Step |
Hyp |
Ref |
Expression |
1 |
|
2re |
⊢ 2 ∈ ℝ |
2 |
|
fzfid |
⊢ ( 𝑁 ∈ ℕ → ( 1 ... 𝑁 ) ∈ Fin ) |
3 |
|
elfzuz |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
4 |
3
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
5 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
6 |
4 5
|
eleqtrrdi |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 𝑛 ∈ ℕ ) |
7 |
6
|
nnrpd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 𝑛 ∈ ℝ+ ) |
8 |
7
|
relogcld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( log ‘ 𝑛 ) ∈ ℝ ) |
9 |
8 6
|
nndivred |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( log ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
10 |
2 9
|
fsumrecl |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
11 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) → ( 2 · Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ∈ ℝ ) |
12 |
1 10 11
|
sylancr |
⊢ ( 𝑁 ∈ ℕ → ( 2 · Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ∈ ℝ ) |
13 |
|
elfznn |
⊢ ( 𝑖 ∈ ( 1 ... 𝑁 ) → 𝑖 ∈ ℕ ) |
14 |
13
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → 𝑖 ∈ ℕ ) |
15 |
14
|
nnrecred |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 1 / 𝑖 ) ∈ ℝ ) |
16 |
2 15
|
fsumrecl |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑖 ) ∈ ℝ ) |
17 |
16
|
resqcld |
⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑖 ) ↑ 2 ) ∈ ℝ ) |
18 |
|
nnrp |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) |
19 |
18
|
relogcld |
⊢ ( 𝑁 ∈ ℕ → ( log ‘ 𝑁 ) ∈ ℝ ) |
20 |
|
peano2re |
⊢ ( ( log ‘ 𝑁 ) ∈ ℝ → ( ( log ‘ 𝑁 ) + 1 ) ∈ ℝ ) |
21 |
19 20
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ( log ‘ 𝑁 ) + 1 ) ∈ ℝ ) |
22 |
21
|
resqcld |
⊢ ( 𝑁 ∈ ℕ → ( ( ( log ‘ 𝑁 ) + 1 ) ↑ 2 ) ∈ ℝ ) |
23 |
10
|
recnd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
24 |
23
|
2timesd |
⊢ ( 𝑁 ∈ ℕ → ( 2 · Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) = ( Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 ) / 𝑛 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ) |
25 |
|
fzfid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 1 ... 𝑛 ) ∈ Fin ) |
26 |
|
elfznn |
⊢ ( 𝑖 ∈ ( 1 ... 𝑛 ) → 𝑖 ∈ ℕ ) |
27 |
26
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 1 ... 𝑛 ) ) → 𝑖 ∈ ℕ ) |
28 |
27
|
nnrecred |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 1 ... 𝑛 ) ) → ( 1 / 𝑖 ) ∈ ℝ ) |
29 |
25 28
|
fsumrecl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑖 ) ∈ ℝ ) |
30 |
29 6
|
nndivred |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑖 ) / 𝑛 ) ∈ ℝ ) |
31 |
2 30
|
fsumrecl |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑖 ) / 𝑛 ) ∈ ℝ ) |
32 |
|
fzfid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 1 ... ( 𝑛 − 1 ) ) ∈ Fin ) |
33 |
|
elfznn |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) → 𝑖 ∈ ℕ ) |
34 |
33
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → 𝑖 ∈ ℕ ) |
35 |
34
|
nnrecred |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ) → ( 1 / 𝑖 ) ∈ ℝ ) |
36 |
32 35
|
fsumrecl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) ∈ ℝ ) |
37 |
36 6
|
nndivred |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) / 𝑛 ) ∈ ℝ ) |
38 |
2 37
|
fsumrecl |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) / 𝑛 ) ∈ ℝ ) |
39 |
6
|
nncnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 𝑛 ∈ ℂ ) |
40 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
41 |
|
npcan |
⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) |
42 |
39 40 41
|
sylancl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) |
43 |
42
|
fveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( log ‘ ( ( 𝑛 − 1 ) + 1 ) ) = ( log ‘ 𝑛 ) ) |
44 |
43
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) − ( log ‘ ( ( 𝑛 − 1 ) + 1 ) ) ) = ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) − ( log ‘ 𝑛 ) ) ) |
45 |
|
nnm1nn0 |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 − 1 ) ∈ ℕ0 ) |
46 |
|
harmonicbnd3 |
⊢ ( ( 𝑛 − 1 ) ∈ ℕ0 → ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) − ( log ‘ ( ( 𝑛 − 1 ) + 1 ) ) ) ∈ ( 0 [,] γ ) ) |
47 |
6 45 46
|
3syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) − ( log ‘ ( ( 𝑛 − 1 ) + 1 ) ) ) ∈ ( 0 [,] γ ) ) |
48 |
44 47
|
eqeltrrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) − ( log ‘ 𝑛 ) ) ∈ ( 0 [,] γ ) ) |
49 |
|
0re |
⊢ 0 ∈ ℝ |
50 |
|
emre |
⊢ γ ∈ ℝ |
51 |
49 50
|
elicc2i |
⊢ ( ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) − ( log ‘ 𝑛 ) ) ∈ ( 0 [,] γ ) ↔ ( ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) − ( log ‘ 𝑛 ) ) ∈ ℝ ∧ 0 ≤ ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) − ( log ‘ 𝑛 ) ) ∧ ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) − ( log ‘ 𝑛 ) ) ≤ γ ) ) |
52 |
51
|
simp2bi |
⊢ ( ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) − ( log ‘ 𝑛 ) ) ∈ ( 0 [,] γ ) → 0 ≤ ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) − ( log ‘ 𝑛 ) ) ) |
53 |
48 52
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 0 ≤ ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) − ( log ‘ 𝑛 ) ) ) |
54 |
36 8
|
subge0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 0 ≤ ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) − ( log ‘ 𝑛 ) ) ↔ ( log ‘ 𝑛 ) ≤ Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) ) ) |
55 |
53 54
|
mpbid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( log ‘ 𝑛 ) ≤ Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) ) |
56 |
8 36 7 55
|
lediv1dd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( log ‘ 𝑛 ) / 𝑛 ) ≤ ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) / 𝑛 ) ) |
57 |
27
|
nnrpd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 1 ... 𝑛 ) ) → 𝑖 ∈ ℝ+ ) |
58 |
57
|
rpreccld |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 1 ... 𝑛 ) ) → ( 1 / 𝑖 ) ∈ ℝ+ ) |
59 |
58
|
rpge0d |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 1 ... 𝑛 ) ) → 0 ≤ ( 1 / 𝑖 ) ) |
60 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℤ ) |
61 |
60
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 𝑛 ∈ ℤ ) |
62 |
|
peano2zm |
⊢ ( 𝑛 ∈ ℤ → ( 𝑛 − 1 ) ∈ ℤ ) |
63 |
61 62
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑛 − 1 ) ∈ ℤ ) |
64 |
6
|
nnred |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 𝑛 ∈ ℝ ) |
65 |
64
|
lem1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑛 − 1 ) ≤ 𝑛 ) |
66 |
|
eluz2 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑛 − 1 ) ) ↔ ( ( 𝑛 − 1 ) ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ ( 𝑛 − 1 ) ≤ 𝑛 ) ) |
67 |
63 61 65 66
|
syl3anbrc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 𝑛 ∈ ( ℤ≥ ‘ ( 𝑛 − 1 ) ) ) |
68 |
|
fzss2 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑛 − 1 ) ) → ( 1 ... ( 𝑛 − 1 ) ) ⊆ ( 1 ... 𝑛 ) ) |
69 |
67 68
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 1 ... ( 𝑛 − 1 ) ) ⊆ ( 1 ... 𝑛 ) ) |
70 |
25 28 59 69
|
fsumless |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) ≤ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑖 ) ) |
71 |
6
|
nngt0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 0 < 𝑛 ) |
72 |
|
lediv1 |
⊢ ( ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) ∈ ℝ ∧ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑖 ) ∈ ℝ ∧ ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) → ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) ≤ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑖 ) ↔ ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) / 𝑛 ) ≤ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑖 ) / 𝑛 ) ) ) |
73 |
36 29 64 71 72
|
syl112anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) ≤ Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑖 ) ↔ ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) / 𝑛 ) ≤ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑖 ) / 𝑛 ) ) ) |
74 |
70 73
|
mpbid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) / 𝑛 ) ≤ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑖 ) / 𝑛 ) ) |
75 |
9 37 30 56 74
|
letrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( log ‘ 𝑛 ) / 𝑛 ) ≤ ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑖 ) / 𝑛 ) ) |
76 |
2 9 30 75
|
fsumle |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 ) / 𝑛 ) ≤ Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑖 ) / 𝑛 ) ) |
77 |
2 9 37 56
|
fsumle |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 ) / 𝑛 ) ≤ Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) / 𝑛 ) ) |
78 |
10 10 31 38 76 77
|
le2addd |
⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 ) / 𝑛 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ≤ ( Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑖 ) / 𝑛 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) / 𝑛 ) ) ) |
79 |
|
oveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 − 1 ) = ( 𝑛 − 1 ) ) |
80 |
79
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 1 ... ( 𝑚 − 1 ) ) = ( 1 ... ( 𝑛 − 1 ) ) ) |
81 |
80
|
sumeq1d |
⊢ ( 𝑚 = 𝑛 → Σ 𝑖 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( 1 / 𝑖 ) = Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) ) |
82 |
81 81
|
jca |
⊢ ( 𝑚 = 𝑛 → ( Σ 𝑖 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( 1 / 𝑖 ) = Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) ∧ Σ 𝑖 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( 1 / 𝑖 ) = Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) ) ) |
83 |
|
oveq1 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑚 − 1 ) = ( ( 𝑛 + 1 ) − 1 ) ) |
84 |
83
|
oveq2d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 1 ... ( 𝑚 − 1 ) ) = ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ) |
85 |
84
|
sumeq1d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → Σ 𝑖 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( 1 / 𝑖 ) = Σ 𝑖 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( 1 / 𝑖 ) ) |
86 |
85 85
|
jca |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( Σ 𝑖 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( 1 / 𝑖 ) = Σ 𝑖 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( 1 / 𝑖 ) ∧ Σ 𝑖 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( 1 / 𝑖 ) = Σ 𝑖 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( 1 / 𝑖 ) ) ) |
87 |
|
oveq1 |
⊢ ( 𝑚 = 1 → ( 𝑚 − 1 ) = ( 1 − 1 ) ) |
88 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
89 |
87 88
|
eqtrdi |
⊢ ( 𝑚 = 1 → ( 𝑚 − 1 ) = 0 ) |
90 |
89
|
oveq2d |
⊢ ( 𝑚 = 1 → ( 1 ... ( 𝑚 − 1 ) ) = ( 1 ... 0 ) ) |
91 |
|
fz10 |
⊢ ( 1 ... 0 ) = ∅ |
92 |
90 91
|
eqtrdi |
⊢ ( 𝑚 = 1 → ( 1 ... ( 𝑚 − 1 ) ) = ∅ ) |
93 |
92
|
sumeq1d |
⊢ ( 𝑚 = 1 → Σ 𝑖 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( 1 / 𝑖 ) = Σ 𝑖 ∈ ∅ ( 1 / 𝑖 ) ) |
94 |
|
sum0 |
⊢ Σ 𝑖 ∈ ∅ ( 1 / 𝑖 ) = 0 |
95 |
93 94
|
eqtrdi |
⊢ ( 𝑚 = 1 → Σ 𝑖 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( 1 / 𝑖 ) = 0 ) |
96 |
95 95
|
jca |
⊢ ( 𝑚 = 1 → ( Σ 𝑖 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( 1 / 𝑖 ) = 0 ∧ Σ 𝑖 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( 1 / 𝑖 ) = 0 ) ) |
97 |
|
oveq1 |
⊢ ( 𝑚 = ( 𝑁 + 1 ) → ( 𝑚 − 1 ) = ( ( 𝑁 + 1 ) − 1 ) ) |
98 |
97
|
oveq2d |
⊢ ( 𝑚 = ( 𝑁 + 1 ) → ( 1 ... ( 𝑚 − 1 ) ) = ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ) |
99 |
98
|
sumeq1d |
⊢ ( 𝑚 = ( 𝑁 + 1 ) → Σ 𝑖 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( 1 / 𝑖 ) = Σ 𝑖 ∈ ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 1 / 𝑖 ) ) |
100 |
99 99
|
jca |
⊢ ( 𝑚 = ( 𝑁 + 1 ) → ( Σ 𝑖 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( 1 / 𝑖 ) = Σ 𝑖 ∈ ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 1 / 𝑖 ) ∧ Σ 𝑖 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( 1 / 𝑖 ) = Σ 𝑖 ∈ ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 1 / 𝑖 ) ) ) |
101 |
|
peano2nn |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ℕ ) |
102 |
101 5
|
eleqtrdi |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
103 |
|
fzfid |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → ( 1 ... ( 𝑚 − 1 ) ) ∈ Fin ) |
104 |
|
elfznn |
⊢ ( 𝑖 ∈ ( 1 ... ( 𝑚 − 1 ) ) → 𝑖 ∈ ℕ ) |
105 |
104
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... ( 𝑚 − 1 ) ) ) → 𝑖 ∈ ℕ ) |
106 |
105
|
nnrecred |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) ∧ 𝑖 ∈ ( 1 ... ( 𝑚 − 1 ) ) ) → ( 1 / 𝑖 ) ∈ ℝ ) |
107 |
103 106
|
fsumrecl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → Σ 𝑖 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( 1 / 𝑖 ) ∈ ℝ ) |
108 |
107
|
recnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... ( 𝑁 + 1 ) ) ) → Σ 𝑖 ∈ ( 1 ... ( 𝑚 − 1 ) ) ( 1 / 𝑖 ) ∈ ℂ ) |
109 |
82 86 96 100 102 108 108
|
fsumparts |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑛 ∈ ( 1 ..^ ( 𝑁 + 1 ) ) ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) · ( Σ 𝑖 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( 1 / 𝑖 ) − Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) ) ) = ( ( ( Σ 𝑖 ∈ ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 1 / 𝑖 ) · Σ 𝑖 ∈ ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 1 / 𝑖 ) ) − ( 0 · 0 ) ) − Σ 𝑛 ∈ ( 1 ..^ ( 𝑁 + 1 ) ) ( ( Σ 𝑖 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( 1 / 𝑖 ) − Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) ) · Σ 𝑖 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( 1 / 𝑖 ) ) ) ) |
110 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
111 |
|
fzval3 |
⊢ ( 𝑁 ∈ ℤ → ( 1 ... 𝑁 ) = ( 1 ..^ ( 𝑁 + 1 ) ) ) |
112 |
110 111
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( 1 ... 𝑁 ) = ( 1 ..^ ( 𝑁 + 1 ) ) ) |
113 |
112
|
eqcomd |
⊢ ( 𝑁 ∈ ℕ → ( 1 ..^ ( 𝑁 + 1 ) ) = ( 1 ... 𝑁 ) ) |
114 |
36
|
recnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) ∈ ℂ ) |
115 |
6
|
nnrecred |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 1 / 𝑛 ) ∈ ℝ ) |
116 |
115
|
recnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 1 / 𝑛 ) ∈ ℂ ) |
117 |
|
pncan |
⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑛 + 1 ) − 1 ) = 𝑛 ) |
118 |
39 40 117
|
sylancl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑛 + 1 ) − 1 ) = 𝑛 ) |
119 |
118
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) = ( 1 ... 𝑛 ) ) |
120 |
119
|
sumeq1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → Σ 𝑖 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( 1 / 𝑖 ) = Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑖 ) ) |
121 |
28
|
recnd |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑖 ∈ ( 1 ... 𝑛 ) ) → ( 1 / 𝑖 ) ∈ ℂ ) |
122 |
|
oveq2 |
⊢ ( 𝑖 = 𝑛 → ( 1 / 𝑖 ) = ( 1 / 𝑛 ) ) |
123 |
4 121 122
|
fsumm1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑖 ) = ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) + ( 1 / 𝑛 ) ) ) |
124 |
120 123
|
eqtrd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → Σ 𝑖 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( 1 / 𝑖 ) = ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) + ( 1 / 𝑛 ) ) ) |
125 |
114 116 124
|
mvrladdd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( Σ 𝑖 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( 1 / 𝑖 ) − Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) ) = ( 1 / 𝑛 ) ) |
126 |
125
|
oveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) · ( Σ 𝑖 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( 1 / 𝑖 ) − Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) ) ) = ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) · ( 1 / 𝑛 ) ) ) |
127 |
6
|
nnne0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → 𝑛 ≠ 0 ) |
128 |
114 39 127
|
divrecd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) / 𝑛 ) = ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) · ( 1 / 𝑛 ) ) ) |
129 |
126 128
|
eqtr4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) · ( Σ 𝑖 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( 1 / 𝑖 ) − Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) ) ) = ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) / 𝑛 ) ) |
130 |
113 129
|
sumeq12rdv |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑛 ∈ ( 1 ..^ ( 𝑁 + 1 ) ) ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) · ( Σ 𝑖 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( 1 / 𝑖 ) − Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) ) ) = Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) / 𝑛 ) ) |
131 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
132 |
|
pncan |
⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
133 |
131 40 132
|
sylancl |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
134 |
133
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ → ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) = ( 1 ... 𝑁 ) ) |
135 |
134
|
sumeq1d |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑖 ∈ ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 1 / 𝑖 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑖 ) ) |
136 |
135 135
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑖 ∈ ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 1 / 𝑖 ) · Σ 𝑖 ∈ ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 1 / 𝑖 ) ) = ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑖 ) · Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑖 ) ) ) |
137 |
16
|
recnd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑖 ) ∈ ℂ ) |
138 |
137
|
sqvald |
⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑖 ) ↑ 2 ) = ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑖 ) · Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑖 ) ) ) |
139 |
136 138
|
eqtr4d |
⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑖 ∈ ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 1 / 𝑖 ) · Σ 𝑖 ∈ ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 1 / 𝑖 ) ) = ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑖 ) ↑ 2 ) ) |
140 |
|
0cn |
⊢ 0 ∈ ℂ |
141 |
140
|
mul01i |
⊢ ( 0 · 0 ) = 0 |
142 |
141
|
a1i |
⊢ ( 𝑁 ∈ ℕ → ( 0 · 0 ) = 0 ) |
143 |
139 142
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ → ( ( Σ 𝑖 ∈ ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 1 / 𝑖 ) · Σ 𝑖 ∈ ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 1 / 𝑖 ) ) − ( 0 · 0 ) ) = ( ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑖 ) ↑ 2 ) − 0 ) ) |
144 |
137
|
sqcld |
⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑖 ) ↑ 2 ) ∈ ℂ ) |
145 |
144
|
subid1d |
⊢ ( 𝑁 ∈ ℕ → ( ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑖 ) ↑ 2 ) − 0 ) = ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑖 ) ↑ 2 ) ) |
146 |
143 145
|
eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( Σ 𝑖 ∈ ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 1 / 𝑖 ) · Σ 𝑖 ∈ ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 1 / 𝑖 ) ) − ( 0 · 0 ) ) = ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑖 ) ↑ 2 ) ) |
147 |
125 120
|
oveq12d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( Σ 𝑖 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( 1 / 𝑖 ) − Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) ) · Σ 𝑖 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( 1 / 𝑖 ) ) = ( ( 1 / 𝑛 ) · Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑖 ) ) ) |
148 |
29
|
recnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑖 ) ∈ ℂ ) |
149 |
148 39 127
|
divrec2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑖 ) / 𝑛 ) = ( ( 1 / 𝑛 ) · Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑖 ) ) ) |
150 |
147 149
|
eqtr4d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( Σ 𝑖 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( 1 / 𝑖 ) − Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) ) · Σ 𝑖 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( 1 / 𝑖 ) ) = ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑖 ) / 𝑛 ) ) |
151 |
113 150
|
sumeq12rdv |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑛 ∈ ( 1 ..^ ( 𝑁 + 1 ) ) ( ( Σ 𝑖 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( 1 / 𝑖 ) − Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) ) · Σ 𝑖 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( 1 / 𝑖 ) ) = Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑖 ) / 𝑛 ) ) |
152 |
146 151
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( Σ 𝑖 ∈ ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 1 / 𝑖 ) · Σ 𝑖 ∈ ( 1 ... ( ( 𝑁 + 1 ) − 1 ) ) ( 1 / 𝑖 ) ) − ( 0 · 0 ) ) − Σ 𝑛 ∈ ( 1 ..^ ( 𝑁 + 1 ) ) ( ( Σ 𝑖 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( 1 / 𝑖 ) − Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) ) · Σ 𝑖 ∈ ( 1 ... ( ( 𝑛 + 1 ) − 1 ) ) ( 1 / 𝑖 ) ) ) = ( ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑖 ) ↑ 2 ) − Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑖 ) / 𝑛 ) ) ) |
153 |
109 130 152
|
3eqtr3rd |
⊢ ( 𝑁 ∈ ℕ → ( ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑖 ) ↑ 2 ) − Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑖 ) / 𝑛 ) ) = Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) / 𝑛 ) ) |
154 |
31
|
recnd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑖 ) / 𝑛 ) ∈ ℂ ) |
155 |
38
|
recnd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) / 𝑛 ) ∈ ℂ ) |
156 |
144 154 155
|
subaddd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑖 ) ↑ 2 ) − Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑖 ) / 𝑛 ) ) = Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) / 𝑛 ) ↔ ( Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑖 ) / 𝑛 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) / 𝑛 ) ) = ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑖 ) ↑ 2 ) ) ) |
157 |
153 156
|
mpbid |
⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( Σ 𝑖 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑖 ) / 𝑛 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( Σ 𝑖 ∈ ( 1 ... ( 𝑛 − 1 ) ) ( 1 / 𝑖 ) / 𝑛 ) ) = ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑖 ) ↑ 2 ) ) |
158 |
78 157
|
breqtrd |
⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 ) / 𝑛 ) + Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ≤ ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑖 ) ↑ 2 ) ) |
159 |
24 158
|
eqbrtrd |
⊢ ( 𝑁 ∈ ℕ → ( 2 · Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ≤ ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑖 ) ↑ 2 ) ) |
160 |
|
flid |
⊢ ( 𝑁 ∈ ℤ → ( ⌊ ‘ 𝑁 ) = 𝑁 ) |
161 |
110 160
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ⌊ ‘ 𝑁 ) = 𝑁 ) |
162 |
161
|
oveq2d |
⊢ ( 𝑁 ∈ ℕ → ( 1 ... ( ⌊ ‘ 𝑁 ) ) = ( 1 ... 𝑁 ) ) |
163 |
162
|
sumeq1d |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑁 ) ) ( 1 / 𝑖 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑖 ) ) |
164 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
165 |
|
nnge1 |
⊢ ( 𝑁 ∈ ℕ → 1 ≤ 𝑁 ) |
166 |
|
harmonicubnd |
⊢ ( ( 𝑁 ∈ ℝ ∧ 1 ≤ 𝑁 ) → Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑁 ) ) ( 1 / 𝑖 ) ≤ ( ( log ‘ 𝑁 ) + 1 ) ) |
167 |
164 165 166
|
syl2anc |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑁 ) ) ( 1 / 𝑖 ) ≤ ( ( log ‘ 𝑁 ) + 1 ) ) |
168 |
163 167
|
eqbrtrrd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑖 ) ≤ ( ( log ‘ 𝑁 ) + 1 ) ) |
169 |
14
|
nnrpd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → 𝑖 ∈ ℝ+ ) |
170 |
169
|
rpreccld |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 1 / 𝑖 ) ∈ ℝ+ ) |
171 |
170
|
rpge0d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → 0 ≤ ( 1 / 𝑖 ) ) |
172 |
2 15 171
|
fsumge0 |
⊢ ( 𝑁 ∈ ℕ → 0 ≤ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑖 ) ) |
173 |
49
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 0 ∈ ℝ ) |
174 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
175 |
|
1rp |
⊢ 1 ∈ ℝ+ |
176 |
|
logleb |
⊢ ( ( 1 ∈ ℝ+ ∧ 𝑁 ∈ ℝ+ ) → ( 1 ≤ 𝑁 ↔ ( log ‘ 1 ) ≤ ( log ‘ 𝑁 ) ) ) |
177 |
175 18 176
|
sylancr |
⊢ ( 𝑁 ∈ ℕ → ( 1 ≤ 𝑁 ↔ ( log ‘ 1 ) ≤ ( log ‘ 𝑁 ) ) ) |
178 |
165 177
|
mpbid |
⊢ ( 𝑁 ∈ ℕ → ( log ‘ 1 ) ≤ ( log ‘ 𝑁 ) ) |
179 |
174 178
|
eqbrtrrid |
⊢ ( 𝑁 ∈ ℕ → 0 ≤ ( log ‘ 𝑁 ) ) |
180 |
19
|
lep1d |
⊢ ( 𝑁 ∈ ℕ → ( log ‘ 𝑁 ) ≤ ( ( log ‘ 𝑁 ) + 1 ) ) |
181 |
173 19 21 179 180
|
letrd |
⊢ ( 𝑁 ∈ ℕ → 0 ≤ ( ( log ‘ 𝑁 ) + 1 ) ) |
182 |
16 21 172 181
|
le2sqd |
⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑖 ) ≤ ( ( log ‘ 𝑁 ) + 1 ) ↔ ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑖 ) ↑ 2 ) ≤ ( ( ( log ‘ 𝑁 ) + 1 ) ↑ 2 ) ) ) |
183 |
168 182
|
mpbid |
⊢ ( 𝑁 ∈ ℕ → ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( 1 / 𝑖 ) ↑ 2 ) ≤ ( ( ( log ‘ 𝑁 ) + 1 ) ↑ 2 ) ) |
184 |
12 17 22 159 183
|
letrd |
⊢ ( 𝑁 ∈ ℕ → ( 2 · Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ≤ ( ( ( log ‘ 𝑁 ) + 1 ) ↑ 2 ) ) |
185 |
1
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℝ ) |
186 |
|
2pos |
⊢ 0 < 2 |
187 |
186
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 0 < 2 ) |
188 |
|
lemuldiv2 |
⊢ ( ( Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ∧ ( ( ( log ‘ 𝑁 ) + 1 ) ↑ 2 ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 2 · Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ≤ ( ( ( log ‘ 𝑁 ) + 1 ) ↑ 2 ) ↔ Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 ) / 𝑛 ) ≤ ( ( ( ( log ‘ 𝑁 ) + 1 ) ↑ 2 ) / 2 ) ) ) |
189 |
10 22 185 187 188
|
syl112anc |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 · Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ≤ ( ( ( log ‘ 𝑁 ) + 1 ) ↑ 2 ) ↔ Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 ) / 𝑛 ) ≤ ( ( ( ( log ‘ 𝑁 ) + 1 ) ↑ 2 ) / 2 ) ) ) |
190 |
184 189
|
mpbid |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 ) / 𝑛 ) ≤ ( ( ( ( log ‘ 𝑁 ) + 1 ) ↑ 2 ) / 2 ) ) |