Metamath Proof Explorer


Theorem selberg3lem1

Description: Introduce a log weighting on the summands of sum_ m x. n <_ x , Lam ( m ) Lam ( n ) , the core of selberg2 (written here as sum_ n <_ x , Lam ( n ) psi ( x / n ) ). Equation 10.4.21 of Shapiro, p. 422. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses selberg3lem1.1 φA+
selberg3lem1.2 φy1+∞k=1yΛklogkψylogyyA
Assertion selberg3lem1 φx1+∞2logxn=1xΛnψxnlognn=1xΛnψxnx𝑂1

Proof

Step Hyp Ref Expression
1 selberg3lem1.1 φA+
2 selberg3lem1.2 φy1+∞k=1yΛklogkψylogyyA
3 1red φ1
4 ioossre 1+∞
5 1 rpcnd φA
6 o1const 1+∞Ax1+∞A𝑂1
7 4 5 6 sylancr φx1+∞A𝑂1
8 fzfid φx1+∞1xFin
9 elfznn n1xn
10 9 adantl φx1+∞n1xn
11 vmacl nΛn
12 10 11 syl φx1+∞n1xΛn
13 12 10 nndivred φx1+∞n1xΛnn
14 8 13 fsumrecl φx1+∞n=1xΛnn
15 elioore x1+∞x
16 eliooord x1+∞1<xx<+∞
17 16 simpld x1+∞1<x
18 15 17 rplogcld x1+∞logx+
19 rpdivcl A+logx+Alogx+
20 1 18 19 syl2an φx1+∞Alogx+
21 20 rpred φx1+∞Alogx
22 14 21 remulcld φx1+∞n=1xΛnnAlogx
23 22 recnd φx1+∞n=1xΛnnAlogx
24 5 adantr φx1+∞A
25 14 recnd φx1+∞n=1xΛnn
26 18 adantl φx1+∞logx+
27 26 rpcnd φx1+∞logx
28 20 rpcnd φx1+∞Alogx
29 25 27 28 subdird φx1+∞n=1xΛnnlogxAlogx=n=1xΛnnAlogxlogxAlogx
30 26 rpne0d φx1+∞logx0
31 24 27 30 divcan2d φx1+∞logxAlogx=A
32 31 oveq2d φx1+∞n=1xΛnnAlogxlogxAlogx=n=1xΛnnAlogxA
33 29 32 eqtrd φx1+∞n=1xΛnnlogxAlogx=n=1xΛnnAlogxA
34 33 mpteq2dva φx1+∞n=1xΛnnlogxAlogx=x1+∞n=1xΛnnAlogxA
35 26 rpred φx1+∞logx
36 14 35 resubcld φx1+∞n=1xΛnnlogx
37 15 adantl φx1+∞x
38 0red φx1+∞0
39 1red φx1+∞1
40 0lt1 0<1
41 40 a1i φx1+∞0<1
42 17 adantl φx1+∞1<x
43 38 39 37 41 42 lttrd φx1+∞0<x
44 37 43 elrpd φx1+∞x+
45 44 ex φx1+∞x+
46 45 ssrdv φ1+∞+
47 vmadivsum x+n=1xΛnnlogx𝑂1
48 47 a1i φx+n=1xΛnnlogx𝑂1
49 46 48 o1res2 φx1+∞n=1xΛnnlogx𝑂1
50 4 a1i φ1+∞
51 ere e
52 51 a1i φe
53 1 rpred φA
54 20 adantrr φx1+∞exAlogx+
55 54 rprege0d φx1+∞exAlogx0Alogx
56 absid Alogx0AlogxAlogx=Alogx
57 55 56 syl φx1+∞exAlogx=Alogx
58 loge loge=1
59 simprr φx1+∞exex
60 epr e+
61 44 adantrr φx1+∞exx+
62 logleb e+x+exlogelogx
63 60 61 62 sylancr φx1+∞exexlogelogx
64 59 63 mpbid φx1+∞exlogelogx
65 58 64 eqbrtrrid φx1+∞ex1logx
66 1rp 1+
67 rpregt0 1+10<1
68 66 67 mp1i φx1+∞ex10<1
69 26 adantrr φx1+∞exlogx+
70 69 rpregt0d φx1+∞exlogx0<logx
71 1 adantr φx1+∞exA+
72 71 rpregt0d φx1+∞exA0<A
73 lediv2 10<1logx0<logxA0<A1logxAlogxA1
74 68 70 72 73 syl3anc φx1+∞ex1logxAlogxA1
75 65 74 mpbid φx1+∞exAlogxA1
76 5 adantr φx1+∞exA
77 76 div1d φx1+∞exA1=A
78 75 77 breqtrd φx1+∞exAlogxA
79 57 78 eqbrtrd φx1+∞exAlogxA
80 50 28 52 53 79 elo1d φx1+∞Alogx𝑂1
81 36 21 49 80 o1mul2 φx1+∞n=1xΛnnlogxAlogx𝑂1
82 34 81 eqeltrrd φx1+∞n=1xΛnnAlogxA𝑂1
83 23 24 82 o1dif φx1+∞n=1xΛnnAlogx𝑂1x1+∞A𝑂1
84 7 83 mpbird φx1+∞n=1xΛnnAlogx𝑂1
85 2re 2
86 rerpdivcl 2logx+2logx
87 85 26 86 sylancr φx1+∞2logx
88 nndivre xnxn
89 37 9 88 syl2an φx1+∞n1xxn
90 chpcl xnψxn
91 89 90 syl φx1+∞n1xψxn
92 12 91 remulcld φx1+∞n1xΛnψxn
93 10 nnrpd φx1+∞n1xn+
94 93 relogcld φx1+∞n1xlogn
95 92 94 remulcld φx1+∞n1xΛnψxnlogn
96 8 95 fsumrecl φx1+∞n=1xΛnψxnlogn
97 87 96 remulcld φx1+∞2logxn=1xΛnψxnlogn
98 8 92 fsumrecl φx1+∞n=1xΛnψxn
99 97 98 resubcld φx1+∞2logxn=1xΛnψxnlognn=1xΛnψxn
100 99 44 rerpdivcld φx1+∞2logxn=1xΛnψxnlognn=1xΛnψxnx
101 100 recnd φx1+∞2logxn=1xΛnψxnlognn=1xΛnψxnx
102 101 abscld φx1+∞2logxn=1xΛnψxnlognn=1xΛnψxnx
103 23 abscld φx1+∞n=1xΛnnAlogx
104 2cnd φx1+∞2
105 96 recnd φx1+∞n=1xΛnψxnlogn
106 104 105 mulcld φx1+∞2n=1xΛnψxnlogn
107 98 recnd φx1+∞n=1xΛnψxn
108 107 27 mulcld φx1+∞n=1xΛnψxnlogx
109 106 108 subcld φx1+∞2n=1xΛnψxnlognn=1xΛnψxnlogx
110 109 abscld φx1+∞2n=1xΛnψxnlognn=1xΛnψxnlogx
111 43 gt0ne0d φx1+∞x0
112 110 37 111 redivcld φx1+∞2n=1xΛnψxnlognn=1xΛnψxnlogxx
113 53 adantr φx1+∞A
114 14 113 remulcld φx1+∞n=1xΛnnA
115 12 recnd φx1+∞n1xΛn
116 fzfid φx1+∞n1x1xnFin
117 elfznn m1xnm
118 117 adantl φx1+∞n1xm1xnm
119 vmacl mΛm
120 118 119 syl φx1+∞n1xm1xnΛm
121 118 nnrpd φx1+∞n1xm1xnm+
122 121 relogcld φx1+∞n1xm1xnlogm
123 120 122 remulcld φx1+∞n1xm1xnΛmlogm
124 116 123 fsumrecl φx1+∞n1xm=1xnΛmlogm
125 9 nnrpd n1xn+
126 rpdivcl x+n+xn+
127 44 125 126 syl2an φx1+∞n1xxn+
128 127 relogcld φx1+∞n1xlogxn
129 91 128 remulcld φx1+∞n1xψxnlogxn
130 124 129 resubcld φx1+∞n1xm=1xnΛmlogmψxnlogxn
131 130 recnd φx1+∞n1xm=1xnΛmlogmψxnlogxn
132 115 131 mulcld φx1+∞n1xΛnm=1xnΛmlogmψxnlogxn
133 8 132 fsumcl φx1+∞n=1xΛnm=1xnΛmlogmψxnlogxn
134 133 abscld φx1+∞n=1xΛnm=1xnΛmlogmψxnlogxn
135 132 abscld φx1+∞n1xΛnm=1xnΛmlogmψxnlogxn
136 8 135 fsumrecl φx1+∞n=1xΛnm=1xnΛmlogmψxnlogxn
137 113 37 remulcld φx1+∞Ax
138 14 137 remulcld φx1+∞n=1xΛnnAx
139 8 132 fsumabs φx1+∞n=1xΛnm=1xnΛmlogmψxnlogxnn=1xΛnm=1xnΛmlogmψxnlogxn
140 53 ad2antrr φx1+∞n1xA
141 37 adantr φx1+∞n1xx
142 140 141 remulcld φx1+∞n1xAx
143 13 142 remulcld φx1+∞n1xΛnnAx
144 131 abscld φx1+∞n1xm=1xnΛmlogmψxnlogxn
145 142 10 nndivred φx1+∞n1xAxn
146 vmage0 n0Λn
147 10 146 syl φx1+∞n1x0Λn
148 89 recnd φx1+∞n1xxn
149 127 rpne0d φx1+∞n1xxn0
150 131 148 149 absdivd φx1+∞n1xm=1xnΛmlogmψxnlogxnxn=m=1xnΛmlogmψxnlogxnxn
151 127 rpge0d φx1+∞n1x0xn
152 89 151 absidd φx1+∞n1xxn=xn
153 152 oveq2d φx1+∞n1xm=1xnΛmlogmψxnlogxnxn=m=1xnΛmlogmψxnlogxnxn
154 150 153 eqtrd φx1+∞n1xm=1xnΛmlogmψxnlogxnxn=m=1xnΛmlogmψxnlogxnxn
155 fveq2 k=mΛk=Λm
156 fveq2 k=mlogk=logm
157 155 156 oveq12d k=mΛklogk=Λmlogm
158 157 cbvsumv k=1yΛklogk=m=1yΛmlogm
159 fveq2 y=xny=xn
160 159 oveq2d y=xn1y=1xn
161 160 sumeq1d y=xnm=1yΛmlogm=m=1xnΛmlogm
162 158 161 eqtrid y=xnk=1yΛklogk=m=1xnΛmlogm
163 fveq2 y=xnψy=ψxn
164 fveq2 y=xnlogy=logxn
165 163 164 oveq12d y=xnψylogy=ψxnlogxn
166 162 165 oveq12d y=xnk=1yΛklogkψylogy=m=1xnΛmlogmψxnlogxn
167 id y=xny=xn
168 166 167 oveq12d y=xnk=1yΛklogkψylogyy=m=1xnΛmlogmψxnlogxnxn
169 168 fveq2d y=xnk=1yΛklogkψylogyy=m=1xnΛmlogmψxnlogxnxn
170 169 breq1d y=xnk=1yΛklogkψylogyyAm=1xnΛmlogmψxnlogxnxnA
171 2 ad2antrr φx1+∞n1xy1+∞k=1yΛklogkψylogyyA
172 10 nncnd φx1+∞n1xn
173 172 mullidd φx1+∞n1x1n=n
174 fznnfl xn1xnnx
175 37 174 syl φx1+∞n1xnnx
176 175 simplbda φx1+∞n1xnx
177 173 176 eqbrtrd φx1+∞n1x1nx
178 1red φx1+∞n1x1
179 178 141 93 lemuldivd φx1+∞n1x1nx1xn
180 177 179 mpbid φx1+∞n1x1xn
181 1re 1
182 elicopnf 1xn1+∞xn1xn
183 181 182 ax-mp xn1+∞xn1xn
184 89 180 183 sylanbrc φx1+∞n1xxn1+∞
185 170 171 184 rspcdva φx1+∞n1xm=1xnΛmlogmψxnlogxnxnA
186 154 185 eqbrtrrd φx1+∞n1xm=1xnΛmlogmψxnlogxnxnA
187 144 140 127 ledivmul2d φx1+∞n1xm=1xnΛmlogmψxnlogxnxnAm=1xnΛmlogmψxnlogxnAxn
188 186 187 mpbid φx1+∞n1xm=1xnΛmlogmψxnlogxnAxn
189 24 adantr φx1+∞n1xA
190 141 recnd φx1+∞n1xx
191 10 nnne0d φx1+∞n1xn0
192 189 190 172 191 divassd φx1+∞n1xAxn=Axn
193 188 192 breqtrrd φx1+∞n1xm=1xnΛmlogmψxnlogxnAxn
194 144 145 12 147 193 lemul2ad φx1+∞n1xΛnm=1xnΛmlogmψxnlogxnΛnAxn
195 115 131 absmuld φx1+∞n1xΛnm=1xnΛmlogmψxnlogxn=Λnm=1xnΛmlogmψxnlogxn
196 12 147 absidd φx1+∞n1xΛn=Λn
197 196 oveq1d φx1+∞n1xΛnm=1xnΛmlogmψxnlogxn=Λnm=1xnΛmlogmψxnlogxn
198 195 197 eqtrd φx1+∞n1xΛnm=1xnΛmlogmψxnlogxn=Λnm=1xnΛmlogmψxnlogxn
199 142 recnd φx1+∞n1xAx
200 115 172 199 191 div32d φx1+∞n1xΛnnAx=ΛnAxn
201 194 198 200 3brtr4d φx1+∞n1xΛnm=1xnΛmlogmψxnlogxnΛnnAx
202 8 135 143 201 fsumle φx1+∞n=1xΛnm=1xnΛmlogmψxnlogxnn=1xΛnnAx
203 37 recnd φx1+∞x
204 24 203 mulcld φx1+∞Ax
205 115 172 191 divcld φx1+∞n1xΛnn
206 8 204 205 fsummulc1 φx1+∞n=1xΛnnAx=n=1xΛnnAx
207 202 206 breqtrrd φx1+∞n=1xΛnm=1xnΛmlogmψxnlogxnn=1xΛnnAx
208 134 136 138 139 207 letrd φx1+∞n=1xΛnm=1xnΛmlogmψxnlogxnn=1xΛnnAx
209 124 recnd φx1+∞n1xm=1xnΛmlogm
210 91 recnd φx1+∞n1xψxn
211 94 recnd φx1+∞n1xlogn
212 210 211 mulcld φx1+∞n1xψxnlogn
213 209 212 addcld φx1+∞n1xm=1xnΛmlogm+ψxnlogn
214 115 213 mulcld φx1+∞n1xΛnm=1xnΛmlogm+ψxnlogn
215 115 210 mulcld φx1+∞n1xΛnψxn
216 27 adantr φx1+∞n1xlogx
217 215 216 mulcld φx1+∞n1xΛnψxnlogx
218 8 214 217 fsumsub φx1+∞n=1xΛnm=1xnΛmlogm+ψxnlognΛnψxnlogx=n=1xΛnm=1xnΛmlogm+ψxnlognn=1xΛnψxnlogx
219 210 216 mulcld φx1+∞n1xψxnlogx
220 115 213 219 subdid φx1+∞n1xΛnm=1xnΛmlogm+ψxnlogn-ψxnlogx=Λnm=1xnΛmlogm+ψxnlognΛnψxnlogx
221 44 adantr φx1+∞n1xx+
222 221 93 relogdivd φx1+∞n1xlogxn=logxlogn
223 222 oveq2d φx1+∞n1xψxnlogxn=ψxnlogxlogn
224 210 216 211 subdid φx1+∞n1xψxnlogxlogn=ψxnlogxψxnlogn
225 223 224 eqtrd φx1+∞n1xψxnlogxn=ψxnlogxψxnlogn
226 225 oveq2d φx1+∞n1xm=1xnΛmlogmψxnlogxn=m=1xnΛmlogmψxnlogxψxnlogn
227 209 219 212 subsub3d φx1+∞n1xm=1xnΛmlogmψxnlogxψxnlogn=m=1xnΛmlogm+ψxnlogn-ψxnlogx
228 226 227 eqtrd φx1+∞n1xm=1xnΛmlogmψxnlogxn=m=1xnΛmlogm+ψxnlogn-ψxnlogx
229 228 oveq2d φx1+∞n1xΛnm=1xnΛmlogmψxnlogxn=Λnm=1xnΛmlogm+ψxnlogn-ψxnlogx
230 115 210 216 mulassd φx1+∞n1xΛnψxnlogx=Λnψxnlogx
231 230 oveq2d φx1+∞n1xΛnm=1xnΛmlogm+ψxnlognΛnψxnlogx=Λnm=1xnΛmlogm+ψxnlognΛnψxnlogx
232 220 229 231 3eqtr4d φx1+∞n1xΛnm=1xnΛmlogmψxnlogxn=Λnm=1xnΛmlogm+ψxnlognΛnψxnlogx
233 232 sumeq2dv φx1+∞n=1xΛnm=1xnΛmlogmψxnlogxn=n=1xΛnm=1xnΛmlogm+ψxnlognΛnψxnlogx
234 fveq2 n=mΛn=Λm
235 oveq2 n=mxn=xm
236 235 fveq2d n=mψxn=ψxm
237 234 236 oveq12d n=mΛnψxn=Λmψxm
238 fveq2 n=mlogn=logm
239 237 238 oveq12d n=mΛnψxnlogn=Λmψxmlogm
240 239 cbvsumv n=1xΛnψxnlogn=m=1xΛmψxmlogm
241 elfznn n1xmn
242 241 adantl φx1+∞m1xn1xmn
243 242 11 syl φx1+∞m1xn1xmΛn
244 243 recnd φx1+∞m1xn1xmΛn
245 244 anasss φx1+∞m1xn1xmΛn
246 elfznn m1xm
247 246 adantl φx1+∞m1xm
248 247 119 syl φx1+∞m1xΛm
249 248 recnd φx1+∞m1xΛm
250 247 nnrpd φx1+∞m1xm+
251 250 relogcld φx1+∞m1xlogm
252 251 recnd φx1+∞m1xlogm
253 249 252 mulcld φx1+∞m1xΛmlogm
254 253 adantrr φx1+∞m1xn1xmΛmlogm
255 245 254 mulcld φx1+∞m1xn1xmΛnΛmlogm
256 37 255 fsumfldivdiag φx1+∞m=1xn=1xmΛnΛmlogm=n=1xm=1xnΛnΛmlogm
257 37 adantr φx1+∞m1xx
258 257 247 nndivred φx1+∞m1xxm
259 chpcl xmψxm
260 258 259 syl φx1+∞m1xψxm
261 260 recnd φx1+∞m1xψxm
262 249 261 252 mul32d φx1+∞m1xΛmψxmlogm=Λmlogmψxm
263 248 251 remulcld φx1+∞m1xΛmlogm
264 263 recnd φx1+∞m1xΛmlogm
265 264 261 mulcomd φx1+∞m1xΛmlogmψxm=ψxmΛmlogm
266 chpval xmψxm=n=1xmΛn
267 258 266 syl φx1+∞m1xψxm=n=1xmΛn
268 267 oveq1d φx1+∞m1xψxmΛmlogm=n=1xmΛnΛmlogm
269 fzfid φx1+∞m1x1xmFin
270 269 264 244 fsummulc1 φx1+∞m1xn=1xmΛnΛmlogm=n=1xmΛnΛmlogm
271 268 270 eqtrd φx1+∞m1xψxmΛmlogm=n=1xmΛnΛmlogm
272 262 265 271 3eqtrd φx1+∞m1xΛmψxmlogm=n=1xmΛnΛmlogm
273 272 sumeq2dv φx1+∞m=1xΛmψxmlogm=m=1xn=1xmΛnΛmlogm
274 123 recnd φx1+∞n1xm1xnΛmlogm
275 116 115 274 fsummulc2 φx1+∞n1xΛnm=1xnΛmlogm=m=1xnΛnΛmlogm
276 275 sumeq2dv φx1+∞n=1xΛnm=1xnΛmlogm=n=1xm=1xnΛnΛmlogm
277 256 273 276 3eqtr4d φx1+∞m=1xΛmψxmlogm=n=1xΛnm=1xnΛmlogm
278 240 277 eqtrid φx1+∞n=1xΛnψxnlogn=n=1xΛnm=1xnΛmlogm
279 115 210 211 mulassd φx1+∞n1xΛnψxnlogn=Λnψxnlogn
280 279 sumeq2dv φx1+∞n=1xΛnψxnlogn=n=1xΛnψxnlogn
281 278 280 oveq12d φx1+∞n=1xΛnψxnlogn+n=1xΛnψxnlogn=n=1xΛnm=1xnΛmlogm+n=1xΛnψxnlogn
282 105 2timesd φx1+∞2n=1xΛnψxnlogn=n=1xΛnψxnlogn+n=1xΛnψxnlogn
283 115 209 mulcld φx1+∞n1xΛnm=1xnΛmlogm
284 115 212 mulcld φx1+∞n1xΛnψxnlogn
285 8 283 284 fsumadd φx1+∞n=1xΛnm=1xnΛmlogm+Λnψxnlogn=n=1xΛnm=1xnΛmlogm+n=1xΛnψxnlogn
286 281 282 285 3eqtr4d φx1+∞2n=1xΛnψxnlogn=n=1xΛnm=1xnΛmlogm+Λnψxnlogn
287 115 209 212 adddid φx1+∞n1xΛnm=1xnΛmlogm+ψxnlogn=Λnm=1xnΛmlogm+Λnψxnlogn
288 287 sumeq2dv φx1+∞n=1xΛnm=1xnΛmlogm+ψxnlogn=n=1xΛnm=1xnΛmlogm+Λnψxnlogn
289 286 288 eqtr4d φx1+∞2n=1xΛnψxnlogn=n=1xΛnm=1xnΛmlogm+ψxnlogn
290 92 recnd φx1+∞n1xΛnψxn
291 8 27 290 fsummulc1 φx1+∞n=1xΛnψxnlogx=n=1xΛnψxnlogx
292 289 291 oveq12d φx1+∞2n=1xΛnψxnlognn=1xΛnψxnlogx=n=1xΛnm=1xnΛmlogm+ψxnlognn=1xΛnψxnlogx
293 218 233 292 3eqtr4rd φx1+∞2n=1xΛnψxnlognn=1xΛnψxnlogx=n=1xΛnm=1xnΛmlogmψxnlogxn
294 293 fveq2d φx1+∞2n=1xΛnψxnlognn=1xΛnψxnlogx=n=1xΛnm=1xnΛmlogmψxnlogxn
295 25 24 203 mulassd φx1+∞n=1xΛnnAx=n=1xΛnnAx
296 208 294 295 3brtr4d φx1+∞2n=1xΛnψxnlognn=1xΛnψxnlogxn=1xΛnnAx
297 110 114 44 ledivmul2d φx1+∞2n=1xΛnψxnlognn=1xΛnψxnlogxxn=1xΛnnA2n=1xΛnψxnlognn=1xΛnψxnlogxn=1xΛnnAx
298 296 297 mpbird φx1+∞2n=1xΛnψxnlognn=1xΛnψxnlogxxn=1xΛnnA
299 112 114 26 298 lediv1dd φx1+∞2n=1xΛnψxnlognn=1xΛnψxnlogxxlogxn=1xΛnnAlogx
300 110 recnd φx1+∞2n=1xΛnψxnlognn=1xΛnψxnlogx
301 300 203 27 111 30 divdiv1d φx1+∞2n=1xΛnψxnlognn=1xΛnψxnlogxxlogx=2n=1xΛnψxnlognn=1xΛnψxnlogxxlogx
302 109 27 203 30 111 divdiv32d φx1+∞2n=1xΛnψxnlognn=1xΛnψxnlogxlogxx=2n=1xΛnψxnlognn=1xΛnψxnlogxxlogx
303 106 108 27 30 divsubdird φx1+∞2n=1xΛnψxnlognn=1xΛnψxnlogxlogx=2n=1xΛnψxnlognlogxn=1xΛnψxnlogxlogx
304 104 105 27 30 div23d φx1+∞2n=1xΛnψxnlognlogx=2logxn=1xΛnψxnlogn
305 107 27 30 divcan4d φx1+∞n=1xΛnψxnlogxlogx=n=1xΛnψxn
306 304 305 oveq12d φx1+∞2n=1xΛnψxnlognlogxn=1xΛnψxnlogxlogx=2logxn=1xΛnψxnlognn=1xΛnψxn
307 303 306 eqtrd φx1+∞2n=1xΛnψxnlognn=1xΛnψxnlogxlogx=2logxn=1xΛnψxnlognn=1xΛnψxn
308 307 oveq1d φx1+∞2n=1xΛnψxnlognn=1xΛnψxnlogxlogxx=2logxn=1xΛnψxnlognn=1xΛnψxnx
309 109 203 27 111 30 divdiv1d φx1+∞2n=1xΛnψxnlognn=1xΛnψxnlogxxlogx=2n=1xΛnψxnlognn=1xΛnψxnlogxxlogx
310 302 308 309 3eqtr3d φx1+∞2logxn=1xΛnψxnlognn=1xΛnψxnx=2n=1xΛnψxnlognn=1xΛnψxnlogxxlogx
311 310 fveq2d φx1+∞2logxn=1xΛnψxnlognn=1xΛnψxnx=2n=1xΛnψxnlognn=1xΛnψxnlogxxlogx
312 44 26 rpmulcld φx1+∞xlogx+
313 312 rpcnd φx1+∞xlogx
314 312 rpne0d φx1+∞xlogx0
315 109 313 314 absdivd φx1+∞2n=1xΛnψxnlognn=1xΛnψxnlogxxlogx=2n=1xΛnψxnlognn=1xΛnψxnlogxxlogx
316 312 rpred φx1+∞xlogx
317 312 rpge0d φx1+∞0xlogx
318 316 317 absidd φx1+∞xlogx=xlogx
319 318 oveq2d φx1+∞2n=1xΛnψxnlognn=1xΛnψxnlogxxlogx=2n=1xΛnψxnlognn=1xΛnψxnlogxxlogx
320 311 315 319 3eqtrd φx1+∞2logxn=1xΛnψxnlognn=1xΛnψxnx=2n=1xΛnψxnlognn=1xΛnψxnlogxxlogx
321 301 320 eqtr4d φx1+∞2n=1xΛnψxnlognn=1xΛnψxnlogxxlogx=2logxn=1xΛnψxnlognn=1xΛnψxnx
322 25 24 27 30 divassd φx1+∞n=1xΛnnAlogx=n=1xΛnnAlogx
323 299 321 322 3brtr3d φx1+∞2logxn=1xΛnψxnlognn=1xΛnψxnxn=1xΛnnAlogx
324 22 leabsd φx1+∞n=1xΛnnAlogxn=1xΛnnAlogx
325 102 22 103 323 324 letrd φx1+∞2logxn=1xΛnψxnlognn=1xΛnψxnxn=1xΛnnAlogx
326 325 adantrr φx1+∞1x2logxn=1xΛnψxnlognn=1xΛnψxnxn=1xΛnnAlogx
327 3 84 22 101 326 o1le φx1+∞2logxn=1xΛnψxnlognn=1xΛnψxnx𝑂1