| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 2 |  | fzfid | ⊢ ( 𝑁  ∈  ℕ  →  ( 1 ... 𝑁 )  ∈  Fin ) | 
						
							| 3 |  | elfzuz | ⊢ ( 𝑛  ∈  ( 1 ... 𝑁 )  →  𝑛  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  𝑛  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 5 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 6 | 4 5 | eleqtrrdi | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 7 | 6 | nnrpd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 8 | 7 | relogcld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( log ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 9 | 8 6 | nndivred | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( log ‘ 𝑛 )  /  𝑛 )  ∈  ℝ ) | 
						
							| 10 | 2 9 | fsumrecl | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 )  /  𝑛 )  ∈  ℝ ) | 
						
							| 11 |  | remulcl | ⊢ ( ( 2  ∈  ℝ  ∧  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 )  /  𝑛 )  ∈  ℝ )  →  ( 2  ·  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 )  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 12 | 1 10 11 | sylancr | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  ·  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 )  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 13 |  | elfznn | ⊢ ( 𝑖  ∈  ( 1 ... 𝑁 )  →  𝑖  ∈  ℕ ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  𝑖  ∈  ℕ ) | 
						
							| 15 | 14 | nnrecred | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 1  /  𝑖 )  ∈  ℝ ) | 
						
							| 16 | 2 15 | fsumrecl | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑖 )  ∈  ℝ ) | 
						
							| 17 | 16 | resqcld | ⊢ ( 𝑁  ∈  ℕ  →  ( Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑖 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 18 |  | nnrp | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℝ+ ) | 
						
							| 19 | 18 | relogcld | ⊢ ( 𝑁  ∈  ℕ  →  ( log ‘ 𝑁 )  ∈  ℝ ) | 
						
							| 20 |  | peano2re | ⊢ ( ( log ‘ 𝑁 )  ∈  ℝ  →  ( ( log ‘ 𝑁 )  +  1 )  ∈  ℝ ) | 
						
							| 21 | 19 20 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( ( log ‘ 𝑁 )  +  1 )  ∈  ℝ ) | 
						
							| 22 | 21 | resqcld | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( log ‘ 𝑁 )  +  1 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 23 | 10 | recnd | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 24 | 23 | 2timesd | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  ·  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 )  /  𝑛 ) )  =  ( Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 )  /  𝑛 )  +  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 25 |  | fzfid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( 1 ... 𝑛 )  ∈  Fin ) | 
						
							| 26 |  | elfznn | ⊢ ( 𝑖  ∈  ( 1 ... 𝑛 )  →  𝑖  ∈  ℕ ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  ∈  ( 1 ... 𝑛 ) )  →  𝑖  ∈  ℕ ) | 
						
							| 28 | 27 | nnrecred | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  ∈  ( 1 ... 𝑛 ) )  →  ( 1  /  𝑖 )  ∈  ℝ ) | 
						
							| 29 | 25 28 | fsumrecl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( 1  /  𝑖 )  ∈  ℝ ) | 
						
							| 30 | 29 6 | nndivred | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( 1  /  𝑖 )  /  𝑛 )  ∈  ℝ ) | 
						
							| 31 | 2 30 | fsumrecl | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( 1  /  𝑖 )  /  𝑛 )  ∈  ℝ ) | 
						
							| 32 |  | fzfid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( 1 ... ( 𝑛  −  1 ) )  ∈  Fin ) | 
						
							| 33 |  | elfznn | ⊢ ( 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) )  →  𝑖  ∈  ℕ ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  𝑖  ∈  ℕ ) | 
						
							| 35 | 34 | nnrecred | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) )  →  ( 1  /  𝑖 )  ∈  ℝ ) | 
						
							| 36 | 32 35 | fsumrecl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  ∈  ℝ ) | 
						
							| 37 | 36 6 | nndivred | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  /  𝑛 )  ∈  ℝ ) | 
						
							| 38 | 2 37 | fsumrecl | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  /  𝑛 )  ∈  ℝ ) | 
						
							| 39 | 6 | nncnd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  𝑛  ∈  ℂ ) | 
						
							| 40 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 41 |  | npcan | ⊢ ( ( 𝑛  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑛  −  1 )  +  1 )  =  𝑛 ) | 
						
							| 42 | 39 40 41 | sylancl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑛  −  1 )  +  1 )  =  𝑛 ) | 
						
							| 43 | 42 | fveq2d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( log ‘ ( ( 𝑛  −  1 )  +  1 ) )  =  ( log ‘ 𝑛 ) ) | 
						
							| 44 | 43 | oveq2d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  −  ( log ‘ ( ( 𝑛  −  1 )  +  1 ) ) )  =  ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  −  ( log ‘ 𝑛 ) ) ) | 
						
							| 45 |  | nnm1nn0 | ⊢ ( 𝑛  ∈  ℕ  →  ( 𝑛  −  1 )  ∈  ℕ0 ) | 
						
							| 46 |  | harmonicbnd3 | ⊢ ( ( 𝑛  −  1 )  ∈  ℕ0  →  ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  −  ( log ‘ ( ( 𝑛  −  1 )  +  1 ) ) )  ∈  ( 0 [,] γ ) ) | 
						
							| 47 | 6 45 46 | 3syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  −  ( log ‘ ( ( 𝑛  −  1 )  +  1 ) ) )  ∈  ( 0 [,] γ ) ) | 
						
							| 48 | 44 47 | eqeltrrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  −  ( log ‘ 𝑛 ) )  ∈  ( 0 [,] γ ) ) | 
						
							| 49 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 50 |  | emre | ⊢ γ  ∈  ℝ | 
						
							| 51 | 49 50 | elicc2i | ⊢ ( ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  −  ( log ‘ 𝑛 ) )  ∈  ( 0 [,] γ )  ↔  ( ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  −  ( log ‘ 𝑛 ) )  ∈  ℝ  ∧  0  ≤  ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  −  ( log ‘ 𝑛 ) )  ∧  ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  −  ( log ‘ 𝑛 ) )  ≤  γ ) ) | 
						
							| 52 | 51 | simp2bi | ⊢ ( ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  −  ( log ‘ 𝑛 ) )  ∈  ( 0 [,] γ )  →  0  ≤  ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  −  ( log ‘ 𝑛 ) ) ) | 
						
							| 53 | 48 52 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  0  ≤  ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  −  ( log ‘ 𝑛 ) ) ) | 
						
							| 54 | 36 8 | subge0d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( 0  ≤  ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  −  ( log ‘ 𝑛 ) )  ↔  ( log ‘ 𝑛 )  ≤  Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 ) ) ) | 
						
							| 55 | 53 54 | mpbid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( log ‘ 𝑛 )  ≤  Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 ) ) | 
						
							| 56 | 8 36 7 55 | lediv1dd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( log ‘ 𝑛 )  /  𝑛 )  ≤  ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  /  𝑛 ) ) | 
						
							| 57 | 27 | nnrpd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  ∈  ( 1 ... 𝑛 ) )  →  𝑖  ∈  ℝ+ ) | 
						
							| 58 | 57 | rpreccld | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  ∈  ( 1 ... 𝑛 ) )  →  ( 1  /  𝑖 )  ∈  ℝ+ ) | 
						
							| 59 | 58 | rpge0d | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  ∈  ( 1 ... 𝑛 ) )  →  0  ≤  ( 1  /  𝑖 ) ) | 
						
							| 60 |  | elfzelz | ⊢ ( 𝑛  ∈  ( 1 ... 𝑁 )  →  𝑛  ∈  ℤ ) | 
						
							| 61 | 60 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  𝑛  ∈  ℤ ) | 
						
							| 62 |  | peano2zm | ⊢ ( 𝑛  ∈  ℤ  →  ( 𝑛  −  1 )  ∈  ℤ ) | 
						
							| 63 | 61 62 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑛  −  1 )  ∈  ℤ ) | 
						
							| 64 | 6 | nnred | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  𝑛  ∈  ℝ ) | 
						
							| 65 | 64 | lem1d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑛  −  1 )  ≤  𝑛 ) | 
						
							| 66 |  | eluz2 | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑛  −  1 ) )  ↔  ( ( 𝑛  −  1 )  ∈  ℤ  ∧  𝑛  ∈  ℤ  ∧  ( 𝑛  −  1 )  ≤  𝑛 ) ) | 
						
							| 67 | 63 61 65 66 | syl3anbrc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  𝑛  ∈  ( ℤ≥ ‘ ( 𝑛  −  1 ) ) ) | 
						
							| 68 |  | fzss2 | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ ( 𝑛  −  1 ) )  →  ( 1 ... ( 𝑛  −  1 ) )  ⊆  ( 1 ... 𝑛 ) ) | 
						
							| 69 | 67 68 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( 1 ... ( 𝑛  −  1 ) )  ⊆  ( 1 ... 𝑛 ) ) | 
						
							| 70 | 25 28 59 69 | fsumless | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  ≤  Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( 1  /  𝑖 ) ) | 
						
							| 71 | 6 | nngt0d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  0  <  𝑛 ) | 
						
							| 72 |  | lediv1 | ⊢ ( ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  ∈  ℝ  ∧  Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( 1  /  𝑖 )  ∈  ℝ  ∧  ( 𝑛  ∈  ℝ  ∧  0  <  𝑛 ) )  →  ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  ≤  Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( 1  /  𝑖 )  ↔  ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  /  𝑛 )  ≤  ( Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( 1  /  𝑖 )  /  𝑛 ) ) ) | 
						
							| 73 | 36 29 64 71 72 | syl112anc | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  ≤  Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( 1  /  𝑖 )  ↔  ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  /  𝑛 )  ≤  ( Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( 1  /  𝑖 )  /  𝑛 ) ) ) | 
						
							| 74 | 70 73 | mpbid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  /  𝑛 )  ≤  ( Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( 1  /  𝑖 )  /  𝑛 ) ) | 
						
							| 75 | 9 37 30 56 74 | letrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( log ‘ 𝑛 )  /  𝑛 )  ≤  ( Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( 1  /  𝑖 )  /  𝑛 ) ) | 
						
							| 76 | 2 9 30 75 | fsumle | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 )  /  𝑛 )  ≤  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( 1  /  𝑖 )  /  𝑛 ) ) | 
						
							| 77 | 2 9 37 56 | fsumle | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 )  /  𝑛 )  ≤  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  /  𝑛 ) ) | 
						
							| 78 | 10 10 31 38 76 77 | le2addd | ⊢ ( 𝑁  ∈  ℕ  →  ( Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 )  /  𝑛 )  +  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 )  /  𝑛 ) )  ≤  ( Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( 1  /  𝑖 )  /  𝑛 )  +  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  /  𝑛 ) ) ) | 
						
							| 79 |  | oveq1 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑚  −  1 )  =  ( 𝑛  −  1 ) ) | 
						
							| 80 | 79 | oveq2d | ⊢ ( 𝑚  =  𝑛  →  ( 1 ... ( 𝑚  −  1 ) )  =  ( 1 ... ( 𝑛  −  1 ) ) ) | 
						
							| 81 | 80 | sumeq1d | ⊢ ( 𝑚  =  𝑛  →  Σ 𝑖  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( 1  /  𝑖 )  =  Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 ) ) | 
						
							| 82 | 81 81 | jca | ⊢ ( 𝑚  =  𝑛  →  ( Σ 𝑖  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( 1  /  𝑖 )  =  Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  ∧  Σ 𝑖  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( 1  /  𝑖 )  =  Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 ) ) ) | 
						
							| 83 |  | oveq1 | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( 𝑚  −  1 )  =  ( ( 𝑛  +  1 )  −  1 ) ) | 
						
							| 84 | 83 | oveq2d | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( 1 ... ( 𝑚  −  1 ) )  =  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ) | 
						
							| 85 | 84 | sumeq1d | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  Σ 𝑖  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( 1  /  𝑖 )  =  Σ 𝑖  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( 1  /  𝑖 ) ) | 
						
							| 86 | 85 85 | jca | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( Σ 𝑖  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( 1  /  𝑖 )  =  Σ 𝑖  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( 1  /  𝑖 )  ∧  Σ 𝑖  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( 1  /  𝑖 )  =  Σ 𝑖  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( 1  /  𝑖 ) ) ) | 
						
							| 87 |  | oveq1 | ⊢ ( 𝑚  =  1  →  ( 𝑚  −  1 )  =  ( 1  −  1 ) ) | 
						
							| 88 |  | 1m1e0 | ⊢ ( 1  −  1 )  =  0 | 
						
							| 89 | 87 88 | eqtrdi | ⊢ ( 𝑚  =  1  →  ( 𝑚  −  1 )  =  0 ) | 
						
							| 90 | 89 | oveq2d | ⊢ ( 𝑚  =  1  →  ( 1 ... ( 𝑚  −  1 ) )  =  ( 1 ... 0 ) ) | 
						
							| 91 |  | fz10 | ⊢ ( 1 ... 0 )  =  ∅ | 
						
							| 92 | 90 91 | eqtrdi | ⊢ ( 𝑚  =  1  →  ( 1 ... ( 𝑚  −  1 ) )  =  ∅ ) | 
						
							| 93 | 92 | sumeq1d | ⊢ ( 𝑚  =  1  →  Σ 𝑖  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( 1  /  𝑖 )  =  Σ 𝑖  ∈  ∅ ( 1  /  𝑖 ) ) | 
						
							| 94 |  | sum0 | ⊢ Σ 𝑖  ∈  ∅ ( 1  /  𝑖 )  =  0 | 
						
							| 95 | 93 94 | eqtrdi | ⊢ ( 𝑚  =  1  →  Σ 𝑖  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( 1  /  𝑖 )  =  0 ) | 
						
							| 96 | 95 95 | jca | ⊢ ( 𝑚  =  1  →  ( Σ 𝑖  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( 1  /  𝑖 )  =  0  ∧  Σ 𝑖  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( 1  /  𝑖 )  =  0 ) ) | 
						
							| 97 |  | oveq1 | ⊢ ( 𝑚  =  ( 𝑁  +  1 )  →  ( 𝑚  −  1 )  =  ( ( 𝑁  +  1 )  −  1 ) ) | 
						
							| 98 | 97 | oveq2d | ⊢ ( 𝑚  =  ( 𝑁  +  1 )  →  ( 1 ... ( 𝑚  −  1 ) )  =  ( 1 ... ( ( 𝑁  +  1 )  −  1 ) ) ) | 
						
							| 99 | 98 | sumeq1d | ⊢ ( 𝑚  =  ( 𝑁  +  1 )  →  Σ 𝑖  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( 1  /  𝑖 )  =  Σ 𝑖  ∈  ( 1 ... ( ( 𝑁  +  1 )  −  1 ) ) ( 1  /  𝑖 ) ) | 
						
							| 100 | 99 99 | jca | ⊢ ( 𝑚  =  ( 𝑁  +  1 )  →  ( Σ 𝑖  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( 1  /  𝑖 )  =  Σ 𝑖  ∈  ( 1 ... ( ( 𝑁  +  1 )  −  1 ) ) ( 1  /  𝑖 )  ∧  Σ 𝑖  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( 1  /  𝑖 )  =  Σ 𝑖  ∈  ( 1 ... ( ( 𝑁  +  1 )  −  1 ) ) ( 1  /  𝑖 ) ) ) | 
						
							| 101 |  | peano2nn | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  1 )  ∈  ℕ ) | 
						
							| 102 | 101 5 | eleqtrdi | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 103 |  | fzfid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  ( 1 ... ( 𝑚  −  1 ) )  ∈  Fin ) | 
						
							| 104 |  | elfznn | ⊢ ( 𝑖  ∈  ( 1 ... ( 𝑚  −  1 ) )  →  𝑖  ∈  ℕ ) | 
						
							| 105 | 104 | adantl | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  ∧  𝑖  ∈  ( 1 ... ( 𝑚  −  1 ) ) )  →  𝑖  ∈  ℕ ) | 
						
							| 106 | 105 | nnrecred | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  ∧  𝑖  ∈  ( 1 ... ( 𝑚  −  1 ) ) )  →  ( 1  /  𝑖 )  ∈  ℝ ) | 
						
							| 107 | 103 106 | fsumrecl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  Σ 𝑖  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( 1  /  𝑖 )  ∈  ℝ ) | 
						
							| 108 | 107 | recnd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑚  ∈  ( 1 ... ( 𝑁  +  1 ) ) )  →  Σ 𝑖  ∈  ( 1 ... ( 𝑚  −  1 ) ) ( 1  /  𝑖 )  ∈  ℂ ) | 
						
							| 109 | 82 86 96 100 102 108 108 | fsumparts | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑛  ∈  ( 1 ..^ ( 𝑁  +  1 ) ) ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  ·  ( Σ 𝑖  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( 1  /  𝑖 )  −  Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 ) ) )  =  ( ( ( Σ 𝑖  ∈  ( 1 ... ( ( 𝑁  +  1 )  −  1 ) ) ( 1  /  𝑖 )  ·  Σ 𝑖  ∈  ( 1 ... ( ( 𝑁  +  1 )  −  1 ) ) ( 1  /  𝑖 ) )  −  ( 0  ·  0 ) )  −  Σ 𝑛  ∈  ( 1 ..^ ( 𝑁  +  1 ) ) ( ( Σ 𝑖  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( 1  /  𝑖 )  −  Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 ) )  ·  Σ 𝑖  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( 1  /  𝑖 ) ) ) ) | 
						
							| 110 |  | nnz | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℤ ) | 
						
							| 111 |  | fzval3 | ⊢ ( 𝑁  ∈  ℤ  →  ( 1 ... 𝑁 )  =  ( 1 ..^ ( 𝑁  +  1 ) ) ) | 
						
							| 112 | 110 111 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( 1 ... 𝑁 )  =  ( 1 ..^ ( 𝑁  +  1 ) ) ) | 
						
							| 113 | 112 | eqcomd | ⊢ ( 𝑁  ∈  ℕ  →  ( 1 ..^ ( 𝑁  +  1 ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 114 | 36 | recnd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  ∈  ℂ ) | 
						
							| 115 | 6 | nnrecred | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( 1  /  𝑛 )  ∈  ℝ ) | 
						
							| 116 | 115 | recnd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( 1  /  𝑛 )  ∈  ℂ ) | 
						
							| 117 |  | pncan | ⊢ ( ( 𝑛  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑛  +  1 )  −  1 )  =  𝑛 ) | 
						
							| 118 | 39 40 117 | sylancl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑛  +  1 )  −  1 )  =  𝑛 ) | 
						
							| 119 | 118 | oveq2d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) )  =  ( 1 ... 𝑛 ) ) | 
						
							| 120 | 119 | sumeq1d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  Σ 𝑖  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( 1  /  𝑖 )  =  Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( 1  /  𝑖 ) ) | 
						
							| 121 | 28 | recnd | ⊢ ( ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  ∧  𝑖  ∈  ( 1 ... 𝑛 ) )  →  ( 1  /  𝑖 )  ∈  ℂ ) | 
						
							| 122 |  | oveq2 | ⊢ ( 𝑖  =  𝑛  →  ( 1  /  𝑖 )  =  ( 1  /  𝑛 ) ) | 
						
							| 123 | 4 121 122 | fsumm1 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( 1  /  𝑖 )  =  ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  +  ( 1  /  𝑛 ) ) ) | 
						
							| 124 | 120 123 | eqtrd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  Σ 𝑖  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( 1  /  𝑖 )  =  ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  +  ( 1  /  𝑛 ) ) ) | 
						
							| 125 | 114 116 124 | mvrladdd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( Σ 𝑖  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( 1  /  𝑖 )  −  Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 ) )  =  ( 1  /  𝑛 ) ) | 
						
							| 126 | 125 | oveq2d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  ·  ( Σ 𝑖  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( 1  /  𝑖 )  −  Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 ) ) )  =  ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  ·  ( 1  /  𝑛 ) ) ) | 
						
							| 127 | 6 | nnne0d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  𝑛  ≠  0 ) | 
						
							| 128 | 114 39 127 | divrecd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  /  𝑛 )  =  ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  ·  ( 1  /  𝑛 ) ) ) | 
						
							| 129 | 126 128 | eqtr4d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  ·  ( Σ 𝑖  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( 1  /  𝑖 )  −  Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 ) ) )  =  ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  /  𝑛 ) ) | 
						
							| 130 | 113 129 | sumeq12rdv | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑛  ∈  ( 1 ..^ ( 𝑁  +  1 ) ) ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  ·  ( Σ 𝑖  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( 1  /  𝑖 )  −  Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 ) ) )  =  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  /  𝑛 ) ) | 
						
							| 131 |  | nncn | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℂ ) | 
						
							| 132 |  | pncan | ⊢ ( ( 𝑁  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 133 | 131 40 132 | sylancl | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 134 | 133 | oveq2d | ⊢ ( 𝑁  ∈  ℕ  →  ( 1 ... ( ( 𝑁  +  1 )  −  1 ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 135 | 134 | sumeq1d | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑖  ∈  ( 1 ... ( ( 𝑁  +  1 )  −  1 ) ) ( 1  /  𝑖 )  =  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑖 ) ) | 
						
							| 136 | 135 135 | oveq12d | ⊢ ( 𝑁  ∈  ℕ  →  ( Σ 𝑖  ∈  ( 1 ... ( ( 𝑁  +  1 )  −  1 ) ) ( 1  /  𝑖 )  ·  Σ 𝑖  ∈  ( 1 ... ( ( 𝑁  +  1 )  −  1 ) ) ( 1  /  𝑖 ) )  =  ( Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑖 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑖 ) ) ) | 
						
							| 137 | 16 | recnd | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑖 )  ∈  ℂ ) | 
						
							| 138 | 137 | sqvald | ⊢ ( 𝑁  ∈  ℕ  →  ( Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑖 ) ↑ 2 )  =  ( Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑖 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑖 ) ) ) | 
						
							| 139 | 136 138 | eqtr4d | ⊢ ( 𝑁  ∈  ℕ  →  ( Σ 𝑖  ∈  ( 1 ... ( ( 𝑁  +  1 )  −  1 ) ) ( 1  /  𝑖 )  ·  Σ 𝑖  ∈  ( 1 ... ( ( 𝑁  +  1 )  −  1 ) ) ( 1  /  𝑖 ) )  =  ( Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑖 ) ↑ 2 ) ) | 
						
							| 140 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 141 | 140 | mul01i | ⊢ ( 0  ·  0 )  =  0 | 
						
							| 142 | 141 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  ( 0  ·  0 )  =  0 ) | 
						
							| 143 | 139 142 | oveq12d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( Σ 𝑖  ∈  ( 1 ... ( ( 𝑁  +  1 )  −  1 ) ) ( 1  /  𝑖 )  ·  Σ 𝑖  ∈  ( 1 ... ( ( 𝑁  +  1 )  −  1 ) ) ( 1  /  𝑖 ) )  −  ( 0  ·  0 ) )  =  ( ( Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑖 ) ↑ 2 )  −  0 ) ) | 
						
							| 144 | 137 | sqcld | ⊢ ( 𝑁  ∈  ℕ  →  ( Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑖 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 145 | 144 | subid1d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑖 ) ↑ 2 )  −  0 )  =  ( Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑖 ) ↑ 2 ) ) | 
						
							| 146 | 143 145 | eqtrd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( Σ 𝑖  ∈  ( 1 ... ( ( 𝑁  +  1 )  −  1 ) ) ( 1  /  𝑖 )  ·  Σ 𝑖  ∈  ( 1 ... ( ( 𝑁  +  1 )  −  1 ) ) ( 1  /  𝑖 ) )  −  ( 0  ·  0 ) )  =  ( Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑖 ) ↑ 2 ) ) | 
						
							| 147 | 125 120 | oveq12d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( Σ 𝑖  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( 1  /  𝑖 )  −  Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 ) )  ·  Σ 𝑖  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( 1  /  𝑖 ) )  =  ( ( 1  /  𝑛 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( 1  /  𝑖 ) ) ) | 
						
							| 148 | 29 | recnd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( 1  /  𝑖 )  ∈  ℂ ) | 
						
							| 149 | 148 39 127 | divrec2d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( 1  /  𝑖 )  /  𝑛 )  =  ( ( 1  /  𝑛 )  ·  Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( 1  /  𝑖 ) ) ) | 
						
							| 150 | 147 149 | eqtr4d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( Σ 𝑖  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( 1  /  𝑖 )  −  Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 ) )  ·  Σ 𝑖  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( 1  /  𝑖 ) )  =  ( Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( 1  /  𝑖 )  /  𝑛 ) ) | 
						
							| 151 | 113 150 | sumeq12rdv | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑛  ∈  ( 1 ..^ ( 𝑁  +  1 ) ) ( ( Σ 𝑖  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( 1  /  𝑖 )  −  Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 ) )  ·  Σ 𝑖  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( 1  /  𝑖 ) )  =  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( 1  /  𝑖 )  /  𝑛 ) ) | 
						
							| 152 | 146 151 | oveq12d | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( Σ 𝑖  ∈  ( 1 ... ( ( 𝑁  +  1 )  −  1 ) ) ( 1  /  𝑖 )  ·  Σ 𝑖  ∈  ( 1 ... ( ( 𝑁  +  1 )  −  1 ) ) ( 1  /  𝑖 ) )  −  ( 0  ·  0 ) )  −  Σ 𝑛  ∈  ( 1 ..^ ( 𝑁  +  1 ) ) ( ( Σ 𝑖  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( 1  /  𝑖 )  −  Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 ) )  ·  Σ 𝑖  ∈  ( 1 ... ( ( 𝑛  +  1 )  −  1 ) ) ( 1  /  𝑖 ) ) )  =  ( ( Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑖 ) ↑ 2 )  −  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( 1  /  𝑖 )  /  𝑛 ) ) ) | 
						
							| 153 | 109 130 152 | 3eqtr3rd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑖 ) ↑ 2 )  −  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( 1  /  𝑖 )  /  𝑛 ) )  =  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  /  𝑛 ) ) | 
						
							| 154 | 31 | recnd | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( 1  /  𝑖 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 155 | 38 | recnd | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 156 | 144 154 155 | subaddd | ⊢ ( 𝑁  ∈  ℕ  →  ( ( ( Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑖 ) ↑ 2 )  −  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( 1  /  𝑖 )  /  𝑛 ) )  =  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  /  𝑛 )  ↔  ( Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( 1  /  𝑖 )  /  𝑛 )  +  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  /  𝑛 ) )  =  ( Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑖 ) ↑ 2 ) ) ) | 
						
							| 157 | 153 156 | mpbid | ⊢ ( 𝑁  ∈  ℕ  →  ( Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( Σ 𝑖  ∈  ( 1 ... 𝑛 ) ( 1  /  𝑖 )  /  𝑛 )  +  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( Σ 𝑖  ∈  ( 1 ... ( 𝑛  −  1 ) ) ( 1  /  𝑖 )  /  𝑛 ) )  =  ( Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑖 ) ↑ 2 ) ) | 
						
							| 158 | 78 157 | breqtrd | ⊢ ( 𝑁  ∈  ℕ  →  ( Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 )  /  𝑛 )  +  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 )  /  𝑛 ) )  ≤  ( Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑖 ) ↑ 2 ) ) | 
						
							| 159 | 24 158 | eqbrtrd | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  ·  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 )  /  𝑛 ) )  ≤  ( Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑖 ) ↑ 2 ) ) | 
						
							| 160 |  | flid | ⊢ ( 𝑁  ∈  ℤ  →  ( ⌊ ‘ 𝑁 )  =  𝑁 ) | 
						
							| 161 | 110 160 | syl | ⊢ ( 𝑁  ∈  ℕ  →  ( ⌊ ‘ 𝑁 )  =  𝑁 ) | 
						
							| 162 | 161 | oveq2d | ⊢ ( 𝑁  ∈  ℕ  →  ( 1 ... ( ⌊ ‘ 𝑁 ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 163 | 162 | sumeq1d | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑁 ) ) ( 1  /  𝑖 )  =  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑖 ) ) | 
						
							| 164 |  | nnre | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℝ ) | 
						
							| 165 |  | nnge1 | ⊢ ( 𝑁  ∈  ℕ  →  1  ≤  𝑁 ) | 
						
							| 166 |  | harmonicubnd | ⊢ ( ( 𝑁  ∈  ℝ  ∧  1  ≤  𝑁 )  →  Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑁 ) ) ( 1  /  𝑖 )  ≤  ( ( log ‘ 𝑁 )  +  1 ) ) | 
						
							| 167 | 164 165 166 | syl2anc | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑁 ) ) ( 1  /  𝑖 )  ≤  ( ( log ‘ 𝑁 )  +  1 ) ) | 
						
							| 168 | 163 167 | eqbrtrrd | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑖 )  ≤  ( ( log ‘ 𝑁 )  +  1 ) ) | 
						
							| 169 | 14 | nnrpd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  𝑖  ∈  ℝ+ ) | 
						
							| 170 | 169 | rpreccld | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  ( 1  /  𝑖 )  ∈  ℝ+ ) | 
						
							| 171 | 170 | rpge0d | ⊢ ( ( 𝑁  ∈  ℕ  ∧  𝑖  ∈  ( 1 ... 𝑁 ) )  →  0  ≤  ( 1  /  𝑖 ) ) | 
						
							| 172 | 2 15 171 | fsumge0 | ⊢ ( 𝑁  ∈  ℕ  →  0  ≤  Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑖 ) ) | 
						
							| 173 | 49 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  0  ∈  ℝ ) | 
						
							| 174 |  | log1 | ⊢ ( log ‘ 1 )  =  0 | 
						
							| 175 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 176 |  | logleb | ⊢ ( ( 1  ∈  ℝ+  ∧  𝑁  ∈  ℝ+ )  →  ( 1  ≤  𝑁  ↔  ( log ‘ 1 )  ≤  ( log ‘ 𝑁 ) ) ) | 
						
							| 177 | 175 18 176 | sylancr | ⊢ ( 𝑁  ∈  ℕ  →  ( 1  ≤  𝑁  ↔  ( log ‘ 1 )  ≤  ( log ‘ 𝑁 ) ) ) | 
						
							| 178 | 165 177 | mpbid | ⊢ ( 𝑁  ∈  ℕ  →  ( log ‘ 1 )  ≤  ( log ‘ 𝑁 ) ) | 
						
							| 179 | 174 178 | eqbrtrrid | ⊢ ( 𝑁  ∈  ℕ  →  0  ≤  ( log ‘ 𝑁 ) ) | 
						
							| 180 | 19 | lep1d | ⊢ ( 𝑁  ∈  ℕ  →  ( log ‘ 𝑁 )  ≤  ( ( log ‘ 𝑁 )  +  1 ) ) | 
						
							| 181 | 173 19 21 179 180 | letrd | ⊢ ( 𝑁  ∈  ℕ  →  0  ≤  ( ( log ‘ 𝑁 )  +  1 ) ) | 
						
							| 182 | 16 21 172 181 | le2sqd | ⊢ ( 𝑁  ∈  ℕ  →  ( Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑖 )  ≤  ( ( log ‘ 𝑁 )  +  1 )  ↔  ( Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑖 ) ↑ 2 )  ≤  ( ( ( log ‘ 𝑁 )  +  1 ) ↑ 2 ) ) ) | 
						
							| 183 | 168 182 | mpbid | ⊢ ( 𝑁  ∈  ℕ  →  ( Σ 𝑖  ∈  ( 1 ... 𝑁 ) ( 1  /  𝑖 ) ↑ 2 )  ≤  ( ( ( log ‘ 𝑁 )  +  1 ) ↑ 2 ) ) | 
						
							| 184 | 12 17 22 159 183 | letrd | ⊢ ( 𝑁  ∈  ℕ  →  ( 2  ·  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 )  /  𝑛 ) )  ≤  ( ( ( log ‘ 𝑁 )  +  1 ) ↑ 2 ) ) | 
						
							| 185 | 1 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  2  ∈  ℝ ) | 
						
							| 186 |  | 2pos | ⊢ 0  <  2 | 
						
							| 187 | 186 | a1i | ⊢ ( 𝑁  ∈  ℕ  →  0  <  2 ) | 
						
							| 188 |  | lemuldiv2 | ⊢ ( ( Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 )  /  𝑛 )  ∈  ℝ  ∧  ( ( ( log ‘ 𝑁 )  +  1 ) ↑ 2 )  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( 2  ·  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 )  /  𝑛 ) )  ≤  ( ( ( log ‘ 𝑁 )  +  1 ) ↑ 2 )  ↔  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 )  /  𝑛 )  ≤  ( ( ( ( log ‘ 𝑁 )  +  1 ) ↑ 2 )  /  2 ) ) ) | 
						
							| 189 | 10 22 185 187 188 | syl112anc | ⊢ ( 𝑁  ∈  ℕ  →  ( ( 2  ·  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 )  /  𝑛 ) )  ≤  ( ( ( log ‘ 𝑁 )  +  1 ) ↑ 2 )  ↔  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 )  /  𝑛 )  ≤  ( ( ( ( log ‘ 𝑁 )  +  1 ) ↑ 2 )  /  2 ) ) ) | 
						
							| 190 | 184 189 | mpbid | ⊢ ( 𝑁  ∈  ℕ  →  Σ 𝑛  ∈  ( 1 ... 𝑁 ) ( ( log ‘ 𝑛 )  /  𝑛 )  ≤  ( ( ( ( log ‘ 𝑁 )  +  1 ) ↑ 2 )  /  2 ) ) |