4 | a1i |  |-  ( ph -> ( 1 (,) +oo ) C_ RR ) | 
						
							| 51 |  | ere |  |-  _e e. RR | 
						
							| 52 | 51 | a1i |  |-  ( ph -> _e e. RR ) | 
						
							| 53 | 1 | rpred |  |-  ( ph -> A e. RR ) | 
						
							| 54 | 20 | adantrr |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> ( A / ( log ` x ) ) e. RR+ ) | 
						
							| 55 | 54 | rprege0d |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> ( ( A / ( log ` x ) ) e. RR /\ 0 <_ ( A / ( log ` x ) ) ) ) | 
						
							| 56 |  | absid |  |-  ( ( ( A / ( log ` x ) ) e. RR /\ 0 <_ ( A / ( log ` x ) ) ) -> ( abs ` ( A / ( log ` x ) ) ) = ( A / ( log ` x ) ) ) | 
						
							| 57 | 55 56 | syl |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> ( abs ` ( A / ( log ` x ) ) ) = ( A / ( log ` x ) ) ) | 
						
							| 58 |  | loge |  |-  ( log ` _e ) = 1 | 
						
							| 59 |  | simprr |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> _e <_ x ) | 
						
							| 60 |  | epr |  |-  _e e. RR+ | 
						
							| 61 | 44 | adantrr |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> x e. RR+ ) | 
						
							| 62 |  | logleb |  |-  ( ( _e e. RR+ /\ x e. RR+ ) -> ( _e <_ x <-> ( log ` _e ) <_ ( log ` x ) ) ) | 
						
							| 63 | 60 61 62 | sylancr |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> ( _e <_ x <-> ( log ` _e ) <_ ( log ` x ) ) ) | 
						
							| 64 | 59 63 | mpbid |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> ( log ` _e ) <_ ( log ` x ) ) | 
						
							| 65 | 58 64 | eqbrtrrid |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> 1 <_ ( log ` x ) ) | 
						
							| 66 |  | 1rp |  |-  1 e. RR+ | 
						
							| 67 |  | rpregt0 |  |-  ( 1 e. RR+ -> ( 1 e. RR /\ 0 < 1 ) ) | 
						
							| 68 | 66 67 | mp1i |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> ( 1 e. RR /\ 0 < 1 ) ) | 
						
							| 69 | 26 | adantrr |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> ( log ` x ) e. RR+ ) | 
						
							| 70 | 69 | rpregt0d |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> ( ( log ` x ) e. RR /\ 0 < ( log ` x ) ) ) | 
						
							| 71 | 1 | adantr |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> A e. RR+ ) | 
						
							| 72 | 71 | rpregt0d |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> ( A e. RR /\ 0 < A ) ) | 
						
							| 73 |  | lediv2 |  |-  ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( ( log ` x ) e. RR /\ 0 < ( log ` x ) ) /\ ( A e. RR /\ 0 < A ) ) -> ( 1 <_ ( log ` x ) <-> ( A / ( log ` x ) ) <_ ( A / 1 ) ) ) | 
						
							| 74 | 68 70 72 73 | syl3anc |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> ( 1 <_ ( log ` x ) <-> ( A / ( log ` x ) ) <_ ( A / 1 ) ) ) | 
						
							| 75 | 65 74 | mpbid |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> ( A / ( log ` x ) ) <_ ( A / 1 ) ) | 
						
							| 76 | 5 | adantr |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> A e. CC ) | 
						
							| 77 | 76 | div1d |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> ( A / 1 ) = A ) | 
						
							| 78 | 75 77 | breqtrd |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> ( A / ( log ` x ) ) <_ A ) | 
						
							| 79 | 57 78 | eqbrtrd |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ _e <_ x ) ) -> ( abs ` ( A / ( log ` x ) ) ) <_ A ) | 
						
							| 80 | 50 28 52 53 79 | elo1d |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( A / ( log ` x ) ) ) e. O(1) ) | 
						
							| 81 | 36 21 49 80 | o1mul2 |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) - ( log ` x ) ) x. ( A / ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 82 | 34 81 | eqeltrrd |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) - A ) ) e. O(1) ) | 
						
							| 83 | 23 24 82 | o1dif |  |-  ( ph -> ( ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) ) e. O(1) <-> ( x e. ( 1 (,) +oo ) |-> A ) e. O(1) ) ) | 
						
							| 84 | 7 83 | mpbird |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) ) e. O(1) ) | 
						
							| 85 |  | 2re |  |-  2 e. RR | 
						
							| 86 |  | rerpdivcl |  |-  ( ( 2 e. RR /\ ( log ` x ) e. RR+ ) -> ( 2 / ( log ` x ) ) e. RR ) | 
						
							| 87 | 85 26 86 | sylancr |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 / ( log ` x ) ) e. RR ) | 
						
							| 88 |  | nndivre |  |-  ( ( x e. RR /\ n e. NN ) -> ( x / n ) e. RR ) | 
						
							| 89 | 37 9 88 | syl2an |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR ) | 
						
							| 90 |  | chpcl |  |-  ( ( x / n ) e. RR -> ( psi ` ( x / n ) ) e. RR ) | 
						
							| 91 | 89 90 | syl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / n ) ) e. RR ) | 
						
							| 92 | 12 91 | remulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) e. RR ) | 
						
							| 93 | 10 | nnrpd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. RR+ ) | 
						
							| 94 | 93 | relogcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. RR ) | 
						
							| 95 | 92 94 | remulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) e. RR ) | 
						
							| 96 | 8 95 | fsumrecl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) e. RR ) | 
						
							| 97 | 87 96 | remulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) e. RR ) | 
						
							| 98 | 8 92 | fsumrecl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) e. RR ) | 
						
							| 99 | 97 98 | resubcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) e. RR ) | 
						
							| 100 | 99 44 | rerpdivcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) e. RR ) | 
						
							| 101 | 100 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) e. CC ) | 
						
							| 102 | 101 | abscld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) e. RR ) | 
						
							| 103 | 23 | abscld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) ) e. RR ) | 
						
							| 104 |  | 2cnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 2 e. CC ) | 
						
							| 105 | 96 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) e. CC ) | 
						
							| 106 | 104 105 | mulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) e. CC ) | 
						
							| 107 | 98 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) e. CC ) | 
						
							| 108 | 107 27 | mulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) e. CC ) | 
						
							| 109 | 106 108 | subcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) e. CC ) | 
						
							| 110 | 109 | abscld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) e. RR ) | 
						
							| 111 | 43 | gt0ne0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x =/= 0 ) | 
						
							| 112 | 110 37 111 | redivcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) / x ) e. RR ) | 
						
							| 113 | 53 | adantr |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> A e. RR ) | 
						
							| 114 | 14 113 | remulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. A ) e. RR ) | 
						
							| 115 | 12 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. CC ) | 
						
							| 116 |  | fzfid |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( x / n ) ) ) e. Fin ) | 
						
							| 117 |  | elfznn |  |-  ( m e. ( 1 ... ( |_ ` ( x / n ) ) ) -> m e. NN ) | 
						
							| 118 | 117 | adantl |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. NN ) | 
						
							| 119 |  | vmacl |  |-  ( m e. NN -> ( Lam ` m ) e. RR ) | 
						
							| 120 | 118 119 | syl |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( Lam ` m ) e. RR ) | 
						
							| 121 | 118 | nnrpd |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> m e. RR+ ) | 
						
							| 122 | 121 | relogcld |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( log ` m ) e. RR ) | 
						
							| 123 | 120 122 | remulcld |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( log ` m ) ) e. RR ) | 
						
							| 124 | 116 123 | fsumrecl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) e. RR ) | 
						
							| 125 | 9 | nnrpd |  |-  ( n e. ( 1 ... ( |_ ` x ) ) -> n e. RR+ ) | 
						
							| 126 |  | rpdivcl |  |-  ( ( x e. RR+ /\ n e. RR+ ) -> ( x / n ) e. RR+ ) | 
						
							| 127 | 44 125 126 | syl2an |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. RR+ ) | 
						
							| 128 | 127 | relogcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) e. RR ) | 
						
							| 129 | 91 128 | remulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) e. RR ) | 
						
							| 130 | 124 129 | resubcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) e. RR ) | 
						
							| 131 | 130 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) e. CC ) | 
						
							| 132 | 115 131 | mulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) e. CC ) | 
						
							| 133 | 8 132 | fsumcl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) e. CC ) | 
						
							| 134 | 133 | abscld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) e. RR ) | 
						
							| 135 | 132 | abscld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) e. RR ) | 
						
							| 136 | 8 135 | fsumrecl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) e. RR ) | 
						
							| 137 | 113 37 | remulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( A x. x ) e. RR ) | 
						
							| 138 | 14 137 | remulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A x. x ) ) e. RR ) | 
						
							| 139 | 8 132 | fsumabs |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) ) | 
						
							| 140 | 53 | ad2antrr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> A e. RR ) | 
						
							| 141 | 37 | adantr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR ) | 
						
							| 142 | 140 141 | remulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( A x. x ) e. RR ) | 
						
							| 143 | 13 142 | remulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( A x. x ) ) e. RR ) | 
						
							| 144 | 131 | abscld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) e. RR ) | 
						
							| 145 | 142 10 | nndivred |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( A x. x ) / n ) e. RR ) | 
						
							| 146 |  | vmage0 |  |-  ( n e. NN -> 0 <_ ( Lam ` n ) ) | 
						
							| 147 | 10 146 | syl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( Lam ` n ) ) | 
						
							| 148 | 89 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. CC ) | 
						
							| 149 | 127 | rpne0d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) =/= 0 ) | 
						
							| 150 | 131 148 149 | absdivd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) / ( x / n ) ) ) = ( ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) / ( abs ` ( x / n ) ) ) ) | 
						
							| 151 | 127 | rpge0d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( x / n ) ) | 
						
							| 152 | 89 151 | absidd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( x / n ) ) = ( x / n ) ) | 
						
							| 153 | 152 | oveq2d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) / ( abs ` ( x / n ) ) ) = ( ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) / ( x / n ) ) ) | 
						
							| 154 | 150 153 | eqtrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) / ( x / n ) ) ) = ( ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) / ( x / n ) ) ) | 
						
							| 155 |  | fveq2 |  |-  ( k = m -> ( Lam ` k ) = ( Lam ` m ) ) | 
						
							| 156 |  | fveq2 |  |-  ( k = m -> ( log ` k ) = ( log ` m ) ) | 
						
							| 157 | 155 156 | oveq12d |  |-  ( k = m -> ( ( Lam ` k ) x. ( log ` k ) ) = ( ( Lam ` m ) x. ( log ` m ) ) ) | 
						
							| 158 | 157 | cbvsumv |  |-  sum_ k e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` k ) x. ( log ` k ) ) = sum_ m e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` m ) x. ( log ` m ) ) | 
						
							| 159 |  | fveq2 |  |-  ( y = ( x / n ) -> ( |_ ` y ) = ( |_ ` ( x / n ) ) ) | 
						
							| 160 | 159 | oveq2d |  |-  ( y = ( x / n ) -> ( 1 ... ( |_ ` y ) ) = ( 1 ... ( |_ ` ( x / n ) ) ) ) | 
						
							| 161 | 160 | sumeq1d |  |-  ( y = ( x / n ) -> sum_ m e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` m ) x. ( log ` m ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) | 
						
							| 162 | 158 161 | eqtrid |  |-  ( y = ( x / n ) -> sum_ k e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` k ) x. ( log ` k ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) | 
						
							| 163 |  | fveq2 |  |-  ( y = ( x / n ) -> ( psi ` y ) = ( psi ` ( x / n ) ) ) | 
						
							| 164 |  | fveq2 |  |-  ( y = ( x / n ) -> ( log ` y ) = ( log ` ( x / n ) ) ) | 
						
							| 165 | 163 164 | oveq12d |  |-  ( y = ( x / n ) -> ( ( psi ` y ) x. ( log ` y ) ) = ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) | 
						
							| 166 | 162 165 | oveq12d |  |-  ( y = ( x / n ) -> ( sum_ k e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` k ) x. ( log ` k ) ) - ( ( psi ` y ) x. ( log ` y ) ) ) = ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) | 
						
							| 167 |  | id |  |-  ( y = ( x / n ) -> y = ( x / n ) ) | 
						
							| 168 | 166 167 | oveq12d |  |-  ( y = ( x / n ) -> ( ( sum_ k e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` k ) x. ( log ` k ) ) - ( ( psi ` y ) x. ( log ` y ) ) ) / y ) = ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) / ( x / n ) ) ) | 
						
							| 169 | 168 | fveq2d |  |-  ( y = ( x / n ) -> ( abs ` ( ( sum_ k e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` k ) x. ( log ` k ) ) - ( ( psi ` y ) x. ( log ` y ) ) ) / y ) ) = ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) / ( x / n ) ) ) ) | 
						
							| 170 | 169 | breq1d |  |-  ( y = ( x / n ) -> ( ( abs ` ( ( sum_ k e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` k ) x. ( log ` k ) ) - ( ( psi ` y ) x. ( log ` y ) ) ) / y ) ) <_ A <-> ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) / ( x / n ) ) ) <_ A ) ) | 
						
							| 171 | 2 | ad2antrr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( sum_ k e. ( 1 ... ( |_ ` y ) ) ( ( Lam ` k ) x. ( log ` k ) ) - ( ( psi ` y ) x. ( log ` y ) ) ) / y ) ) <_ A ) | 
						
							| 172 | 10 | nncnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. CC ) | 
						
							| 173 | 172 | mullidd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 x. n ) = n ) | 
						
							| 174 |  | fznnfl |  |-  ( x e. RR -> ( n e. ( 1 ... ( |_ ` x ) ) <-> ( n e. NN /\ n <_ x ) ) ) | 
						
							| 175 | 37 174 | syl |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( n e. ( 1 ... ( |_ ` x ) ) <-> ( n e. NN /\ n <_ x ) ) ) | 
						
							| 176 | 175 | simplbda |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n <_ x ) | 
						
							| 177 | 173 176 | eqbrtrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 x. n ) <_ x ) | 
						
							| 178 |  | 1red |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. RR ) | 
						
							| 179 | 178 141 93 | lemuldivd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 x. n ) <_ x <-> 1 <_ ( x / n ) ) ) | 
						
							| 180 | 177 179 | mpbid |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> 1 <_ ( x / n ) ) | 
						
							| 181 |  | 1re |  |-  1 e. RR | 
						
							| 182 |  | elicopnf |  |-  ( 1 e. RR -> ( ( x / n ) e. ( 1 [,) +oo ) <-> ( ( x / n ) e. RR /\ 1 <_ ( x / n ) ) ) ) | 
						
							| 183 | 181 182 | ax-mp |  |-  ( ( x / n ) e. ( 1 [,) +oo ) <-> ( ( x / n ) e. RR /\ 1 <_ ( x / n ) ) ) | 
						
							| 184 | 89 180 183 | sylanbrc |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( x / n ) e. ( 1 [,) +oo ) ) | 
						
							| 185 | 170 171 184 | rspcdva |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) / ( x / n ) ) ) <_ A ) | 
						
							| 186 | 154 185 | eqbrtrrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) / ( x / n ) ) <_ A ) | 
						
							| 187 | 144 140 127 | ledivmul2d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) / ( x / n ) ) <_ A <-> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) <_ ( A x. ( x / n ) ) ) ) | 
						
							| 188 | 186 187 | mpbid |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) <_ ( A x. ( x / n ) ) ) | 
						
							| 189 | 24 | adantr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> A e. CC ) | 
						
							| 190 | 141 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. CC ) | 
						
							| 191 | 10 | nnne0d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n =/= 0 ) | 
						
							| 192 | 189 190 172 191 | divassd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( A x. x ) / n ) = ( A x. ( x / n ) ) ) | 
						
							| 193 | 188 192 | breqtrrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) <_ ( ( A x. x ) / n ) ) | 
						
							| 194 | 144 145 12 147 193 | lemul2ad |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) <_ ( ( Lam ` n ) x. ( ( A x. x ) / n ) ) ) | 
						
							| 195 | 115 131 | absmuld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) = ( ( abs ` ( Lam ` n ) ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) ) | 
						
							| 196 | 12 147 | absidd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( Lam ` n ) ) = ( Lam ` n ) ) | 
						
							| 197 | 196 | oveq1d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( Lam ` n ) ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) = ( ( Lam ` n ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) ) | 
						
							| 198 | 195 197 | eqtrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) = ( ( Lam ` n ) x. ( abs ` ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) ) | 
						
							| 199 | 142 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( A x. x ) e. CC ) | 
						
							| 200 | 115 172 199 191 | div32d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) / n ) x. ( A x. x ) ) = ( ( Lam ` n ) x. ( ( A x. x ) / n ) ) ) | 
						
							| 201 | 194 198 200 | 3brtr4d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) <_ ( ( ( Lam ` n ) / n ) x. ( A x. x ) ) ) | 
						
							| 202 | 8 135 143 201 | fsumle |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( A x. x ) ) ) | 
						
							| 203 | 37 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> x e. CC ) | 
						
							| 204 | 24 203 | mulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( A x. x ) e. CC ) | 
						
							| 205 | 115 172 191 | divcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. CC ) | 
						
							| 206 | 8 204 205 | fsummulc1 |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A x. x ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) / n ) x. ( A x. x ) ) ) | 
						
							| 207 | 202 206 | breqtrrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( abs ` ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) <_ ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A x. x ) ) ) | 
						
							| 208 | 134 136 138 139 207 | letrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) <_ ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A x. x ) ) ) | 
						
							| 209 | 124 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) e. CC ) | 
						
							| 210 | 91 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / n ) ) e. CC ) | 
						
							| 211 | 94 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` n ) e. CC ) | 
						
							| 212 | 210 211 | mulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / n ) ) x. ( log ` n ) ) e. CC ) | 
						
							| 213 | 209 212 | addcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) e. CC ) | 
						
							| 214 | 115 213 | mulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) e. CC ) | 
						
							| 215 | 115 210 | mulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) e. CC ) | 
						
							| 216 | 27 | adantr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` x ) e. CC ) | 
						
							| 217 | 215 216 | mulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) e. CC ) | 
						
							| 218 | 8 214 217 | fsumsub |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) - ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) | 
						
							| 219 | 210 216 | mulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / n ) ) x. ( log ` x ) ) e. CC ) | 
						
							| 220 | 115 213 219 | subdid |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) - ( ( psi ` ( x / n ) ) x. ( log ` x ) ) ) ) = ( ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) - ( ( Lam ` n ) x. ( ( psi ` ( x / n ) ) x. ( log ` x ) ) ) ) ) | 
						
							| 221 | 44 | adantr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR+ ) | 
						
							| 222 | 221 93 | relogdivd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / n ) ) = ( ( log ` x ) - ( log ` n ) ) ) | 
						
							| 223 | 222 | oveq2d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) = ( ( psi ` ( x / n ) ) x. ( ( log ` x ) - ( log ` n ) ) ) ) | 
						
							| 224 | 210 216 211 | subdid |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / n ) ) x. ( ( log ` x ) - ( log ` n ) ) ) = ( ( ( psi ` ( x / n ) ) x. ( log ` x ) ) - ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) | 
						
							| 225 | 223 224 | eqtrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) = ( ( ( psi ` ( x / n ) ) x. ( log ` x ) ) - ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) | 
						
							| 226 | 225 | oveq2d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) = ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( ( psi ` ( x / n ) ) x. ( log ` x ) ) - ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) ) | 
						
							| 227 | 209 219 212 | subsub3d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( ( psi ` ( x / n ) ) x. ( log ` x ) ) - ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) = ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) - ( ( psi ` ( x / n ) ) x. ( log ` x ) ) ) ) | 
						
							| 228 | 226 227 | eqtrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) = ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) - ( ( psi ` ( x / n ) ) x. ( log ` x ) ) ) ) | 
						
							| 229 | 228 | oveq2d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) = ( ( Lam ` n ) x. ( ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) - ( ( psi ` ( x / n ) ) x. ( log ` x ) ) ) ) ) | 
						
							| 230 | 115 210 216 | mulassd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) = ( ( Lam ` n ) x. ( ( psi ` ( x / n ) ) x. ( log ` x ) ) ) ) | 
						
							| 231 | 230 | oveq2d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) - ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) = ( ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) - ( ( Lam ` n ) x. ( ( psi ` ( x / n ) ) x. ( log ` x ) ) ) ) ) | 
						
							| 232 | 220 229 231 | 3eqtr4d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) = ( ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) - ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) | 
						
							| 233 | 232 | sumeq2dv |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) - ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) | 
						
							| 234 |  | fveq2 |  |-  ( n = m -> ( Lam ` n ) = ( Lam ` m ) ) | 
						
							| 235 |  | oveq2 |  |-  ( n = m -> ( x / n ) = ( x / m ) ) | 
						
							| 236 | 235 | fveq2d |  |-  ( n = m -> ( psi ` ( x / n ) ) = ( psi ` ( x / m ) ) ) | 
						
							| 237 | 234 236 | oveq12d |  |-  ( n = m -> ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) = ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) ) | 
						
							| 238 |  | fveq2 |  |-  ( n = m -> ( log ` n ) = ( log ` m ) ) | 
						
							| 239 | 237 238 | oveq12d |  |-  ( n = m -> ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) = ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) ) | 
						
							| 240 | 239 | cbvsumv |  |-  sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) = sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) | 
						
							| 241 |  | elfznn |  |-  ( n e. ( 1 ... ( |_ ` ( x / m ) ) ) -> n e. NN ) | 
						
							| 242 | 241 | adantl |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) -> n e. NN ) | 
						
							| 243 | 242 11 | syl |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) -> ( Lam ` n ) e. RR ) | 
						
							| 244 | 243 | recnd |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) -> ( Lam ` n ) e. CC ) | 
						
							| 245 | 244 | anasss |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ ( m e. ( 1 ... ( |_ ` x ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) ) -> ( Lam ` n ) e. CC ) | 
						
							| 246 |  | elfznn |  |-  ( m e. ( 1 ... ( |_ ` x ) ) -> m e. NN ) | 
						
							| 247 | 246 | adantl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> m e. NN ) | 
						
							| 248 | 247 119 | syl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` m ) e. RR ) | 
						
							| 249 | 248 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` m ) e. CC ) | 
						
							| 250 | 247 | nnrpd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> m e. RR+ ) | 
						
							| 251 | 250 | relogcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` m ) e. RR ) | 
						
							| 252 | 251 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` m ) e. CC ) | 
						
							| 253 | 249 252 | mulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` m ) x. ( log ` m ) ) e. CC ) | 
						
							| 254 | 253 | adantrr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ ( m e. ( 1 ... ( |_ ` x ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) ) -> ( ( Lam ` m ) x. ( log ` m ) ) e. CC ) | 
						
							| 255 | 245 254 | mulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ ( m e. ( 1 ... ( |_ ` x ) ) /\ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ) ) -> ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) e. CC ) | 
						
							| 256 | 37 255 | fsumfldivdiag |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) | 
						
							| 257 | 37 | adantr |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR ) | 
						
							| 258 | 257 247 | nndivred |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( x / m ) e. RR ) | 
						
							| 259 |  | chpcl |  |-  ( ( x / m ) e. RR -> ( psi ` ( x / m ) ) e. RR ) | 
						
							| 260 | 258 259 | syl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / m ) ) e. RR ) | 
						
							| 261 | 260 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / m ) ) e. CC ) | 
						
							| 262 | 249 261 252 | mul32d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) = ( ( ( Lam ` m ) x. ( log ` m ) ) x. ( psi ` ( x / m ) ) ) ) | 
						
							| 263 | 248 251 | remulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` m ) x. ( log ` m ) ) e. RR ) | 
						
							| 264 | 263 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` m ) x. ( log ` m ) ) e. CC ) | 
						
							| 265 | 264 261 | mulcomd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` m ) x. ( log ` m ) ) x. ( psi ` ( x / m ) ) ) = ( ( psi ` ( x / m ) ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) | 
						
							| 266 |  | chpval |  |-  ( ( x / m ) e. RR -> ( psi ` ( x / m ) ) = sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( Lam ` n ) ) | 
						
							| 267 | 258 266 | syl |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( psi ` ( x / m ) ) = sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( Lam ` n ) ) | 
						
							| 268 | 267 | oveq1d |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / m ) ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) | 
						
							| 269 |  | fzfid |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( x / m ) ) ) e. Fin ) | 
						
							| 270 | 269 264 244 | fsummulc1 |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) = sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) | 
						
							| 271 | 268 270 | eqtrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( psi ` ( x / m ) ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) = sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) | 
						
							| 272 | 262 265 271 | 3eqtrd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ m e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) = sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) | 
						
							| 273 | 272 | sumeq2dv |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) = sum_ m e. ( 1 ... ( |_ ` x ) ) sum_ n e. ( 1 ... ( |_ ` ( x / m ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) | 
						
							| 274 | 123 | recnd |  |-  ( ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) /\ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ) -> ( ( Lam ` m ) x. ( log ` m ) ) e. CC ) | 
						
							| 275 | 116 115 274 | fsummulc2 |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) = sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) | 
						
							| 276 | 275 | sumeq2dv |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` n ) x. ( ( Lam ` m ) x. ( log ` m ) ) ) ) | 
						
							| 277 | 256 273 276 | 3eqtr4d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ m e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` m ) x. ( psi ` ( x / m ) ) ) x. ( log ` m ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) | 
						
							| 278 | 240 277 | eqtrid |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) ) | 
						
							| 279 | 115 210 211 | mulassd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) = ( ( Lam ` n ) x. ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) | 
						
							| 280 | 279 | sumeq2dv |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) | 
						
							| 281 | 278 280 | oveq12d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) ) | 
						
							| 282 | 105 | 2timesd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) | 
						
							| 283 | 115 209 | mulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) e. CC ) | 
						
							| 284 | 115 212 | mulcld |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) e. CC ) | 
						
							| 285 | 8 283 284 | fsumadd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + ( ( Lam ` n ) x. ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) ) | 
						
							| 286 | 281 282 285 | 3eqtr4d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + ( ( Lam ` n ) x. ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) ) | 
						
							| 287 | 115 209 212 | adddid |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) = ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + ( ( Lam ` n ) x. ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) ) | 
						
							| 288 | 287 | sumeq2dv |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) ) + ( ( Lam ` n ) x. ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) ) | 
						
							| 289 | 286 288 | eqtr4d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) ) | 
						
							| 290 | 92 | recnd |  |-  ( ( ( ph /\ x e. ( 1 (,) +oo ) ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) e. CC ) | 
						
							| 291 | 8 27 290 | fsummulc1 |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) | 
						
							| 292 | 289 291 | oveq12d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) + ( ( psi ` ( x / n ) ) x. ( log ` n ) ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) | 
						
							| 293 | 218 233 292 | 3eqtr4rd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) | 
						
							| 294 | 293 | fveq2d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) = ( abs ` sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( sum_ m e. ( 1 ... ( |_ ` ( x / n ) ) ) ( ( Lam ` m ) x. ( log ` m ) ) - ( ( psi ` ( x / n ) ) x. ( log ` ( x / n ) ) ) ) ) ) ) | 
						
							| 295 | 25 24 203 | mulassd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. A ) x. x ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A x. x ) ) ) | 
						
							| 296 | 208 294 295 | 3brtr4d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) <_ ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. A ) x. x ) ) | 
						
							| 297 | 110 114 44 | ledivmul2d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) / x ) <_ ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. A ) <-> ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) <_ ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. A ) x. x ) ) ) | 
						
							| 298 | 296 297 | mpbird |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) / x ) <_ ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. A ) ) | 
						
							| 299 | 112 114 26 298 | lediv1dd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) / x ) / ( log ` x ) ) <_ ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. A ) / ( log ` x ) ) ) | 
						
							| 300 | 110 | recnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) e. CC ) | 
						
							| 301 | 300 203 27 111 30 | divdiv1d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) / x ) / ( log ` x ) ) = ( ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) / ( x x. ( log ` x ) ) ) ) | 
						
							| 302 | 109 27 203 30 111 | divdiv32d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) / ( log ` x ) ) / x ) = ( ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) / x ) / ( log ` x ) ) ) | 
						
							| 303 | 106 108 27 30 | divsubdird |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) / ( log ` x ) ) = ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) / ( log ` x ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) / ( log ` x ) ) ) ) | 
						
							| 304 | 104 105 27 30 | div23d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) / ( log ` x ) ) = ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) ) | 
						
							| 305 | 107 27 30 | divcan4d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) / ( log ` x ) ) = sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) | 
						
							| 306 | 304 305 | oveq12d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) / ( log ` x ) ) - ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) / ( log ` x ) ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) ) | 
						
							| 307 | 303 306 | eqtrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) / ( log ` x ) ) = ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) ) | 
						
							| 308 | 307 | oveq1d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) / ( log ` x ) ) / x ) = ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) | 
						
							| 309 | 109 203 27 111 30 | divdiv1d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) / x ) / ( log ` x ) ) = ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) / ( x x. ( log ` x ) ) ) ) | 
						
							| 310 | 302 308 309 | 3eqtr3d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) = ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) / ( x x. ( log ` x ) ) ) ) | 
						
							| 311 | 310 | fveq2d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) = ( abs ` ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) / ( x x. ( log ` x ) ) ) ) ) | 
						
							| 312 | 44 26 | rpmulcld |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. RR+ ) | 
						
							| 313 | 312 | rpcnd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. CC ) | 
						
							| 314 | 312 | rpne0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) =/= 0 ) | 
						
							| 315 | 109 313 314 | absdivd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) / ( x x. ( log ` x ) ) ) ) = ( ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) / ( abs ` ( x x. ( log ` x ) ) ) ) ) | 
						
							| 316 | 312 | rpred |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( x x. ( log ` x ) ) e. RR ) | 
						
							| 317 | 312 | rpge0d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> 0 <_ ( x x. ( log ` x ) ) ) | 
						
							| 318 | 316 317 | absidd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( x x. ( log ` x ) ) ) = ( x x. ( log ` x ) ) ) | 
						
							| 319 | 318 | oveq2d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) / ( abs ` ( x x. ( log ` x ) ) ) ) = ( ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) / ( x x. ( log ` x ) ) ) ) | 
						
							| 320 | 311 315 319 | 3eqtrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) = ( ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) / ( x x. ( log ` x ) ) ) ) | 
						
							| 321 | 301 320 | eqtr4d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( ( abs ` ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` x ) ) ) ) / x ) / ( log ` x ) ) = ( abs ` ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) ) | 
						
							| 322 | 25 24 27 30 | divassd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. A ) / ( log ` x ) ) = ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) ) | 
						
							| 323 | 299 321 322 | 3brtr3d |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) <_ ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) ) | 
						
							| 324 | 22 | leabsd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) <_ ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) ) ) | 
						
							| 325 | 102 22 103 323 324 | letrd |  |-  ( ( ph /\ x e. ( 1 (,) +oo ) ) -> ( abs ` ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) <_ ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) ) ) | 
						
							| 326 | 325 | adantrr |  |-  ( ( ph /\ ( x e. ( 1 (,) +oo ) /\ 1 <_ x ) ) -> ( abs ` ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) <_ ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) / n ) x. ( A / ( log ` x ) ) ) ) ) | 
						
							| 327 | 3 84 22 101 326 | o1le |  |-  ( ph -> ( x e. ( 1 (,) +oo ) |-> ( ( ( ( 2 / ( log ` x ) ) x. sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) x. ( log ` n ) ) ) - sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( Lam ` n ) x. ( psi ` ( x / n ) ) ) ) / x ) ) e. O(1) ) |