| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntlem1.r | ⊢ 𝑅  =  ( 𝑎  ∈  ℝ+  ↦  ( ( ψ ‘ 𝑎 )  −  𝑎 ) ) | 
						
							| 2 |  | pntlem1.a | ⊢ ( 𝜑  →  𝐴  ∈  ℝ+ ) | 
						
							| 3 |  | pntlem1.b | ⊢ ( 𝜑  →  𝐵  ∈  ℝ+ ) | 
						
							| 4 |  | pntlem1.l | ⊢ ( 𝜑  →  𝐿  ∈  ( 0 (,) 1 ) ) | 
						
							| 5 |  | pntlem1.d | ⊢ 𝐷  =  ( 𝐴  +  1 ) | 
						
							| 6 |  | pntlem1.f | ⊢ 𝐹  =  ( ( 1  −  ( 1  /  𝐷 ) )  ·  ( ( 𝐿  /  ( ; 3 2  ·  𝐵 ) )  /  ( 𝐷 ↑ 2 ) ) ) | 
						
							| 7 |  | pntlem1.u | ⊢ ( 𝜑  →  𝑈  ∈  ℝ+ ) | 
						
							| 8 |  | pntlem1.u2 | ⊢ ( 𝜑  →  𝑈  ≤  𝐴 ) | 
						
							| 9 |  | pntlem1.e | ⊢ 𝐸  =  ( 𝑈  /  𝐷 ) | 
						
							| 10 |  | pntlem1.k | ⊢ 𝐾  =  ( exp ‘ ( 𝐵  /  𝐸 ) ) | 
						
							| 11 |  | pntlem1.y | ⊢ ( 𝜑  →  ( 𝑌  ∈  ℝ+  ∧  1  ≤  𝑌 ) ) | 
						
							| 12 |  | pntlem1.x | ⊢ ( 𝜑  →  ( 𝑋  ∈  ℝ+  ∧  𝑌  <  𝑋 ) ) | 
						
							| 13 |  | pntlem1.c | ⊢ ( 𝜑  →  𝐶  ∈  ℝ+ ) | 
						
							| 14 |  | pntlem1.w | ⊢ 𝑊  =  ( ( ( 𝑌  +  ( 4  /  ( 𝐿  ·  𝐸 ) ) ) ↑ 2 )  +  ( ( ( 𝑋  ·  ( 𝐾 ↑ 2 ) ) ↑ 4 )  +  ( exp ‘ ( ( ( ; 3 2  ·  𝐵 )  /  ( ( 𝑈  −  𝐸 )  ·  ( 𝐿  ·  ( 𝐸 ↑ 2 ) ) ) )  ·  ( ( 𝑈  ·  3 )  +  𝐶 ) ) ) ) ) | 
						
							| 15 |  | pntlem1.z | ⊢ ( 𝜑  →  𝑍  ∈  ( 𝑊 [,) +∞ ) ) | 
						
							| 16 |  | pntlem1.m | ⊢ 𝑀  =  ( ( ⌊ ‘ ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) ) )  +  1 ) | 
						
							| 17 |  | pntlem1.n | ⊢ 𝑁  =  ( ⌊ ‘ ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  2 ) ) | 
						
							| 18 |  | pntlem1.U | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  ( 𝑌 [,) +∞ ) ( abs ‘ ( ( 𝑅 ‘ 𝑧 )  /  𝑧 ) )  ≤  𝑈 ) | 
						
							| 19 |  | pntlem1.K | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ( 𝑋 (,) +∞ ) ∃ 𝑧  ∈  ℝ+ ( ( 𝑦  <  𝑧  ∧  ( ( 1  +  ( 𝐿  ·  𝐸 ) )  ·  𝑧 )  <  ( 𝐾  ·  𝑦 ) )  ∧  ∀ 𝑢  ∈  ( 𝑧 [,] ( ( 1  +  ( 𝐿  ·  𝐸 ) )  ·  𝑧 ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑢 )  /  𝑢 ) )  ≤  𝐸 ) ) | 
						
							| 20 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 21 |  | fzfid | ⊢ ( 𝜑  →  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) )  ∈  Fin ) | 
						
							| 22 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 24 | 23 | nnrpd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 25 | 24 | relogcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) )  →  ( log ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 26 | 25 23 | nndivred | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) )  →  ( ( log ‘ 𝑛 )  /  𝑛 )  ∈  ℝ ) | 
						
							| 27 | 21 26 | fsumrecl | ⊢ ( 𝜑  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( ( log ‘ 𝑛 )  /  𝑛 )  ∈  ℝ ) | 
						
							| 28 |  | remulcl | ⊢ ( ( 2  ∈  ℝ  ∧  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( ( log ‘ 𝑛 )  /  𝑛 )  ∈  ℝ )  →  ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( ( log ‘ 𝑛 )  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 29 | 20 27 28 | sylancr | ⊢ ( 𝜑  →  ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( ( log ‘ 𝑛 )  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 30 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | pntlemb | ⊢ ( 𝜑  →  ( 𝑍  ∈  ℝ+  ∧  ( 1  <  𝑍  ∧  e  ≤  ( √ ‘ 𝑍 )  ∧  ( √ ‘ 𝑍 )  ≤  ( 𝑍  /  𝑌 ) )  ∧  ( ( 4  /  ( 𝐿  ·  𝐸 ) )  ≤  ( √ ‘ 𝑍 )  ∧  ( ( ( log ‘ 𝑋 )  /  ( log ‘ 𝐾 ) )  +  2 )  ≤  ( ( ( log ‘ 𝑍 )  /  ( log ‘ 𝐾 ) )  /  4 )  ∧  ( ( 𝑈  ·  3 )  +  𝐶 )  ≤  ( ( ( 𝑈  −  𝐸 )  ·  ( ( 𝐿  ·  ( 𝐸 ↑ 2 ) )  /  ( ; 3 2  ·  𝐵 ) ) )  ·  ( log ‘ 𝑍 ) ) ) ) ) | 
						
							| 31 | 30 | simp1d | ⊢ ( 𝜑  →  𝑍  ∈  ℝ+ ) | 
						
							| 32 | 31 | relogcld | ⊢ ( 𝜑  →  ( log ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 33 |  | peano2re | ⊢ ( ( log ‘ 𝑍 )  ∈  ℝ  →  ( ( log ‘ 𝑍 )  +  1 )  ∈  ℝ ) | 
						
							| 34 | 32 33 | syl | ⊢ ( 𝜑  →  ( ( log ‘ 𝑍 )  +  1 )  ∈  ℝ ) | 
						
							| 35 | 34 | resqcld | ⊢ ( 𝜑  →  ( ( ( log ‘ 𝑍 )  +  1 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 36 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 37 |  | readdcl | ⊢ ( ( ( log ‘ 𝑍 )  ∈  ℝ  ∧  3  ∈  ℝ )  →  ( ( log ‘ 𝑍 )  +  3 )  ∈  ℝ ) | 
						
							| 38 | 32 36 37 | sylancl | ⊢ ( 𝜑  →  ( ( log ‘ 𝑍 )  +  3 )  ∈  ℝ ) | 
						
							| 39 | 38 32 | remulcld | ⊢ ( 𝜑  →  ( ( ( log ‘ 𝑍 )  +  3 )  ·  ( log ‘ 𝑍 ) )  ∈  ℝ ) | 
						
							| 40 | 31 | rpred | ⊢ ( 𝜑  →  𝑍  ∈  ℝ ) | 
						
							| 41 | 11 | simpld | ⊢ ( 𝜑  →  𝑌  ∈  ℝ+ ) | 
						
							| 42 | 40 41 | rerpdivcld | ⊢ ( 𝜑  →  ( 𝑍  /  𝑌 )  ∈  ℝ ) | 
						
							| 43 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 44 | 31 | rpsqrtcld | ⊢ ( 𝜑  →  ( √ ‘ 𝑍 )  ∈  ℝ+ ) | 
						
							| 45 | 44 | rpred | ⊢ ( 𝜑  →  ( √ ‘ 𝑍 )  ∈  ℝ ) | 
						
							| 46 |  | ere | ⊢ e  ∈  ℝ | 
						
							| 47 | 46 | a1i | ⊢ ( 𝜑  →  e  ∈  ℝ ) | 
						
							| 48 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 49 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 50 |  | egt2lt3 | ⊢ ( 2  <  e  ∧  e  <  3 ) | 
						
							| 51 | 50 | simpli | ⊢ 2  <  e | 
						
							| 52 | 48 20 46 | lttri | ⊢ ( ( 1  <  2  ∧  2  <  e )  →  1  <  e ) | 
						
							| 53 | 49 51 52 | mp2an | ⊢ 1  <  e | 
						
							| 54 | 48 46 53 | ltleii | ⊢ 1  ≤  e | 
						
							| 55 | 54 | a1i | ⊢ ( 𝜑  →  1  ≤  e ) | 
						
							| 56 | 30 | simp2d | ⊢ ( 𝜑  →  ( 1  <  𝑍  ∧  e  ≤  ( √ ‘ 𝑍 )  ∧  ( √ ‘ 𝑍 )  ≤  ( 𝑍  /  𝑌 ) ) ) | 
						
							| 57 | 56 | simp2d | ⊢ ( 𝜑  →  e  ≤  ( √ ‘ 𝑍 ) ) | 
						
							| 58 | 43 47 45 55 57 | letrd | ⊢ ( 𝜑  →  1  ≤  ( √ ‘ 𝑍 ) ) | 
						
							| 59 | 56 | simp3d | ⊢ ( 𝜑  →  ( √ ‘ 𝑍 )  ≤  ( 𝑍  /  𝑌 ) ) | 
						
							| 60 | 43 45 42 58 59 | letrd | ⊢ ( 𝜑  →  1  ≤  ( 𝑍  /  𝑌 ) ) | 
						
							| 61 |  | flge1nn | ⊢ ( ( ( 𝑍  /  𝑌 )  ∈  ℝ  ∧  1  ≤  ( 𝑍  /  𝑌 ) )  →  ( ⌊ ‘ ( 𝑍  /  𝑌 ) )  ∈  ℕ ) | 
						
							| 62 | 42 60 61 | syl2anc | ⊢ ( 𝜑  →  ( ⌊ ‘ ( 𝑍  /  𝑌 ) )  ∈  ℕ ) | 
						
							| 63 | 62 | nnrpd | ⊢ ( 𝜑  →  ( ⌊ ‘ ( 𝑍  /  𝑌 ) )  ∈  ℝ+ ) | 
						
							| 64 | 63 | relogcld | ⊢ ( 𝜑  →  ( log ‘ ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) )  ∈  ℝ ) | 
						
							| 65 | 64 43 | readdcld | ⊢ ( 𝜑  →  ( ( log ‘ ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) )  +  1 )  ∈  ℝ ) | 
						
							| 66 | 65 | resqcld | ⊢ ( 𝜑  →  ( ( ( log ‘ ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) )  +  1 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 67 |  | logdivbnd | ⊢ ( ( ⌊ ‘ ( 𝑍  /  𝑌 ) )  ∈  ℕ  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( ( log ‘ 𝑛 )  /  𝑛 )  ≤  ( ( ( ( log ‘ ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) )  +  1 ) ↑ 2 )  /  2 ) ) | 
						
							| 68 | 62 67 | syl | ⊢ ( 𝜑  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( ( log ‘ 𝑛 )  /  𝑛 )  ≤  ( ( ( ( log ‘ ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) )  +  1 ) ↑ 2 )  /  2 ) ) | 
						
							| 69 | 20 | a1i | ⊢ ( 𝜑  →  2  ∈  ℝ ) | 
						
							| 70 |  | 2pos | ⊢ 0  <  2 | 
						
							| 71 | 70 | a1i | ⊢ ( 𝜑  →  0  <  2 ) | 
						
							| 72 |  | lemuldiv2 | ⊢ ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( ( log ‘ 𝑛 )  /  𝑛 )  ∈  ℝ  ∧  ( ( ( log ‘ ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) )  +  1 ) ↑ 2 )  ∈  ℝ  ∧  ( 2  ∈  ℝ  ∧  0  <  2 ) )  →  ( ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( ( log ‘ 𝑛 )  /  𝑛 ) )  ≤  ( ( ( log ‘ ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) )  +  1 ) ↑ 2 )  ↔  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( ( log ‘ 𝑛 )  /  𝑛 )  ≤  ( ( ( ( log ‘ ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) )  +  1 ) ↑ 2 )  /  2 ) ) ) | 
						
							| 73 | 27 66 69 71 72 | syl112anc | ⊢ ( 𝜑  →  ( ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( ( log ‘ 𝑛 )  /  𝑛 ) )  ≤  ( ( ( log ‘ ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) )  +  1 ) ↑ 2 )  ↔  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( ( log ‘ 𝑛 )  /  𝑛 )  ≤  ( ( ( ( log ‘ ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) )  +  1 ) ↑ 2 )  /  2 ) ) ) | 
						
							| 74 | 68 73 | mpbird | ⊢ ( 𝜑  →  ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( ( log ‘ 𝑛 )  /  𝑛 ) )  ≤  ( ( ( log ‘ ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) )  +  1 ) ↑ 2 ) ) | 
						
							| 75 |  | reflcl | ⊢ ( ( 𝑍  /  𝑌 )  ∈  ℝ  →  ( ⌊ ‘ ( 𝑍  /  𝑌 ) )  ∈  ℝ ) | 
						
							| 76 | 42 75 | syl | ⊢ ( 𝜑  →  ( ⌊ ‘ ( 𝑍  /  𝑌 ) )  ∈  ℝ ) | 
						
							| 77 |  | flle | ⊢ ( ( 𝑍  /  𝑌 )  ∈  ℝ  →  ( ⌊ ‘ ( 𝑍  /  𝑌 ) )  ≤  ( 𝑍  /  𝑌 ) ) | 
						
							| 78 | 42 77 | syl | ⊢ ( 𝜑  →  ( ⌊ ‘ ( 𝑍  /  𝑌 ) )  ≤  ( 𝑍  /  𝑌 ) ) | 
						
							| 79 | 11 | simprd | ⊢ ( 𝜑  →  1  ≤  𝑌 ) | 
						
							| 80 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 81 | 80 | a1i | ⊢ ( 𝜑  →  1  ∈  ℝ+ ) | 
						
							| 82 | 81 41 31 | lediv2d | ⊢ ( 𝜑  →  ( 1  ≤  𝑌  ↔  ( 𝑍  /  𝑌 )  ≤  ( 𝑍  /  1 ) ) ) | 
						
							| 83 | 79 82 | mpbid | ⊢ ( 𝜑  →  ( 𝑍  /  𝑌 )  ≤  ( 𝑍  /  1 ) ) | 
						
							| 84 | 40 | recnd | ⊢ ( 𝜑  →  𝑍  ∈  ℂ ) | 
						
							| 85 | 84 | div1d | ⊢ ( 𝜑  →  ( 𝑍  /  1 )  =  𝑍 ) | 
						
							| 86 | 83 85 | breqtrd | ⊢ ( 𝜑  →  ( 𝑍  /  𝑌 )  ≤  𝑍 ) | 
						
							| 87 | 76 42 40 78 86 | letrd | ⊢ ( 𝜑  →  ( ⌊ ‘ ( 𝑍  /  𝑌 ) )  ≤  𝑍 ) | 
						
							| 88 | 63 31 | logled | ⊢ ( 𝜑  →  ( ( ⌊ ‘ ( 𝑍  /  𝑌 ) )  ≤  𝑍  ↔  ( log ‘ ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) )  ≤  ( log ‘ 𝑍 ) ) ) | 
						
							| 89 | 87 88 | mpbid | ⊢ ( 𝜑  →  ( log ‘ ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) )  ≤  ( log ‘ 𝑍 ) ) | 
						
							| 90 | 64 32 43 89 | leadd1dd | ⊢ ( 𝜑  →  ( ( log ‘ ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) )  +  1 )  ≤  ( ( log ‘ 𝑍 )  +  1 ) ) | 
						
							| 91 |  | 0red | ⊢ ( 𝜑  →  0  ∈  ℝ ) | 
						
							| 92 |  | log1 | ⊢ ( log ‘ 1 )  =  0 | 
						
							| 93 | 62 | nnge1d | ⊢ ( 𝜑  →  1  ≤  ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) | 
						
							| 94 |  | logleb | ⊢ ( ( 1  ∈  ℝ+  ∧  ( ⌊ ‘ ( 𝑍  /  𝑌 ) )  ∈  ℝ+ )  →  ( 1  ≤  ( ⌊ ‘ ( 𝑍  /  𝑌 ) )  ↔  ( log ‘ 1 )  ≤  ( log ‘ ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ) ) | 
						
							| 95 | 80 63 94 | sylancr | ⊢ ( 𝜑  →  ( 1  ≤  ( ⌊ ‘ ( 𝑍  /  𝑌 ) )  ↔  ( log ‘ 1 )  ≤  ( log ‘ ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ) ) | 
						
							| 96 | 93 95 | mpbid | ⊢ ( 𝜑  →  ( log ‘ 1 )  ≤  ( log ‘ ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ) | 
						
							| 97 | 92 96 | eqbrtrrid | ⊢ ( 𝜑  →  0  ≤  ( log ‘ ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ) | 
						
							| 98 | 64 | lep1d | ⊢ ( 𝜑  →  ( log ‘ ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) )  ≤  ( ( log ‘ ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) )  +  1 ) ) | 
						
							| 99 | 91 64 65 97 98 | letrd | ⊢ ( 𝜑  →  0  ≤  ( ( log ‘ ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) )  +  1 ) ) | 
						
							| 100 | 91 65 34 99 90 | letrd | ⊢ ( 𝜑  →  0  ≤  ( ( log ‘ 𝑍 )  +  1 ) ) | 
						
							| 101 | 65 34 99 100 | le2sqd | ⊢ ( 𝜑  →  ( ( ( log ‘ ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) )  +  1 )  ≤  ( ( log ‘ 𝑍 )  +  1 )  ↔  ( ( ( log ‘ ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) )  +  1 ) ↑ 2 )  ≤  ( ( ( log ‘ 𝑍 )  +  1 ) ↑ 2 ) ) ) | 
						
							| 102 | 90 101 | mpbid | ⊢ ( 𝜑  →  ( ( ( log ‘ ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) )  +  1 ) ↑ 2 )  ≤  ( ( ( log ‘ 𝑍 )  +  1 ) ↑ 2 ) ) | 
						
							| 103 | 29 66 35 74 102 | letrd | ⊢ ( 𝜑  →  ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( ( log ‘ 𝑛 )  /  𝑛 ) )  ≤  ( ( ( log ‘ 𝑍 )  +  1 ) ↑ 2 ) ) | 
						
							| 104 | 32 | resqcld | ⊢ ( 𝜑  →  ( ( log ‘ 𝑍 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 105 | 69 32 | remulcld | ⊢ ( 𝜑  →  ( 2  ·  ( log ‘ 𝑍 ) )  ∈  ℝ ) | 
						
							| 106 | 104 105 | readdcld | ⊢ ( 𝜑  →  ( ( ( log ‘ 𝑍 ) ↑ 2 )  +  ( 2  ·  ( log ‘ 𝑍 ) ) )  ∈  ℝ ) | 
						
							| 107 |  | loge | ⊢ ( log ‘ e )  =  1 | 
						
							| 108 | 44 | rpge0d | ⊢ ( 𝜑  →  0  ≤  ( √ ‘ 𝑍 ) ) | 
						
							| 109 | 45 45 108 58 | lemulge12d | ⊢ ( 𝜑  →  ( √ ‘ 𝑍 )  ≤  ( ( √ ‘ 𝑍 )  ·  ( √ ‘ 𝑍 ) ) ) | 
						
							| 110 | 31 | rprege0d | ⊢ ( 𝜑  →  ( 𝑍  ∈  ℝ  ∧  0  ≤  𝑍 ) ) | 
						
							| 111 |  | remsqsqrt | ⊢ ( ( 𝑍  ∈  ℝ  ∧  0  ≤  𝑍 )  →  ( ( √ ‘ 𝑍 )  ·  ( √ ‘ 𝑍 ) )  =  𝑍 ) | 
						
							| 112 | 110 111 | syl | ⊢ ( 𝜑  →  ( ( √ ‘ 𝑍 )  ·  ( √ ‘ 𝑍 ) )  =  𝑍 ) | 
						
							| 113 | 109 112 | breqtrd | ⊢ ( 𝜑  →  ( √ ‘ 𝑍 )  ≤  𝑍 ) | 
						
							| 114 | 47 45 40 57 113 | letrd | ⊢ ( 𝜑  →  e  ≤  𝑍 ) | 
						
							| 115 |  | epr | ⊢ e  ∈  ℝ+ | 
						
							| 116 |  | logleb | ⊢ ( ( e  ∈  ℝ+  ∧  𝑍  ∈  ℝ+ )  →  ( e  ≤  𝑍  ↔  ( log ‘ e )  ≤  ( log ‘ 𝑍 ) ) ) | 
						
							| 117 | 115 31 116 | sylancr | ⊢ ( 𝜑  →  ( e  ≤  𝑍  ↔  ( log ‘ e )  ≤  ( log ‘ 𝑍 ) ) ) | 
						
							| 118 | 114 117 | mpbid | ⊢ ( 𝜑  →  ( log ‘ e )  ≤  ( log ‘ 𝑍 ) ) | 
						
							| 119 | 107 118 | eqbrtrrid | ⊢ ( 𝜑  →  1  ≤  ( log ‘ 𝑍 ) ) | 
						
							| 120 | 43 32 106 119 | leadd2dd | ⊢ ( 𝜑  →  ( ( ( ( log ‘ 𝑍 ) ↑ 2 )  +  ( 2  ·  ( log ‘ 𝑍 ) ) )  +  1 )  ≤  ( ( ( ( log ‘ 𝑍 ) ↑ 2 )  +  ( 2  ·  ( log ‘ 𝑍 ) ) )  +  ( log ‘ 𝑍 ) ) ) | 
						
							| 121 | 32 | recnd | ⊢ ( 𝜑  →  ( log ‘ 𝑍 )  ∈  ℂ ) | 
						
							| 122 |  | binom21 | ⊢ ( ( log ‘ 𝑍 )  ∈  ℂ  →  ( ( ( log ‘ 𝑍 )  +  1 ) ↑ 2 )  =  ( ( ( ( log ‘ 𝑍 ) ↑ 2 )  +  ( 2  ·  ( log ‘ 𝑍 ) ) )  +  1 ) ) | 
						
							| 123 | 121 122 | syl | ⊢ ( 𝜑  →  ( ( ( log ‘ 𝑍 )  +  1 ) ↑ 2 )  =  ( ( ( ( log ‘ 𝑍 ) ↑ 2 )  +  ( 2  ·  ( log ‘ 𝑍 ) ) )  +  1 ) ) | 
						
							| 124 | 121 | sqvald | ⊢ ( 𝜑  →  ( ( log ‘ 𝑍 ) ↑ 2 )  =  ( ( log ‘ 𝑍 )  ·  ( log ‘ 𝑍 ) ) ) | 
						
							| 125 |  | df-3 | ⊢ 3  =  ( 2  +  1 ) | 
						
							| 126 | 125 | oveq1i | ⊢ ( 3  ·  ( log ‘ 𝑍 ) )  =  ( ( 2  +  1 )  ·  ( log ‘ 𝑍 ) ) | 
						
							| 127 |  | 2cnd | ⊢ ( 𝜑  →  2  ∈  ℂ ) | 
						
							| 128 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 129 | 127 128 121 | adddird | ⊢ ( 𝜑  →  ( ( 2  +  1 )  ·  ( log ‘ 𝑍 ) )  =  ( ( 2  ·  ( log ‘ 𝑍 ) )  +  ( 1  ·  ( log ‘ 𝑍 ) ) ) ) | 
						
							| 130 | 126 129 | eqtrid | ⊢ ( 𝜑  →  ( 3  ·  ( log ‘ 𝑍 ) )  =  ( ( 2  ·  ( log ‘ 𝑍 ) )  +  ( 1  ·  ( log ‘ 𝑍 ) ) ) ) | 
						
							| 131 | 121 | mullidd | ⊢ ( 𝜑  →  ( 1  ·  ( log ‘ 𝑍 ) )  =  ( log ‘ 𝑍 ) ) | 
						
							| 132 | 131 | oveq2d | ⊢ ( 𝜑  →  ( ( 2  ·  ( log ‘ 𝑍 ) )  +  ( 1  ·  ( log ‘ 𝑍 ) ) )  =  ( ( 2  ·  ( log ‘ 𝑍 ) )  +  ( log ‘ 𝑍 ) ) ) | 
						
							| 133 | 130 132 | eqtr2d | ⊢ ( 𝜑  →  ( ( 2  ·  ( log ‘ 𝑍 ) )  +  ( log ‘ 𝑍 ) )  =  ( 3  ·  ( log ‘ 𝑍 ) ) ) | 
						
							| 134 | 124 133 | oveq12d | ⊢ ( 𝜑  →  ( ( ( log ‘ 𝑍 ) ↑ 2 )  +  ( ( 2  ·  ( log ‘ 𝑍 ) )  +  ( log ‘ 𝑍 ) ) )  =  ( ( ( log ‘ 𝑍 )  ·  ( log ‘ 𝑍 ) )  +  ( 3  ·  ( log ‘ 𝑍 ) ) ) ) | 
						
							| 135 | 121 | sqcld | ⊢ ( 𝜑  →  ( ( log ‘ 𝑍 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 136 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 137 |  | mulcl | ⊢ ( ( 2  ∈  ℂ  ∧  ( log ‘ 𝑍 )  ∈  ℂ )  →  ( 2  ·  ( log ‘ 𝑍 ) )  ∈  ℂ ) | 
						
							| 138 | 136 121 137 | sylancr | ⊢ ( 𝜑  →  ( 2  ·  ( log ‘ 𝑍 ) )  ∈  ℂ ) | 
						
							| 139 | 135 138 121 | addassd | ⊢ ( 𝜑  →  ( ( ( ( log ‘ 𝑍 ) ↑ 2 )  +  ( 2  ·  ( log ‘ 𝑍 ) ) )  +  ( log ‘ 𝑍 ) )  =  ( ( ( log ‘ 𝑍 ) ↑ 2 )  +  ( ( 2  ·  ( log ‘ 𝑍 ) )  +  ( log ‘ 𝑍 ) ) ) ) | 
						
							| 140 |  | 3cn | ⊢ 3  ∈  ℂ | 
						
							| 141 | 140 | a1i | ⊢ ( 𝜑  →  3  ∈  ℂ ) | 
						
							| 142 | 121 141 121 | adddird | ⊢ ( 𝜑  →  ( ( ( log ‘ 𝑍 )  +  3 )  ·  ( log ‘ 𝑍 ) )  =  ( ( ( log ‘ 𝑍 )  ·  ( log ‘ 𝑍 ) )  +  ( 3  ·  ( log ‘ 𝑍 ) ) ) ) | 
						
							| 143 | 134 139 142 | 3eqtr4rd | ⊢ ( 𝜑  →  ( ( ( log ‘ 𝑍 )  +  3 )  ·  ( log ‘ 𝑍 ) )  =  ( ( ( ( log ‘ 𝑍 ) ↑ 2 )  +  ( 2  ·  ( log ‘ 𝑍 ) ) )  +  ( log ‘ 𝑍 ) ) ) | 
						
							| 144 | 120 123 143 | 3brtr4d | ⊢ ( 𝜑  →  ( ( ( log ‘ 𝑍 )  +  1 ) ↑ 2 )  ≤  ( ( ( log ‘ 𝑍 )  +  3 )  ·  ( log ‘ 𝑍 ) ) ) | 
						
							| 145 | 29 35 39 103 144 | letrd | ⊢ ( 𝜑  →  ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( ( log ‘ 𝑛 )  /  𝑛 ) )  ≤  ( ( ( log ‘ 𝑍 )  +  3 )  ·  ( log ‘ 𝑍 ) ) ) | 
						
							| 146 | 29 39 7 | lemul2d | ⊢ ( 𝜑  →  ( ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( ( log ‘ 𝑛 )  /  𝑛 ) )  ≤  ( ( ( log ‘ 𝑍 )  +  3 )  ·  ( log ‘ 𝑍 ) )  ↔  ( 𝑈  ·  ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( ( log ‘ 𝑛 )  /  𝑛 ) ) )  ≤  ( 𝑈  ·  ( ( ( log ‘ 𝑍 )  +  3 )  ·  ( log ‘ 𝑍 ) ) ) ) ) | 
						
							| 147 | 145 146 | mpbid | ⊢ ( 𝜑  →  ( 𝑈  ·  ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( ( log ‘ 𝑛 )  /  𝑛 ) ) )  ≤  ( 𝑈  ·  ( ( ( log ‘ 𝑍 )  +  3 )  ·  ( log ‘ 𝑍 ) ) ) ) | 
						
							| 148 | 7 | rpred | ⊢ ( 𝜑  →  𝑈  ∈  ℝ ) | 
						
							| 149 | 148 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) )  →  𝑈  ∈  ℝ ) | 
						
							| 150 | 149 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) )  →  𝑈  ∈  ℂ ) | 
						
							| 151 | 25 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) )  →  ( log ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 152 | 24 | rpcnne0d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) )  →  ( 𝑛  ∈  ℂ  ∧  𝑛  ≠  0 ) ) | 
						
							| 153 |  | div23 | ⊢ ( ( 𝑈  ∈  ℂ  ∧  ( log ‘ 𝑛 )  ∈  ℂ  ∧  ( 𝑛  ∈  ℂ  ∧  𝑛  ≠  0 ) )  →  ( ( 𝑈  ·  ( log ‘ 𝑛 ) )  /  𝑛 )  =  ( ( 𝑈  /  𝑛 )  ·  ( log ‘ 𝑛 ) ) ) | 
						
							| 154 |  | divass | ⊢ ( ( 𝑈  ∈  ℂ  ∧  ( log ‘ 𝑛 )  ∈  ℂ  ∧  ( 𝑛  ∈  ℂ  ∧  𝑛  ≠  0 ) )  →  ( ( 𝑈  ·  ( log ‘ 𝑛 ) )  /  𝑛 )  =  ( 𝑈  ·  ( ( log ‘ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 155 | 153 154 | eqtr3d | ⊢ ( ( 𝑈  ∈  ℂ  ∧  ( log ‘ 𝑛 )  ∈  ℂ  ∧  ( 𝑛  ∈  ℂ  ∧  𝑛  ≠  0 ) )  →  ( ( 𝑈  /  𝑛 )  ·  ( log ‘ 𝑛 ) )  =  ( 𝑈  ·  ( ( log ‘ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 156 | 150 151 152 155 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) )  →  ( ( 𝑈  /  𝑛 )  ·  ( log ‘ 𝑛 ) )  =  ( 𝑈  ·  ( ( log ‘ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 157 | 156 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( ( 𝑈  /  𝑛 )  ·  ( log ‘ 𝑛 ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( 𝑈  ·  ( ( log ‘ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 158 | 148 | recnd | ⊢ ( 𝜑  →  𝑈  ∈  ℂ ) | 
						
							| 159 | 26 | recnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) )  →  ( ( log ‘ 𝑛 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 160 | 21 158 159 | fsummulc2 | ⊢ ( 𝜑  →  ( 𝑈  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( ( log ‘ 𝑛 )  /  𝑛 ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( 𝑈  ·  ( ( log ‘ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 161 | 157 160 | eqtr4d | ⊢ ( 𝜑  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( ( 𝑈  /  𝑛 )  ·  ( log ‘ 𝑛 ) )  =  ( 𝑈  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( ( log ‘ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 162 | 161 | oveq2d | ⊢ ( 𝜑  →  ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( ( 𝑈  /  𝑛 )  ·  ( log ‘ 𝑛 ) ) )  =  ( 2  ·  ( 𝑈  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( ( log ‘ 𝑛 )  /  𝑛 ) ) ) ) | 
						
							| 163 | 27 | recnd | ⊢ ( 𝜑  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( ( log ‘ 𝑛 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 164 | 127 158 163 | mul12d | ⊢ ( 𝜑  →  ( 2  ·  ( 𝑈  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( ( log ‘ 𝑛 )  /  𝑛 ) ) )  =  ( 𝑈  ·  ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( ( log ‘ 𝑛 )  /  𝑛 ) ) ) ) | 
						
							| 165 | 162 164 | eqtrd | ⊢ ( 𝜑  →  ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( ( 𝑈  /  𝑛 )  ·  ( log ‘ 𝑛 ) ) )  =  ( 𝑈  ·  ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( ( log ‘ 𝑛 )  /  𝑛 ) ) ) ) | 
						
							| 166 | 38 | recnd | ⊢ ( 𝜑  →  ( ( log ‘ 𝑍 )  +  3 )  ∈  ℂ ) | 
						
							| 167 | 158 166 121 | mulassd | ⊢ ( 𝜑  →  ( ( 𝑈  ·  ( ( log ‘ 𝑍 )  +  3 ) )  ·  ( log ‘ 𝑍 ) )  =  ( 𝑈  ·  ( ( ( log ‘ 𝑍 )  +  3 )  ·  ( log ‘ 𝑍 ) ) ) ) | 
						
							| 168 | 147 165 167 | 3brtr4d | ⊢ ( 𝜑  →  ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ ( 𝑍  /  𝑌 ) ) ) ( ( 𝑈  /  𝑛 )  ·  ( log ‘ 𝑛 ) ) )  ≤  ( ( 𝑈  ·  ( ( log ‘ 𝑍 )  +  3 ) )  ·  ( log ‘ 𝑍 ) ) ) |