Step |
Hyp |
Ref |
Expression |
1 |
|
pntlem1.r |
|- R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) |
2 |
|
pntlem1.a |
|- ( ph -> A e. RR+ ) |
3 |
|
pntlem1.b |
|- ( ph -> B e. RR+ ) |
4 |
|
pntlem1.l |
|- ( ph -> L e. ( 0 (,) 1 ) ) |
5 |
|
pntlem1.d |
|- D = ( A + 1 ) |
6 |
|
pntlem1.f |
|- F = ( ( 1 - ( 1 / D ) ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) |
7 |
|
pntlem1.u |
|- ( ph -> U e. RR+ ) |
8 |
|
pntlem1.u2 |
|- ( ph -> U <_ A ) |
9 |
|
pntlem1.e |
|- E = ( U / D ) |
10 |
|
pntlem1.k |
|- K = ( exp ` ( B / E ) ) |
11 |
|
pntlem1.y |
|- ( ph -> ( Y e. RR+ /\ 1 <_ Y ) ) |
12 |
|
pntlem1.x |
|- ( ph -> ( X e. RR+ /\ Y < X ) ) |
13 |
|
pntlem1.c |
|- ( ph -> C e. RR+ ) |
14 |
|
pntlem1.w |
|- W = ( ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) + ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) ) |
15 |
|
pntlem1.z |
|- ( ph -> Z e. ( W [,) +oo ) ) |
16 |
|
pntlem1.m |
|- M = ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) |
17 |
|
pntlem1.n |
|- N = ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) |
18 |
|
pntlem1.U |
|- ( ph -> A. z e. ( Y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ U ) |
19 |
|
pntlem1.K |
|- ( ph -> A. y e. ( X (,) +oo ) E. z e. RR+ ( ( y < z /\ ( ( 1 + ( L x. E ) ) x. z ) < ( K x. y ) ) /\ A. u e. ( z [,] ( ( 1 + ( L x. E ) ) x. z ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) |
20 |
|
pntlem1.C |
|- ( ph -> A. z e. ( 1 (,) +oo ) ( ( ( ( abs ` ( R ` z ) ) x. ( log ` z ) ) - ( ( 2 / ( log ` z ) ) x. sum_ i e. ( 1 ... ( |_ ` ( z / Y ) ) ) ( ( abs ` ( R ` ( z / i ) ) ) x. ( log ` i ) ) ) ) / z ) <_ C ) |
21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
pntlemb |
|- ( ph -> ( Z e. RR+ /\ ( 1 < Z /\ _e <_ ( sqrt ` Z ) /\ ( sqrt ` Z ) <_ ( Z / Y ) ) /\ ( ( 4 / ( L x. E ) ) <_ ( sqrt ` Z ) /\ ( ( ( log ` X ) / ( log ` K ) ) + 2 ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) /\ ( ( U x. 3 ) + C ) <_ ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) ) |
22 |
21
|
simp1d |
|- ( ph -> Z e. RR+ ) |
23 |
1
|
pntrf |
|- R : RR+ --> RR |
24 |
23
|
ffvelrni |
|- ( Z e. RR+ -> ( R ` Z ) e. RR ) |
25 |
22 24
|
syl |
|- ( ph -> ( R ` Z ) e. RR ) |
26 |
25 22
|
rerpdivcld |
|- ( ph -> ( ( R ` Z ) / Z ) e. RR ) |
27 |
26
|
recnd |
|- ( ph -> ( ( R ` Z ) / Z ) e. CC ) |
28 |
27
|
abscld |
|- ( ph -> ( abs ` ( ( R ` Z ) / Z ) ) e. RR ) |
29 |
22
|
relogcld |
|- ( ph -> ( log ` Z ) e. RR ) |
30 |
28 29
|
remulcld |
|- ( ph -> ( ( abs ` ( ( R ` Z ) / Z ) ) x. ( log ` Z ) ) e. RR ) |
31 |
7
|
rpred |
|- ( ph -> U e. RR ) |
32 |
|
3re |
|- 3 e. RR |
33 |
32
|
a1i |
|- ( ph -> 3 e. RR ) |
34 |
29 33
|
readdcld |
|- ( ph -> ( ( log ` Z ) + 3 ) e. RR ) |
35 |
31 34
|
remulcld |
|- ( ph -> ( U x. ( ( log ` Z ) + 3 ) ) e. RR ) |
36 |
|
2re |
|- 2 e. RR |
37 |
36
|
a1i |
|- ( ph -> 2 e. RR ) |
38 |
1 2 3 4 5 6 7 8 9 10
|
pntlemc |
|- ( ph -> ( E e. RR+ /\ K e. RR+ /\ ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) ) |
39 |
38
|
simp3d |
|- ( ph -> ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) |
40 |
39
|
simp3d |
|- ( ph -> ( U - E ) e. RR+ ) |
41 |
40
|
rpred |
|- ( ph -> ( U - E ) e. RR ) |
42 |
1 2 3 4 5 6
|
pntlemd |
|- ( ph -> ( L e. RR+ /\ D e. RR+ /\ F e. RR+ ) ) |
43 |
42
|
simp1d |
|- ( ph -> L e. RR+ ) |
44 |
38
|
simp1d |
|- ( ph -> E e. RR+ ) |
45 |
|
2z |
|- 2 e. ZZ |
46 |
|
rpexpcl |
|- ( ( E e. RR+ /\ 2 e. ZZ ) -> ( E ^ 2 ) e. RR+ ) |
47 |
44 45 46
|
sylancl |
|- ( ph -> ( E ^ 2 ) e. RR+ ) |
48 |
43 47
|
rpmulcld |
|- ( ph -> ( L x. ( E ^ 2 ) ) e. RR+ ) |
49 |
|
3nn0 |
|- 3 e. NN0 |
50 |
|
2nn |
|- 2 e. NN |
51 |
49 50
|
decnncl |
|- ; 3 2 e. NN |
52 |
|
nnrp |
|- ( ; 3 2 e. NN -> ; 3 2 e. RR+ ) |
53 |
51 52
|
ax-mp |
|- ; 3 2 e. RR+ |
54 |
|
rpmulcl |
|- ( ( ; 3 2 e. RR+ /\ B e. RR+ ) -> ( ; 3 2 x. B ) e. RR+ ) |
55 |
53 3 54
|
sylancr |
|- ( ph -> ( ; 3 2 x. B ) e. RR+ ) |
56 |
48 55
|
rpdivcld |
|- ( ph -> ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) e. RR+ ) |
57 |
56
|
rpred |
|- ( ph -> ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) e. RR ) |
58 |
41 57
|
remulcld |
|- ( ph -> ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) e. RR ) |
59 |
58 29
|
remulcld |
|- ( ph -> ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) e. RR ) |
60 |
37 59
|
remulcld |
|- ( ph -> ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) e. RR ) |
61 |
35 60
|
resubcld |
|- ( ph -> ( ( U x. ( ( log ` Z ) + 3 ) ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) e. RR ) |
62 |
13
|
rpred |
|- ( ph -> C e. RR ) |
63 |
61 62
|
readdcld |
|- ( ph -> ( ( ( U x. ( ( log ` Z ) + 3 ) ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) + C ) e. RR ) |
64 |
7
|
rpcnd |
|- ( ph -> U e. CC ) |
65 |
58
|
recnd |
|- ( ph -> ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) e. CC ) |
66 |
29
|
recnd |
|- ( ph -> ( log ` Z ) e. CC ) |
67 |
64 65 66
|
subdird |
|- ( ph -> ( ( U - ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) ) x. ( log ` Z ) ) = ( ( U x. ( log ` Z ) ) - ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) |
68 |
43
|
rpcnd |
|- ( ph -> L e. CC ) |
69 |
47
|
rpcnd |
|- ( ph -> ( E ^ 2 ) e. CC ) |
70 |
55
|
rpcnne0d |
|- ( ph -> ( ( ; 3 2 x. B ) e. CC /\ ( ; 3 2 x. B ) =/= 0 ) ) |
71 |
|
div23 |
|- ( ( L e. CC /\ ( E ^ 2 ) e. CC /\ ( ( ; 3 2 x. B ) e. CC /\ ( ; 3 2 x. B ) =/= 0 ) ) -> ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) = ( ( L / ( ; 3 2 x. B ) ) x. ( E ^ 2 ) ) ) |
72 |
68 69 70 71
|
syl3anc |
|- ( ph -> ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) = ( ( L / ( ; 3 2 x. B ) ) x. ( E ^ 2 ) ) ) |
73 |
9
|
oveq1i |
|- ( E ^ 2 ) = ( ( U / D ) ^ 2 ) |
74 |
42
|
simp2d |
|- ( ph -> D e. RR+ ) |
75 |
74
|
rpcnd |
|- ( ph -> D e. CC ) |
76 |
74
|
rpne0d |
|- ( ph -> D =/= 0 ) |
77 |
64 75 76
|
sqdivd |
|- ( ph -> ( ( U / D ) ^ 2 ) = ( ( U ^ 2 ) / ( D ^ 2 ) ) ) |
78 |
73 77
|
syl5eq |
|- ( ph -> ( E ^ 2 ) = ( ( U ^ 2 ) / ( D ^ 2 ) ) ) |
79 |
78
|
oveq2d |
|- ( ph -> ( ( L / ( ; 3 2 x. B ) ) x. ( E ^ 2 ) ) = ( ( L / ( ; 3 2 x. B ) ) x. ( ( U ^ 2 ) / ( D ^ 2 ) ) ) ) |
80 |
43 55
|
rpdivcld |
|- ( ph -> ( L / ( ; 3 2 x. B ) ) e. RR+ ) |
81 |
80
|
rpcnd |
|- ( ph -> ( L / ( ; 3 2 x. B ) ) e. CC ) |
82 |
64
|
sqcld |
|- ( ph -> ( U ^ 2 ) e. CC ) |
83 |
|
rpexpcl |
|- ( ( D e. RR+ /\ 2 e. ZZ ) -> ( D ^ 2 ) e. RR+ ) |
84 |
74 45 83
|
sylancl |
|- ( ph -> ( D ^ 2 ) e. RR+ ) |
85 |
84
|
rpcnne0d |
|- ( ph -> ( ( D ^ 2 ) e. CC /\ ( D ^ 2 ) =/= 0 ) ) |
86 |
|
divass |
|- ( ( ( L / ( ; 3 2 x. B ) ) e. CC /\ ( U ^ 2 ) e. CC /\ ( ( D ^ 2 ) e. CC /\ ( D ^ 2 ) =/= 0 ) ) -> ( ( ( L / ( ; 3 2 x. B ) ) x. ( U ^ 2 ) ) / ( D ^ 2 ) ) = ( ( L / ( ; 3 2 x. B ) ) x. ( ( U ^ 2 ) / ( D ^ 2 ) ) ) ) |
87 |
|
div23 |
|- ( ( ( L / ( ; 3 2 x. B ) ) e. CC /\ ( U ^ 2 ) e. CC /\ ( ( D ^ 2 ) e. CC /\ ( D ^ 2 ) =/= 0 ) ) -> ( ( ( L / ( ; 3 2 x. B ) ) x. ( U ^ 2 ) ) / ( D ^ 2 ) ) = ( ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) x. ( U ^ 2 ) ) ) |
88 |
86 87
|
eqtr3d |
|- ( ( ( L / ( ; 3 2 x. B ) ) e. CC /\ ( U ^ 2 ) e. CC /\ ( ( D ^ 2 ) e. CC /\ ( D ^ 2 ) =/= 0 ) ) -> ( ( L / ( ; 3 2 x. B ) ) x. ( ( U ^ 2 ) / ( D ^ 2 ) ) ) = ( ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) x. ( U ^ 2 ) ) ) |
89 |
81 82 85 88
|
syl3anc |
|- ( ph -> ( ( L / ( ; 3 2 x. B ) ) x. ( ( U ^ 2 ) / ( D ^ 2 ) ) ) = ( ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) x. ( U ^ 2 ) ) ) |
90 |
72 79 89
|
3eqtrd |
|- ( ph -> ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) = ( ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) x. ( U ^ 2 ) ) ) |
91 |
90
|
oveq2d |
|- ( ph -> ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) = ( ( U - E ) x. ( ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) x. ( U ^ 2 ) ) ) ) |
92 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
93 |
92
|
oveq2i |
|- ( U ^ 3 ) = ( U ^ ( 2 + 1 ) ) |
94 |
|
2nn0 |
|- 2 e. NN0 |
95 |
|
expp1 |
|- ( ( U e. CC /\ 2 e. NN0 ) -> ( U ^ ( 2 + 1 ) ) = ( ( U ^ 2 ) x. U ) ) |
96 |
64 94 95
|
sylancl |
|- ( ph -> ( U ^ ( 2 + 1 ) ) = ( ( U ^ 2 ) x. U ) ) |
97 |
93 96
|
syl5eq |
|- ( ph -> ( U ^ 3 ) = ( ( U ^ 2 ) x. U ) ) |
98 |
82 64
|
mulcomd |
|- ( ph -> ( ( U ^ 2 ) x. U ) = ( U x. ( U ^ 2 ) ) ) |
99 |
97 98
|
eqtrd |
|- ( ph -> ( U ^ 3 ) = ( U x. ( U ^ 2 ) ) ) |
100 |
99
|
oveq2d |
|- ( ph -> ( F x. ( U ^ 3 ) ) = ( F x. ( U x. ( U ^ 2 ) ) ) ) |
101 |
42
|
simp3d |
|- ( ph -> F e. RR+ ) |
102 |
101
|
rpcnd |
|- ( ph -> F e. CC ) |
103 |
102 64 82
|
mulassd |
|- ( ph -> ( ( F x. U ) x. ( U ^ 2 ) ) = ( F x. ( U x. ( U ^ 2 ) ) ) ) |
104 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
105 |
74
|
rpreccld |
|- ( ph -> ( 1 / D ) e. RR+ ) |
106 |
105
|
rpcnd |
|- ( ph -> ( 1 / D ) e. CC ) |
107 |
104 106 64
|
subdird |
|- ( ph -> ( ( 1 - ( 1 / D ) ) x. U ) = ( ( 1 x. U ) - ( ( 1 / D ) x. U ) ) ) |
108 |
64
|
mulid2d |
|- ( ph -> ( 1 x. U ) = U ) |
109 |
64 75 76
|
divrec2d |
|- ( ph -> ( U / D ) = ( ( 1 / D ) x. U ) ) |
110 |
9 109
|
eqtr2id |
|- ( ph -> ( ( 1 / D ) x. U ) = E ) |
111 |
108 110
|
oveq12d |
|- ( ph -> ( ( 1 x. U ) - ( ( 1 / D ) x. U ) ) = ( U - E ) ) |
112 |
107 111
|
eqtr2d |
|- ( ph -> ( U - E ) = ( ( 1 - ( 1 / D ) ) x. U ) ) |
113 |
112
|
oveq1d |
|- ( ph -> ( ( U - E ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) = ( ( ( 1 - ( 1 / D ) ) x. U ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) ) |
114 |
6
|
oveq1i |
|- ( F x. U ) = ( ( ( 1 - ( 1 / D ) ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) x. U ) |
115 |
104 106
|
subcld |
|- ( ph -> ( 1 - ( 1 / D ) ) e. CC ) |
116 |
80 84
|
rpdivcld |
|- ( ph -> ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) e. RR+ ) |
117 |
116
|
rpcnd |
|- ( ph -> ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) e. CC ) |
118 |
115 117 64
|
mul32d |
|- ( ph -> ( ( ( 1 - ( 1 / D ) ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) x. U ) = ( ( ( 1 - ( 1 / D ) ) x. U ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) ) |
119 |
114 118
|
syl5eq |
|- ( ph -> ( F x. U ) = ( ( ( 1 - ( 1 / D ) ) x. U ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) ) |
120 |
113 119
|
eqtr4d |
|- ( ph -> ( ( U - E ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) = ( F x. U ) ) |
121 |
120
|
oveq1d |
|- ( ph -> ( ( ( U - E ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) x. ( U ^ 2 ) ) = ( ( F x. U ) x. ( U ^ 2 ) ) ) |
122 |
40
|
rpcnd |
|- ( ph -> ( U - E ) e. CC ) |
123 |
122 117 82
|
mulassd |
|- ( ph -> ( ( ( U - E ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) x. ( U ^ 2 ) ) = ( ( U - E ) x. ( ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) x. ( U ^ 2 ) ) ) ) |
124 |
121 123
|
eqtr3d |
|- ( ph -> ( ( F x. U ) x. ( U ^ 2 ) ) = ( ( U - E ) x. ( ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) x. ( U ^ 2 ) ) ) ) |
125 |
100 103 124
|
3eqtr2d |
|- ( ph -> ( F x. ( U ^ 3 ) ) = ( ( U - E ) x. ( ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) x. ( U ^ 2 ) ) ) ) |
126 |
91 125
|
eqtr4d |
|- ( ph -> ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) = ( F x. ( U ^ 3 ) ) ) |
127 |
126
|
oveq2d |
|- ( ph -> ( U - ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) ) = ( U - ( F x. ( U ^ 3 ) ) ) ) |
128 |
127
|
oveq1d |
|- ( ph -> ( ( U - ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) ) x. ( log ` Z ) ) = ( ( U - ( F x. ( U ^ 3 ) ) ) x. ( log ` Z ) ) ) |
129 |
67 128
|
eqtr3d |
|- ( ph -> ( ( U x. ( log ` Z ) ) - ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) = ( ( U - ( F x. ( U ^ 3 ) ) ) x. ( log ` Z ) ) ) |
130 |
31 29
|
remulcld |
|- ( ph -> ( U x. ( log ` Z ) ) e. RR ) |
131 |
130 59
|
resubcld |
|- ( ph -> ( ( U x. ( log ` Z ) ) - ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) e. RR ) |
132 |
129 131
|
eqeltrrd |
|- ( ph -> ( ( U - ( F x. ( U ^ 3 ) ) ) x. ( log ` Z ) ) e. RR ) |
133 |
22
|
rpred |
|- ( ph -> Z e. RR ) |
134 |
21
|
simp2d |
|- ( ph -> ( 1 < Z /\ _e <_ ( sqrt ` Z ) /\ ( sqrt ` Z ) <_ ( Z / Y ) ) ) |
135 |
134
|
simp1d |
|- ( ph -> 1 < Z ) |
136 |
133 135
|
rplogcld |
|- ( ph -> ( log ` Z ) e. RR+ ) |
137 |
37 136
|
rerpdivcld |
|- ( ph -> ( 2 / ( log ` Z ) ) e. RR ) |
138 |
|
fzfid |
|- ( ph -> ( 1 ... ( |_ ` ( Z / Y ) ) ) e. Fin ) |
139 |
22
|
adantr |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> Z e. RR+ ) |
140 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) -> n e. NN ) |
141 |
140
|
adantl |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> n e. NN ) |
142 |
141
|
nnrpd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> n e. RR+ ) |
143 |
139 142
|
rpdivcld |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( Z / n ) e. RR+ ) |
144 |
23
|
ffvelrni |
|- ( ( Z / n ) e. RR+ -> ( R ` ( Z / n ) ) e. RR ) |
145 |
143 144
|
syl |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( R ` ( Z / n ) ) e. RR ) |
146 |
145 139
|
rerpdivcld |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( R ` ( Z / n ) ) / Z ) e. RR ) |
147 |
146
|
recnd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( R ` ( Z / n ) ) / Z ) e. CC ) |
148 |
147
|
abscld |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) e. RR ) |
149 |
142
|
relogcld |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( log ` n ) e. RR ) |
150 |
148 149
|
remulcld |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) e. RR ) |
151 |
138 150
|
fsumrecl |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) e. RR ) |
152 |
137 151
|
remulcld |
|- ( ph -> ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) e. RR ) |
153 |
152 62
|
readdcld |
|- ( ph -> ( ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) + C ) e. RR ) |
154 |
25
|
recnd |
|- ( ph -> ( R ` Z ) e. CC ) |
155 |
154
|
abscld |
|- ( ph -> ( abs ` ( R ` Z ) ) e. RR ) |
156 |
155
|
recnd |
|- ( ph -> ( abs ` ( R ` Z ) ) e. CC ) |
157 |
156 66
|
mulcld |
|- ( ph -> ( ( abs ` ( R ` Z ) ) x. ( log ` Z ) ) e. CC ) |
158 |
137
|
recnd |
|- ( ph -> ( 2 / ( log ` Z ) ) e. CC ) |
159 |
145
|
recnd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( R ` ( Z / n ) ) e. CC ) |
160 |
159
|
abscld |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( abs ` ( R ` ( Z / n ) ) ) e. RR ) |
161 |
160 149
|
remulcld |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) e. RR ) |
162 |
138 161
|
fsumrecl |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) e. RR ) |
163 |
162
|
recnd |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) e. CC ) |
164 |
158 163
|
mulcld |
|- ( ph -> ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) ) e. CC ) |
165 |
22
|
rpcnd |
|- ( ph -> Z e. CC ) |
166 |
22
|
rpne0d |
|- ( ph -> Z =/= 0 ) |
167 |
157 164 165 166
|
divsubdird |
|- ( ph -> ( ( ( ( abs ` ( R ` Z ) ) x. ( log ` Z ) ) - ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) ) ) / Z ) = ( ( ( ( abs ` ( R ` Z ) ) x. ( log ` Z ) ) / Z ) - ( ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) ) / Z ) ) ) |
168 |
156 66 165 166
|
div23d |
|- ( ph -> ( ( ( abs ` ( R ` Z ) ) x. ( log ` Z ) ) / Z ) = ( ( ( abs ` ( R ` Z ) ) / Z ) x. ( log ` Z ) ) ) |
169 |
154 165 166
|
absdivd |
|- ( ph -> ( abs ` ( ( R ` Z ) / Z ) ) = ( ( abs ` ( R ` Z ) ) / ( abs ` Z ) ) ) |
170 |
22
|
rprege0d |
|- ( ph -> ( Z e. RR /\ 0 <_ Z ) ) |
171 |
|
absid |
|- ( ( Z e. RR /\ 0 <_ Z ) -> ( abs ` Z ) = Z ) |
172 |
170 171
|
syl |
|- ( ph -> ( abs ` Z ) = Z ) |
173 |
172
|
oveq2d |
|- ( ph -> ( ( abs ` ( R ` Z ) ) / ( abs ` Z ) ) = ( ( abs ` ( R ` Z ) ) / Z ) ) |
174 |
169 173
|
eqtrd |
|- ( ph -> ( abs ` ( ( R ` Z ) / Z ) ) = ( ( abs ` ( R ` Z ) ) / Z ) ) |
175 |
174
|
oveq1d |
|- ( ph -> ( ( abs ` ( ( R ` Z ) / Z ) ) x. ( log ` Z ) ) = ( ( ( abs ` ( R ` Z ) ) / Z ) x. ( log ` Z ) ) ) |
176 |
168 175
|
eqtr4d |
|- ( ph -> ( ( ( abs ` ( R ` Z ) ) x. ( log ` Z ) ) / Z ) = ( ( abs ` ( ( R ` Z ) / Z ) ) x. ( log ` Z ) ) ) |
177 |
158 163 165 166
|
divassd |
|- ( ph -> ( ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) ) / Z ) = ( ( 2 / ( log ` Z ) ) x. ( sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) / Z ) ) ) |
178 |
165
|
adantr |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> Z e. CC ) |
179 |
166
|
adantr |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> Z =/= 0 ) |
180 |
159 178 179
|
absdivd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) = ( ( abs ` ( R ` ( Z / n ) ) ) / ( abs ` Z ) ) ) |
181 |
172
|
adantr |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( abs ` Z ) = Z ) |
182 |
181
|
oveq2d |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( abs ` ( R ` ( Z / n ) ) ) / ( abs ` Z ) ) = ( ( abs ` ( R ` ( Z / n ) ) ) / Z ) ) |
183 |
180 182
|
eqtrd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) = ( ( abs ` ( R ` ( Z / n ) ) ) / Z ) ) |
184 |
183
|
oveq1d |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) = ( ( ( abs ` ( R ` ( Z / n ) ) ) / Z ) x. ( log ` n ) ) ) |
185 |
160
|
recnd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( abs ` ( R ` ( Z / n ) ) ) e. CC ) |
186 |
149
|
recnd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( log ` n ) e. CC ) |
187 |
22
|
rpcnne0d |
|- ( ph -> ( Z e. CC /\ Z =/= 0 ) ) |
188 |
187
|
adantr |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( Z e. CC /\ Z =/= 0 ) ) |
189 |
|
div23 |
|- ( ( ( abs ` ( R ` ( Z / n ) ) ) e. CC /\ ( log ` n ) e. CC /\ ( Z e. CC /\ Z =/= 0 ) ) -> ( ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) / Z ) = ( ( ( abs ` ( R ` ( Z / n ) ) ) / Z ) x. ( log ` n ) ) ) |
190 |
185 186 188 189
|
syl3anc |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) / Z ) = ( ( ( abs ` ( R ` ( Z / n ) ) ) / Z ) x. ( log ` n ) ) ) |
191 |
184 190
|
eqtr4d |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) = ( ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) / Z ) ) |
192 |
191
|
sumeq2dv |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) = sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) / Z ) ) |
193 |
161
|
recnd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) e. CC ) |
194 |
138 165 193 166
|
fsumdivc |
|- ( ph -> ( sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) / Z ) = sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) / Z ) ) |
195 |
192 194
|
eqtr4d |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) = ( sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) / Z ) ) |
196 |
195
|
oveq2d |
|- ( ph -> ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) = ( ( 2 / ( log ` Z ) ) x. ( sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) / Z ) ) ) |
197 |
177 196
|
eqtr4d |
|- ( ph -> ( ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) ) / Z ) = ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) |
198 |
176 197
|
oveq12d |
|- ( ph -> ( ( ( ( abs ` ( R ` Z ) ) x. ( log ` Z ) ) / Z ) - ( ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) ) / Z ) ) = ( ( ( abs ` ( ( R ` Z ) / Z ) ) x. ( log ` Z ) ) - ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) ) |
199 |
167 198
|
eqtrd |
|- ( ph -> ( ( ( ( abs ` ( R ` Z ) ) x. ( log ` Z ) ) - ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) ) ) / Z ) = ( ( ( abs ` ( ( R ` Z ) / Z ) ) x. ( log ` Z ) ) - ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) ) |
200 |
|
2fveq3 |
|- ( z = Z -> ( abs ` ( R ` z ) ) = ( abs ` ( R ` Z ) ) ) |
201 |
|
fveq2 |
|- ( z = Z -> ( log ` z ) = ( log ` Z ) ) |
202 |
200 201
|
oveq12d |
|- ( z = Z -> ( ( abs ` ( R ` z ) ) x. ( log ` z ) ) = ( ( abs ` ( R ` Z ) ) x. ( log ` Z ) ) ) |
203 |
201
|
oveq2d |
|- ( z = Z -> ( 2 / ( log ` z ) ) = ( 2 / ( log ` Z ) ) ) |
204 |
|
oveq2 |
|- ( i = n -> ( z / i ) = ( z / n ) ) |
205 |
204
|
fveq2d |
|- ( i = n -> ( R ` ( z / i ) ) = ( R ` ( z / n ) ) ) |
206 |
205
|
fveq2d |
|- ( i = n -> ( abs ` ( R ` ( z / i ) ) ) = ( abs ` ( R ` ( z / n ) ) ) ) |
207 |
|
fveq2 |
|- ( i = n -> ( log ` i ) = ( log ` n ) ) |
208 |
206 207
|
oveq12d |
|- ( i = n -> ( ( abs ` ( R ` ( z / i ) ) ) x. ( log ` i ) ) = ( ( abs ` ( R ` ( z / n ) ) ) x. ( log ` n ) ) ) |
209 |
208
|
cbvsumv |
|- sum_ i e. ( 1 ... ( |_ ` ( z / Y ) ) ) ( ( abs ` ( R ` ( z / i ) ) ) x. ( log ` i ) ) = sum_ n e. ( 1 ... ( |_ ` ( z / Y ) ) ) ( ( abs ` ( R ` ( z / n ) ) ) x. ( log ` n ) ) |
210 |
|
fvoveq1 |
|- ( z = Z -> ( |_ ` ( z / Y ) ) = ( |_ ` ( Z / Y ) ) ) |
211 |
210
|
oveq2d |
|- ( z = Z -> ( 1 ... ( |_ ` ( z / Y ) ) ) = ( 1 ... ( |_ ` ( Z / Y ) ) ) ) |
212 |
|
simpl |
|- ( ( z = Z /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> z = Z ) |
213 |
212
|
fvoveq1d |
|- ( ( z = Z /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( R ` ( z / n ) ) = ( R ` ( Z / n ) ) ) |
214 |
213
|
fveq2d |
|- ( ( z = Z /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( abs ` ( R ` ( z / n ) ) ) = ( abs ` ( R ` ( Z / n ) ) ) ) |
215 |
214
|
oveq1d |
|- ( ( z = Z /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( abs ` ( R ` ( z / n ) ) ) x. ( log ` n ) ) = ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) ) |
216 |
211 215
|
sumeq12rdv |
|- ( z = Z -> sum_ n e. ( 1 ... ( |_ ` ( z / Y ) ) ) ( ( abs ` ( R ` ( z / n ) ) ) x. ( log ` n ) ) = sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) ) |
217 |
209 216
|
syl5eq |
|- ( z = Z -> sum_ i e. ( 1 ... ( |_ ` ( z / Y ) ) ) ( ( abs ` ( R ` ( z / i ) ) ) x. ( log ` i ) ) = sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) ) |
218 |
203 217
|
oveq12d |
|- ( z = Z -> ( ( 2 / ( log ` z ) ) x. sum_ i e. ( 1 ... ( |_ ` ( z / Y ) ) ) ( ( abs ` ( R ` ( z / i ) ) ) x. ( log ` i ) ) ) = ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) ) ) |
219 |
202 218
|
oveq12d |
|- ( z = Z -> ( ( ( abs ` ( R ` z ) ) x. ( log ` z ) ) - ( ( 2 / ( log ` z ) ) x. sum_ i e. ( 1 ... ( |_ ` ( z / Y ) ) ) ( ( abs ` ( R ` ( z / i ) ) ) x. ( log ` i ) ) ) ) = ( ( ( abs ` ( R ` Z ) ) x. ( log ` Z ) ) - ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) ) ) ) |
220 |
|
id |
|- ( z = Z -> z = Z ) |
221 |
219 220
|
oveq12d |
|- ( z = Z -> ( ( ( ( abs ` ( R ` z ) ) x. ( log ` z ) ) - ( ( 2 / ( log ` z ) ) x. sum_ i e. ( 1 ... ( |_ ` ( z / Y ) ) ) ( ( abs ` ( R ` ( z / i ) ) ) x. ( log ` i ) ) ) ) / z ) = ( ( ( ( abs ` ( R ` Z ) ) x. ( log ` Z ) ) - ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) ) ) / Z ) ) |
222 |
221
|
breq1d |
|- ( z = Z -> ( ( ( ( ( abs ` ( R ` z ) ) x. ( log ` z ) ) - ( ( 2 / ( log ` z ) ) x. sum_ i e. ( 1 ... ( |_ ` ( z / Y ) ) ) ( ( abs ` ( R ` ( z / i ) ) ) x. ( log ` i ) ) ) ) / z ) <_ C <-> ( ( ( ( abs ` ( R ` Z ) ) x. ( log ` Z ) ) - ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) ) ) / Z ) <_ C ) ) |
223 |
|
1re |
|- 1 e. RR |
224 |
|
rexr |
|- ( 1 e. RR -> 1 e. RR* ) |
225 |
|
elioopnf |
|- ( 1 e. RR* -> ( Z e. ( 1 (,) +oo ) <-> ( Z e. RR /\ 1 < Z ) ) ) |
226 |
223 224 225
|
mp2b |
|- ( Z e. ( 1 (,) +oo ) <-> ( Z e. RR /\ 1 < Z ) ) |
227 |
133 135 226
|
sylanbrc |
|- ( ph -> Z e. ( 1 (,) +oo ) ) |
228 |
222 20 227
|
rspcdva |
|- ( ph -> ( ( ( ( abs ` ( R ` Z ) ) x. ( log ` Z ) ) - ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) ) ) / Z ) <_ C ) |
229 |
199 228
|
eqbrtrrd |
|- ( ph -> ( ( ( abs ` ( ( R ` Z ) / Z ) ) x. ( log ` Z ) ) - ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) <_ C ) |
230 |
30 152 62
|
lesubadd2d |
|- ( ph -> ( ( ( ( abs ` ( ( R ` Z ) / Z ) ) x. ( log ` Z ) ) - ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) <_ C <-> ( ( abs ` ( ( R ` Z ) / Z ) ) x. ( log ` Z ) ) <_ ( ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) + C ) ) ) |
231 |
229 230
|
mpbid |
|- ( ph -> ( ( abs ` ( ( R ` Z ) / Z ) ) x. ( log ` Z ) ) <_ ( ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) + C ) ) |
232 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
233 |
148
|
recnd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) e. CC ) |
234 |
233 186
|
mulcld |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) e. CC ) |
235 |
138 234
|
fsumcl |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) e. CC ) |
236 |
136
|
rpne0d |
|- ( ph -> ( log ` Z ) =/= 0 ) |
237 |
232 235 66 236
|
div23d |
|- ( ph -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) / ( log ` Z ) ) = ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) |
238 |
29
|
resqcld |
|- ( ph -> ( ( log ` Z ) ^ 2 ) e. RR ) |
239 |
57 238
|
remulcld |
|- ( ph -> ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) e. RR ) |
240 |
41 239
|
remulcld |
|- ( ph -> ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) e. RR ) |
241 |
|
remulcl |
|- ( ( 2 e. RR /\ ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) e. RR ) -> ( 2 x. ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) ) e. RR ) |
242 |
36 240 241
|
sylancr |
|- ( ph -> ( 2 x. ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) ) e. RR ) |
243 |
35 29
|
remulcld |
|- ( ph -> ( ( U x. ( ( log ` Z ) + 3 ) ) x. ( log ` Z ) ) e. RR ) |
244 |
|
remulcl |
|- ( ( 2 e. RR /\ sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) e. RR ) -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) e. RR ) |
245 |
36 151 244
|
sylancr |
|- ( ph -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) e. RR ) |
246 |
31
|
adantr |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> U e. RR ) |
247 |
246 141
|
nndivred |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( U / n ) e. RR ) |
248 |
247 148
|
resubcld |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) e. RR ) |
249 |
248 149
|
remulcld |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) e. RR ) |
250 |
138 249
|
fsumrecl |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) e. RR ) |
251 |
37 250
|
remulcld |
|- ( ph -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) ) e. RR ) |
252 |
243 245
|
resubcld |
|- ( ph -> ( ( ( U x. ( ( log ` Z ) + 3 ) ) x. ( log ` Z ) ) - ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) e. RR ) |
253 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
pntlemf |
|- ( ph -> ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) ) |
254 |
|
2pos |
|- 0 < 2 |
255 |
254
|
a1i |
|- ( ph -> 0 < 2 ) |
256 |
|
lemul2 |
|- ( ( ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) e. RR /\ sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) <-> ( 2 x. ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) ) <_ ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) ) ) ) |
257 |
240 250 37 255 256
|
syl112anc |
|- ( ph -> ( ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) <-> ( 2 x. ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) ) <_ ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) ) ) ) |
258 |
253 257
|
mpbid |
|- ( ph -> ( 2 x. ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) ) <_ ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) ) ) |
259 |
247
|
recnd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( U / n ) e. CC ) |
260 |
259 233 186
|
subdird |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) = ( ( ( U / n ) x. ( log ` n ) ) - ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) |
261 |
260
|
sumeq2dv |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) = sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) x. ( log ` n ) ) - ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) |
262 |
247 149
|
remulcld |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( U / n ) x. ( log ` n ) ) e. RR ) |
263 |
262
|
recnd |
|- ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( U / n ) x. ( log ` n ) ) e. CC ) |
264 |
138 263 234
|
fsumsub |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) x. ( log ` n ) ) - ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) - sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) |
265 |
261 264
|
eqtrd |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) = ( sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) - sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) |
266 |
265
|
oveq2d |
|- ( ph -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) ) = ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) - sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) ) |
267 |
138 262
|
fsumrecl |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) e. RR ) |
268 |
267
|
recnd |
|- ( ph -> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) e. CC ) |
269 |
232 268 235
|
subdid |
|- ( ph -> ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) - sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) = ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) ) - ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) ) |
270 |
266 269
|
eqtrd |
|- ( ph -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) ) = ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) ) - ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) ) |
271 |
|
remulcl |
|- ( ( 2 e. RR /\ sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) e. RR ) -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) ) e. RR ) |
272 |
36 267 271
|
sylancr |
|- ( ph -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) ) e. RR ) |
273 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
pntlemk |
|- ( ph -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) ) <_ ( ( U x. ( ( log ` Z ) + 3 ) ) x. ( log ` Z ) ) ) |
274 |
272 243 245 273
|
lesub1dd |
|- ( ph -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) ) - ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) <_ ( ( ( U x. ( ( log ` Z ) + 3 ) ) x. ( log ` Z ) ) - ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) ) |
275 |
270 274
|
eqbrtrd |
|- ( ph -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) ) <_ ( ( ( U x. ( ( log ` Z ) + 3 ) ) x. ( log ` Z ) ) - ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) ) |
276 |
242 251 252 258 275
|
letrd |
|- ( ph -> ( 2 x. ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) ) <_ ( ( ( U x. ( ( log ` Z ) + 3 ) ) x. ( log ` Z ) ) - ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) ) |
277 |
242 243 245 276
|
lesubd |
|- ( ph -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) <_ ( ( ( U x. ( ( log ` Z ) + 3 ) ) x. ( log ` Z ) ) - ( 2 x. ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) ) ) ) |
278 |
35
|
recnd |
|- ( ph -> ( U x. ( ( log ` Z ) + 3 ) ) e. CC ) |
279 |
60
|
recnd |
|- ( ph -> ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) e. CC ) |
280 |
278 279 66
|
subdird |
|- ( ph -> ( ( ( U x. ( ( log ` Z ) + 3 ) ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) x. ( log ` Z ) ) = ( ( ( U x. ( ( log ` Z ) + 3 ) ) x. ( log ` Z ) ) - ( ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) x. ( log ` Z ) ) ) ) |
281 |
59
|
recnd |
|- ( ph -> ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) e. CC ) |
282 |
232 281 66
|
mulassd |
|- ( ph -> ( ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) x. ( log ` Z ) ) = ( 2 x. ( ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) x. ( log ` Z ) ) ) ) |
283 |
65 66 66
|
mulassd |
|- ( ph -> ( ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) x. ( log ` Z ) ) = ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( ( log ` Z ) x. ( log ` Z ) ) ) ) |
284 |
66
|
sqvald |
|- ( ph -> ( ( log ` Z ) ^ 2 ) = ( ( log ` Z ) x. ( log ` Z ) ) ) |
285 |
284
|
oveq2d |
|- ( ph -> ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( ( log ` Z ) ^ 2 ) ) = ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( ( log ` Z ) x. ( log ` Z ) ) ) ) |
286 |
56
|
rpcnd |
|- ( ph -> ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) e. CC ) |
287 |
238
|
recnd |
|- ( ph -> ( ( log ` Z ) ^ 2 ) e. CC ) |
288 |
122 286 287
|
mulassd |
|- ( ph -> ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( ( log ` Z ) ^ 2 ) ) = ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) ) |
289 |
283 285 288
|
3eqtr2d |
|- ( ph -> ( ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) x. ( log ` Z ) ) = ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) ) |
290 |
289
|
oveq2d |
|- ( ph -> ( 2 x. ( ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) x. ( log ` Z ) ) ) = ( 2 x. ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) ) ) |
291 |
282 290
|
eqtrd |
|- ( ph -> ( ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) x. ( log ` Z ) ) = ( 2 x. ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) ) ) |
292 |
291
|
oveq2d |
|- ( ph -> ( ( ( U x. ( ( log ` Z ) + 3 ) ) x. ( log ` Z ) ) - ( ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) x. ( log ` Z ) ) ) = ( ( ( U x. ( ( log ` Z ) + 3 ) ) x. ( log ` Z ) ) - ( 2 x. ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) ) ) ) |
293 |
280 292
|
eqtrd |
|- ( ph -> ( ( ( U x. ( ( log ` Z ) + 3 ) ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) x. ( log ` Z ) ) = ( ( ( U x. ( ( log ` Z ) + 3 ) ) x. ( log ` Z ) ) - ( 2 x. ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) ) ) ) |
294 |
277 293
|
breqtrrd |
|- ( ph -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) <_ ( ( ( U x. ( ( log ` Z ) + 3 ) ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) x. ( log ` Z ) ) ) |
295 |
245 61 136
|
ledivmul2d |
|- ( ph -> ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) / ( log ` Z ) ) <_ ( ( U x. ( ( log ` Z ) + 3 ) ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) <-> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) <_ ( ( ( U x. ( ( log ` Z ) + 3 ) ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) x. ( log ` Z ) ) ) ) |
296 |
294 295
|
mpbird |
|- ( ph -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) / ( log ` Z ) ) <_ ( ( U x. ( ( log ` Z ) + 3 ) ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) ) |
297 |
237 296
|
eqbrtrrd |
|- ( ph -> ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) <_ ( ( U x. ( ( log ` Z ) + 3 ) ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) ) |
298 |
152 61 62 297
|
leadd1dd |
|- ( ph -> ( ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) + C ) <_ ( ( ( U x. ( ( log ` Z ) + 3 ) ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) + C ) ) |
299 |
30 153 63 231 298
|
letrd |
|- ( ph -> ( ( abs ` ( ( R ` Z ) / Z ) ) x. ( log ` Z ) ) <_ ( ( ( U x. ( ( log ` Z ) + 3 ) ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) + C ) ) |
300 |
|
remulcl |
|- ( ( U e. RR /\ 3 e. RR ) -> ( U x. 3 ) e. RR ) |
301 |
31 32 300
|
sylancl |
|- ( ph -> ( U x. 3 ) e. RR ) |
302 |
301 62
|
readdcld |
|- ( ph -> ( ( U x. 3 ) + C ) e. RR ) |
303 |
21
|
simp3d |
|- ( ph -> ( ( 4 / ( L x. E ) ) <_ ( sqrt ` Z ) /\ ( ( ( log ` X ) / ( log ` K ) ) + 2 ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) /\ ( ( U x. 3 ) + C ) <_ ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) |
304 |
303
|
simp3d |
|- ( ph -> ( ( U x. 3 ) + C ) <_ ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) |
305 |
302 59 130 304
|
leadd2dd |
|- ( ph -> ( ( U x. ( log ` Z ) ) + ( ( U x. 3 ) + C ) ) <_ ( ( U x. ( log ` Z ) ) + ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) |
306 |
33
|
recnd |
|- ( ph -> 3 e. CC ) |
307 |
64 66 306
|
adddid |
|- ( ph -> ( U x. ( ( log ` Z ) + 3 ) ) = ( ( U x. ( log ` Z ) ) + ( U x. 3 ) ) ) |
308 |
307
|
oveq1d |
|- ( ph -> ( ( U x. ( ( log ` Z ) + 3 ) ) + C ) = ( ( ( U x. ( log ` Z ) ) + ( U x. 3 ) ) + C ) ) |
309 |
130
|
recnd |
|- ( ph -> ( U x. ( log ` Z ) ) e. CC ) |
310 |
64 306
|
mulcld |
|- ( ph -> ( U x. 3 ) e. CC ) |
311 |
13
|
rpcnd |
|- ( ph -> C e. CC ) |
312 |
309 310 311
|
addassd |
|- ( ph -> ( ( ( U x. ( log ` Z ) ) + ( U x. 3 ) ) + C ) = ( ( U x. ( log ` Z ) ) + ( ( U x. 3 ) + C ) ) ) |
313 |
308 312
|
eqtrd |
|- ( ph -> ( ( U x. ( ( log ` Z ) + 3 ) ) + C ) = ( ( U x. ( log ` Z ) ) + ( ( U x. 3 ) + C ) ) ) |
314 |
281
|
2timesd |
|- ( ph -> ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) = ( ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) + ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) |
315 |
314
|
oveq2d |
|- ( ph -> ( ( ( U x. ( log ` Z ) ) - ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) + ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) = ( ( ( U x. ( log ` Z ) ) - ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) + ( ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) + ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) ) |
316 |
309 281 281
|
nppcan3d |
|- ( ph -> ( ( ( U x. ( log ` Z ) ) - ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) + ( ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) + ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) = ( ( U x. ( log ` Z ) ) + ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) |
317 |
315 316
|
eqtrd |
|- ( ph -> ( ( ( U x. ( log ` Z ) ) - ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) + ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) = ( ( U x. ( log ` Z ) ) + ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) |
318 |
305 313 317
|
3brtr4d |
|- ( ph -> ( ( U x. ( ( log ` Z ) + 3 ) ) + C ) <_ ( ( ( U x. ( log ` Z ) ) - ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) + ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) ) |
319 |
35 62
|
readdcld |
|- ( ph -> ( ( U x. ( ( log ` Z ) + 3 ) ) + C ) e. RR ) |
320 |
319 60 131
|
lesubaddd |
|- ( ph -> ( ( ( ( U x. ( ( log ` Z ) + 3 ) ) + C ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) <_ ( ( U x. ( log ` Z ) ) - ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) <-> ( ( U x. ( ( log ` Z ) + 3 ) ) + C ) <_ ( ( ( U x. ( log ` Z ) ) - ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) + ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) ) ) |
321 |
318 320
|
mpbird |
|- ( ph -> ( ( ( U x. ( ( log ` Z ) + 3 ) ) + C ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) <_ ( ( U x. ( log ` Z ) ) - ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) |
322 |
278 311 279
|
addsubd |
|- ( ph -> ( ( ( U x. ( ( log ` Z ) + 3 ) ) + C ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) = ( ( ( U x. ( ( log ` Z ) + 3 ) ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) + C ) ) |
323 |
321 322 129
|
3brtr3d |
|- ( ph -> ( ( ( U x. ( ( log ` Z ) + 3 ) ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) + C ) <_ ( ( U - ( F x. ( U ^ 3 ) ) ) x. ( log ` Z ) ) ) |
324 |
30 63 132 299 323
|
letrd |
|- ( ph -> ( ( abs ` ( ( R ` Z ) / Z ) ) x. ( log ` Z ) ) <_ ( ( U - ( F x. ( U ^ 3 ) ) ) x. ( log ` Z ) ) ) |
325 |
|
3z |
|- 3 e. ZZ |
326 |
|
rpexpcl |
|- ( ( U e. RR+ /\ 3 e. ZZ ) -> ( U ^ 3 ) e. RR+ ) |
327 |
7 325 326
|
sylancl |
|- ( ph -> ( U ^ 3 ) e. RR+ ) |
328 |
101 327
|
rpmulcld |
|- ( ph -> ( F x. ( U ^ 3 ) ) e. RR+ ) |
329 |
328
|
rpred |
|- ( ph -> ( F x. ( U ^ 3 ) ) e. RR ) |
330 |
31 329
|
resubcld |
|- ( ph -> ( U - ( F x. ( U ^ 3 ) ) ) e. RR ) |
331 |
28 330 136
|
lemul1d |
|- ( ph -> ( ( abs ` ( ( R ` Z ) / Z ) ) <_ ( U - ( F x. ( U ^ 3 ) ) ) <-> ( ( abs ` ( ( R ` Z ) / Z ) ) x. ( log ` Z ) ) <_ ( ( U - ( F x. ( U ^ 3 ) ) ) x. ( log ` Z ) ) ) ) |
332 |
324 331
|
mpbird |
|- ( ph -> ( abs ` ( ( R ` Z ) / Z ) ) <_ ( U - ( F x. ( U ^ 3 ) ) ) ) |