| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntlem1.r |  |-  R = ( a e. RR+ |-> ( ( psi ` a ) - a ) ) | 
						
							| 2 |  | pntlem1.a |  |-  ( ph -> A e. RR+ ) | 
						
							| 3 |  | pntlem1.b |  |-  ( ph -> B e. RR+ ) | 
						
							| 4 |  | pntlem1.l |  |-  ( ph -> L e. ( 0 (,) 1 ) ) | 
						
							| 5 |  | pntlem1.d |  |-  D = ( A + 1 ) | 
						
							| 6 |  | pntlem1.f |  |-  F = ( ( 1 - ( 1 / D ) ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) | 
						
							| 7 |  | pntlem1.u |  |-  ( ph -> U e. RR+ ) | 
						
							| 8 |  | pntlem1.u2 |  |-  ( ph -> U <_ A ) | 
						
							| 9 |  | pntlem1.e |  |-  E = ( U / D ) | 
						
							| 10 |  | pntlem1.k |  |-  K = ( exp ` ( B / E ) ) | 
						
							| 11 |  | pntlem1.y |  |-  ( ph -> ( Y e. RR+ /\ 1 <_ Y ) ) | 
						
							| 12 |  | pntlem1.x |  |-  ( ph -> ( X e. RR+ /\ Y < X ) ) | 
						
							| 13 |  | pntlem1.c |  |-  ( ph -> C e. RR+ ) | 
						
							| 14 |  | pntlem1.w |  |-  W = ( ( ( Y + ( 4 / ( L x. E ) ) ) ^ 2 ) + ( ( ( X x. ( K ^ 2 ) ) ^ 4 ) + ( exp ` ( ( ( ; 3 2 x. B ) / ( ( U - E ) x. ( L x. ( E ^ 2 ) ) ) ) x. ( ( U x. 3 ) + C ) ) ) ) ) | 
						
							| 15 |  | pntlem1.z |  |-  ( ph -> Z e. ( W [,) +oo ) ) | 
						
							| 16 |  | pntlem1.m |  |-  M = ( ( |_ ` ( ( log ` X ) / ( log ` K ) ) ) + 1 ) | 
						
							| 17 |  | pntlem1.n |  |-  N = ( |_ ` ( ( ( log ` Z ) / ( log ` K ) ) / 2 ) ) | 
						
							| 18 |  | pntlem1.U |  |-  ( ph -> A. z e. ( Y [,) +oo ) ( abs ` ( ( R ` z ) / z ) ) <_ U ) | 
						
							| 19 |  | pntlem1.K |  |-  ( ph -> A. y e. ( X (,) +oo ) E. z e. RR+ ( ( y < z /\ ( ( 1 + ( L x. E ) ) x. z ) < ( K x. y ) ) /\ A. u e. ( z [,] ( ( 1 + ( L x. E ) ) x. z ) ) ( abs ` ( ( R ` u ) / u ) ) <_ E ) ) | 
						
							| 20 |  | pntlem1.C |  |-  ( ph -> A. z e. ( 1 (,) +oo ) ( ( ( ( abs ` ( R ` z ) ) x. ( log ` z ) ) - ( ( 2 / ( log ` z ) ) x. sum_ i e. ( 1 ... ( |_ ` ( z / Y ) ) ) ( ( abs ` ( R ` ( z / i ) ) ) x. ( log ` i ) ) ) ) / z ) <_ C ) | 
						
							| 21 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | pntlemb |  |-  ( ph -> ( Z e. RR+ /\ ( 1 < Z /\ _e <_ ( sqrt ` Z ) /\ ( sqrt ` Z ) <_ ( Z / Y ) ) /\ ( ( 4 / ( L x. E ) ) <_ ( sqrt ` Z ) /\ ( ( ( log ` X ) / ( log ` K ) ) + 2 ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) /\ ( ( U x. 3 ) + C ) <_ ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) ) | 
						
							| 22 | 21 | simp1d |  |-  ( ph -> Z e. RR+ ) | 
						
							| 23 | 1 | pntrf |  |-  R : RR+ --> RR | 
						
							| 24 | 23 | ffvelcdmi |  |-  ( Z e. RR+ -> ( R ` Z ) e. RR ) | 
						
							| 25 | 22 24 | syl |  |-  ( ph -> ( R ` Z ) e. RR ) | 
						
							| 26 | 25 22 | rerpdivcld |  |-  ( ph -> ( ( R ` Z ) / Z ) e. RR ) | 
						
							| 27 | 26 | recnd |  |-  ( ph -> ( ( R ` Z ) / Z ) e. CC ) | 
						
							| 28 | 27 | abscld |  |-  ( ph -> ( abs ` ( ( R ` Z ) / Z ) ) e. RR ) | 
						
							| 29 | 22 | relogcld |  |-  ( ph -> ( log ` Z ) e. RR ) | 
						
							| 30 | 28 29 | remulcld |  |-  ( ph -> ( ( abs ` ( ( R ` Z ) / Z ) ) x. ( log ` Z ) ) e. RR ) | 
						
							| 31 | 7 | rpred |  |-  ( ph -> U e. RR ) | 
						
							| 32 |  | 3re |  |-  3 e. RR | 
						
							| 33 | 32 | a1i |  |-  ( ph -> 3 e. RR ) | 
						
							| 34 | 29 33 | readdcld |  |-  ( ph -> ( ( log ` Z ) + 3 ) e. RR ) | 
						
							| 35 | 31 34 | remulcld |  |-  ( ph -> ( U x. ( ( log ` Z ) + 3 ) ) e. RR ) | 
						
							| 36 |  | 2re |  |-  2 e. RR | 
						
							| 37 | 36 | a1i |  |-  ( ph -> 2 e. RR ) | 
						
							| 38 | 1 2 3 4 5 6 7 8 9 10 | pntlemc |  |-  ( ph -> ( E e. RR+ /\ K e. RR+ /\ ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) ) | 
						
							| 39 | 38 | simp3d |  |-  ( ph -> ( E e. ( 0 (,) 1 ) /\ 1 < K /\ ( U - E ) e. RR+ ) ) | 
						
							| 40 | 39 | simp3d |  |-  ( ph -> ( U - E ) e. RR+ ) | 
						
							| 41 | 40 | rpred |  |-  ( ph -> ( U - E ) e. RR ) | 
						
							| 42 | 1 2 3 4 5 6 | pntlemd |  |-  ( ph -> ( L e. RR+ /\ D e. RR+ /\ F e. RR+ ) ) | 
						
							| 43 | 42 | simp1d |  |-  ( ph -> L e. RR+ ) | 
						
							| 44 | 38 | simp1d |  |-  ( ph -> E e. RR+ ) | 
						
							| 45 |  | 2z |  |-  2 e. ZZ | 
						
							| 46 |  | rpexpcl |  |-  ( ( E e. RR+ /\ 2 e. ZZ ) -> ( E ^ 2 ) e. RR+ ) | 
						
							| 47 | 44 45 46 | sylancl |  |-  ( ph -> ( E ^ 2 ) e. RR+ ) | 
						
							| 48 | 43 47 | rpmulcld |  |-  ( ph -> ( L x. ( E ^ 2 ) ) e. RR+ ) | 
						
							| 49 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 50 |  | 2nn |  |-  2 e. NN | 
						
							| 51 | 49 50 | decnncl |  |-  ; 3 2 e. NN | 
						
							| 52 |  | nnrp |  |-  ( ; 3 2 e. NN -> ; 3 2 e. RR+ ) | 
						
							| 53 | 51 52 | ax-mp |  |-  ; 3 2 e. RR+ | 
						
							| 54 |  | rpmulcl |  |-  ( ( ; 3 2 e. RR+ /\ B e. RR+ ) -> ( ; 3 2 x. B ) e. RR+ ) | 
						
							| 55 | 53 3 54 | sylancr |  |-  ( ph -> ( ; 3 2 x. B ) e. RR+ ) | 
						
							| 56 | 48 55 | rpdivcld |  |-  ( ph -> ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) e. RR+ ) | 
						
							| 57 | 56 | rpred |  |-  ( ph -> ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) e. RR ) | 
						
							| 58 | 41 57 | remulcld |  |-  ( ph -> ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) e. RR ) | 
						
							| 59 | 58 29 | remulcld |  |-  ( ph -> ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) e. RR ) | 
						
							| 60 | 37 59 | remulcld |  |-  ( ph -> ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) e. RR ) | 
						
							| 61 | 35 60 | resubcld |  |-  ( ph -> ( ( U x. ( ( log ` Z ) + 3 ) ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) e. RR ) | 
						
							| 62 | 13 | rpred |  |-  ( ph -> C e. RR ) | 
						
							| 63 | 61 62 | readdcld |  |-  ( ph -> ( ( ( U x. ( ( log ` Z ) + 3 ) ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) + C ) e. RR ) | 
						
							| 64 | 7 | rpcnd |  |-  ( ph -> U e. CC ) | 
						
							| 65 | 58 | recnd |  |-  ( ph -> ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) e. CC ) | 
						
							| 66 | 29 | recnd |  |-  ( ph -> ( log ` Z ) e. CC ) | 
						
							| 67 | 64 65 66 | subdird |  |-  ( ph -> ( ( U - ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) ) x. ( log ` Z ) ) = ( ( U x. ( log ` Z ) ) - ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) | 
						
							| 68 | 43 | rpcnd |  |-  ( ph -> L e. CC ) | 
						
							| 69 | 47 | rpcnd |  |-  ( ph -> ( E ^ 2 ) e. CC ) | 
						
							| 70 | 55 | rpcnne0d |  |-  ( ph -> ( ( ; 3 2 x. B ) e. CC /\ ( ; 3 2 x. B ) =/= 0 ) ) | 
						
							| 71 |  | div23 |  |-  ( ( L e. CC /\ ( E ^ 2 ) e. CC /\ ( ( ; 3 2 x. B ) e. CC /\ ( ; 3 2 x. B ) =/= 0 ) ) -> ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) = ( ( L / ( ; 3 2 x. B ) ) x. ( E ^ 2 ) ) ) | 
						
							| 72 | 68 69 70 71 | syl3anc |  |-  ( ph -> ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) = ( ( L / ( ; 3 2 x. B ) ) x. ( E ^ 2 ) ) ) | 
						
							| 73 | 9 | oveq1i |  |-  ( E ^ 2 ) = ( ( U / D ) ^ 2 ) | 
						
							| 74 | 42 | simp2d |  |-  ( ph -> D e. RR+ ) | 
						
							| 75 | 74 | rpcnd |  |-  ( ph -> D e. CC ) | 
						
							| 76 | 74 | rpne0d |  |-  ( ph -> D =/= 0 ) | 
						
							| 77 | 64 75 76 | sqdivd |  |-  ( ph -> ( ( U / D ) ^ 2 ) = ( ( U ^ 2 ) / ( D ^ 2 ) ) ) | 
						
							| 78 | 73 77 | eqtrid |  |-  ( ph -> ( E ^ 2 ) = ( ( U ^ 2 ) / ( D ^ 2 ) ) ) | 
						
							| 79 | 78 | oveq2d |  |-  ( ph -> ( ( L / ( ; 3 2 x. B ) ) x. ( E ^ 2 ) ) = ( ( L / ( ; 3 2 x. B ) ) x. ( ( U ^ 2 ) / ( D ^ 2 ) ) ) ) | 
						
							| 80 | 43 55 | rpdivcld |  |-  ( ph -> ( L / ( ; 3 2 x. B ) ) e. RR+ ) | 
						
							| 81 | 80 | rpcnd |  |-  ( ph -> ( L / ( ; 3 2 x. B ) ) e. CC ) | 
						
							| 82 | 64 | sqcld |  |-  ( ph -> ( U ^ 2 ) e. CC ) | 
						
							| 83 |  | rpexpcl |  |-  ( ( D e. RR+ /\ 2 e. ZZ ) -> ( D ^ 2 ) e. RR+ ) | 
						
							| 84 | 74 45 83 | sylancl |  |-  ( ph -> ( D ^ 2 ) e. RR+ ) | 
						
							| 85 | 84 | rpcnne0d |  |-  ( ph -> ( ( D ^ 2 ) e. CC /\ ( D ^ 2 ) =/= 0 ) ) | 
						
							| 86 |  | divass |  |-  ( ( ( L / ( ; 3 2 x. B ) ) e. CC /\ ( U ^ 2 ) e. CC /\ ( ( D ^ 2 ) e. CC /\ ( D ^ 2 ) =/= 0 ) ) -> ( ( ( L / ( ; 3 2 x. B ) ) x. ( U ^ 2 ) ) / ( D ^ 2 ) ) = ( ( L / ( ; 3 2 x. B ) ) x. ( ( U ^ 2 ) / ( D ^ 2 ) ) ) ) | 
						
							| 87 |  | div23 |  |-  ( ( ( L / ( ; 3 2 x. B ) ) e. CC /\ ( U ^ 2 ) e. CC /\ ( ( D ^ 2 ) e. CC /\ ( D ^ 2 ) =/= 0 ) ) -> ( ( ( L / ( ; 3 2 x. B ) ) x. ( U ^ 2 ) ) / ( D ^ 2 ) ) = ( ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) x. ( U ^ 2 ) ) ) | 
						
							| 88 | 86 87 | eqtr3d |  |-  ( ( ( L / ( ; 3 2 x. B ) ) e. CC /\ ( U ^ 2 ) e. CC /\ ( ( D ^ 2 ) e. CC /\ ( D ^ 2 ) =/= 0 ) ) -> ( ( L / ( ; 3 2 x. B ) ) x. ( ( U ^ 2 ) / ( D ^ 2 ) ) ) = ( ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) x. ( U ^ 2 ) ) ) | 
						
							| 89 | 81 82 85 88 | syl3anc |  |-  ( ph -> ( ( L / ( ; 3 2 x. B ) ) x. ( ( U ^ 2 ) / ( D ^ 2 ) ) ) = ( ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) x. ( U ^ 2 ) ) ) | 
						
							| 90 | 72 79 89 | 3eqtrd |  |-  ( ph -> ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) = ( ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) x. ( U ^ 2 ) ) ) | 
						
							| 91 | 90 | oveq2d |  |-  ( ph -> ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) = ( ( U - E ) x. ( ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) x. ( U ^ 2 ) ) ) ) | 
						
							| 92 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 93 | 92 | oveq2i |  |-  ( U ^ 3 ) = ( U ^ ( 2 + 1 ) ) | 
						
							| 94 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 95 |  | expp1 |  |-  ( ( U e. CC /\ 2 e. NN0 ) -> ( U ^ ( 2 + 1 ) ) = ( ( U ^ 2 ) x. U ) ) | 
						
							| 96 | 64 94 95 | sylancl |  |-  ( ph -> ( U ^ ( 2 + 1 ) ) = ( ( U ^ 2 ) x. U ) ) | 
						
							| 97 | 93 96 | eqtrid |  |-  ( ph -> ( U ^ 3 ) = ( ( U ^ 2 ) x. U ) ) | 
						
							| 98 | 82 64 | mulcomd |  |-  ( ph -> ( ( U ^ 2 ) x. U ) = ( U x. ( U ^ 2 ) ) ) | 
						
							| 99 | 97 98 | eqtrd |  |-  ( ph -> ( U ^ 3 ) = ( U x. ( U ^ 2 ) ) ) | 
						
							| 100 | 99 | oveq2d |  |-  ( ph -> ( F x. ( U ^ 3 ) ) = ( F x. ( U x. ( U ^ 2 ) ) ) ) | 
						
							| 101 | 42 | simp3d |  |-  ( ph -> F e. RR+ ) | 
						
							| 102 | 101 | rpcnd |  |-  ( ph -> F e. CC ) | 
						
							| 103 | 102 64 82 | mulassd |  |-  ( ph -> ( ( F x. U ) x. ( U ^ 2 ) ) = ( F x. ( U x. ( U ^ 2 ) ) ) ) | 
						
							| 104 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 105 | 74 | rpreccld |  |-  ( ph -> ( 1 / D ) e. RR+ ) | 
						
							| 106 | 105 | rpcnd |  |-  ( ph -> ( 1 / D ) e. CC ) | 
						
							| 107 | 104 106 64 | subdird |  |-  ( ph -> ( ( 1 - ( 1 / D ) ) x. U ) = ( ( 1 x. U ) - ( ( 1 / D ) x. U ) ) ) | 
						
							| 108 | 64 | mullidd |  |-  ( ph -> ( 1 x. U ) = U ) | 
						
							| 109 | 64 75 76 | divrec2d |  |-  ( ph -> ( U / D ) = ( ( 1 / D ) x. U ) ) | 
						
							| 110 | 9 109 | eqtr2id |  |-  ( ph -> ( ( 1 / D ) x. U ) = E ) | 
						
							| 111 | 108 110 | oveq12d |  |-  ( ph -> ( ( 1 x. U ) - ( ( 1 / D ) x. U ) ) = ( U - E ) ) | 
						
							| 112 | 107 111 | eqtr2d |  |-  ( ph -> ( U - E ) = ( ( 1 - ( 1 / D ) ) x. U ) ) | 
						
							| 113 | 112 | oveq1d |  |-  ( ph -> ( ( U - E ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) = ( ( ( 1 - ( 1 / D ) ) x. U ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) ) | 
						
							| 114 | 6 | oveq1i |  |-  ( F x. U ) = ( ( ( 1 - ( 1 / D ) ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) x. U ) | 
						
							| 115 | 104 106 | subcld |  |-  ( ph -> ( 1 - ( 1 / D ) ) e. CC ) | 
						
							| 116 | 80 84 | rpdivcld |  |-  ( ph -> ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) e. RR+ ) | 
						
							| 117 | 116 | rpcnd |  |-  ( ph -> ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) e. CC ) | 
						
							| 118 | 115 117 64 | mul32d |  |-  ( ph -> ( ( ( 1 - ( 1 / D ) ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) x. U ) = ( ( ( 1 - ( 1 / D ) ) x. U ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) ) | 
						
							| 119 | 114 118 | eqtrid |  |-  ( ph -> ( F x. U ) = ( ( ( 1 - ( 1 / D ) ) x. U ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) ) | 
						
							| 120 | 113 119 | eqtr4d |  |-  ( ph -> ( ( U - E ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) = ( F x. U ) ) | 
						
							| 121 | 120 | oveq1d |  |-  ( ph -> ( ( ( U - E ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) x. ( U ^ 2 ) ) = ( ( F x. U ) x. ( U ^ 2 ) ) ) | 
						
							| 122 | 40 | rpcnd |  |-  ( ph -> ( U - E ) e. CC ) | 
						
							| 123 | 122 117 82 | mulassd |  |-  ( ph -> ( ( ( U - E ) x. ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) ) x. ( U ^ 2 ) ) = ( ( U - E ) x. ( ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) x. ( U ^ 2 ) ) ) ) | 
						
							| 124 | 121 123 | eqtr3d |  |-  ( ph -> ( ( F x. U ) x. ( U ^ 2 ) ) = ( ( U - E ) x. ( ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) x. ( U ^ 2 ) ) ) ) | 
						
							| 125 | 100 103 124 | 3eqtr2d |  |-  ( ph -> ( F x. ( U ^ 3 ) ) = ( ( U - E ) x. ( ( ( L / ( ; 3 2 x. B ) ) / ( D ^ 2 ) ) x. ( U ^ 2 ) ) ) ) | 
						
							| 126 | 91 125 | eqtr4d |  |-  ( ph -> ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) = ( F x. ( U ^ 3 ) ) ) | 
						
							| 127 | 126 | oveq2d |  |-  ( ph -> ( U - ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) ) = ( U - ( F x. ( U ^ 3 ) ) ) ) | 
						
							| 128 | 127 | oveq1d |  |-  ( ph -> ( ( U - ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) ) x. ( log ` Z ) ) = ( ( U - ( F x. ( U ^ 3 ) ) ) x. ( log ` Z ) ) ) | 
						
							| 129 | 67 128 | eqtr3d |  |-  ( ph -> ( ( U x. ( log ` Z ) ) - ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) = ( ( U - ( F x. ( U ^ 3 ) ) ) x. ( log ` Z ) ) ) | 
						
							| 130 | 31 29 | remulcld |  |-  ( ph -> ( U x. ( log ` Z ) ) e. RR ) | 
						
							| 131 | 130 59 | resubcld |  |-  ( ph -> ( ( U x. ( log ` Z ) ) - ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) e. RR ) | 
						
							| 132 | 129 131 | eqeltrrd |  |-  ( ph -> ( ( U - ( F x. ( U ^ 3 ) ) ) x. ( log ` Z ) ) e. RR ) | 
						
							| 133 | 22 | rpred |  |-  ( ph -> Z e. RR ) | 
						
							| 134 | 21 | simp2d |  |-  ( ph -> ( 1 < Z /\ _e <_ ( sqrt ` Z ) /\ ( sqrt ` Z ) <_ ( Z / Y ) ) ) | 
						
							| 135 | 134 | simp1d |  |-  ( ph -> 1 < Z ) | 
						
							| 136 | 133 135 | rplogcld |  |-  ( ph -> ( log ` Z ) e. RR+ ) | 
						
							| 137 | 37 136 | rerpdivcld |  |-  ( ph -> ( 2 / ( log ` Z ) ) e. RR ) | 
						
							| 138 |  | fzfid |  |-  ( ph -> ( 1 ... ( |_ ` ( Z / Y ) ) ) e. Fin ) | 
						
							| 139 | 22 | adantr |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> Z e. RR+ ) | 
						
							| 140 |  | elfznn |  |-  ( n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) -> n e. NN ) | 
						
							| 141 | 140 | adantl |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> n e. NN ) | 
						
							| 142 | 141 | nnrpd |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> n e. RR+ ) | 
						
							| 143 | 139 142 | rpdivcld |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( Z / n ) e. RR+ ) | 
						
							| 144 | 23 | ffvelcdmi |  |-  ( ( Z / n ) e. RR+ -> ( R ` ( Z / n ) ) e. RR ) | 
						
							| 145 | 143 144 | syl |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( R ` ( Z / n ) ) e. RR ) | 
						
							| 146 | 145 139 | rerpdivcld |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( R ` ( Z / n ) ) / Z ) e. RR ) | 
						
							| 147 | 146 | recnd |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( R ` ( Z / n ) ) / Z ) e. CC ) | 
						
							| 148 | 147 | abscld |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) e. RR ) | 
						
							| 149 | 142 | relogcld |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( log ` n ) e. RR ) | 
						
							| 150 | 148 149 | remulcld |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) e. RR ) | 
						
							| 151 | 138 150 | fsumrecl |  |-  ( ph -> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) e. RR ) | 
						
							| 152 | 137 151 | remulcld |  |-  ( ph -> ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) e. RR ) | 
						
							| 153 | 152 62 | readdcld |  |-  ( ph -> ( ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) + C ) e. RR ) | 
						
							| 154 | 25 | recnd |  |-  ( ph -> ( R ` Z ) e. CC ) | 
						
							| 155 | 154 | abscld |  |-  ( ph -> ( abs ` ( R ` Z ) ) e. RR ) | 
						
							| 156 | 155 | recnd |  |-  ( ph -> ( abs ` ( R ` Z ) ) e. CC ) | 
						
							| 157 | 156 66 | mulcld |  |-  ( ph -> ( ( abs ` ( R ` Z ) ) x. ( log ` Z ) ) e. CC ) | 
						
							| 158 | 137 | recnd |  |-  ( ph -> ( 2 / ( log ` Z ) ) e. CC ) | 
						
							| 159 | 145 | recnd |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( R ` ( Z / n ) ) e. CC ) | 
						
							| 160 | 159 | abscld |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( abs ` ( R ` ( Z / n ) ) ) e. RR ) | 
						
							| 161 | 160 149 | remulcld |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) e. RR ) | 
						
							| 162 | 138 161 | fsumrecl |  |-  ( ph -> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) e. RR ) | 
						
							| 163 | 162 | recnd |  |-  ( ph -> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) e. CC ) | 
						
							| 164 | 158 163 | mulcld |  |-  ( ph -> ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) ) e. CC ) | 
						
							| 165 | 22 | rpcnd |  |-  ( ph -> Z e. CC ) | 
						
							| 166 | 22 | rpne0d |  |-  ( ph -> Z =/= 0 ) | 
						
							| 167 | 157 164 165 166 | divsubdird |  |-  ( ph -> ( ( ( ( abs ` ( R ` Z ) ) x. ( log ` Z ) ) - ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) ) ) / Z ) = ( ( ( ( abs ` ( R ` Z ) ) x. ( log ` Z ) ) / Z ) - ( ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) ) / Z ) ) ) | 
						
							| 168 | 156 66 165 166 | div23d |  |-  ( ph -> ( ( ( abs ` ( R ` Z ) ) x. ( log ` Z ) ) / Z ) = ( ( ( abs ` ( R ` Z ) ) / Z ) x. ( log ` Z ) ) ) | 
						
							| 169 | 154 165 166 | absdivd |  |-  ( ph -> ( abs ` ( ( R ` Z ) / Z ) ) = ( ( abs ` ( R ` Z ) ) / ( abs ` Z ) ) ) | 
						
							| 170 | 22 | rprege0d |  |-  ( ph -> ( Z e. RR /\ 0 <_ Z ) ) | 
						
							| 171 |  | absid |  |-  ( ( Z e. RR /\ 0 <_ Z ) -> ( abs ` Z ) = Z ) | 
						
							| 172 | 170 171 | syl |  |-  ( ph -> ( abs ` Z ) = Z ) | 
						
							| 173 | 172 | oveq2d |  |-  ( ph -> ( ( abs ` ( R ` Z ) ) / ( abs ` Z ) ) = ( ( abs ` ( R ` Z ) ) / Z ) ) | 
						
							| 174 | 169 173 | eqtrd |  |-  ( ph -> ( abs ` ( ( R ` Z ) / Z ) ) = ( ( abs ` ( R ` Z ) ) / Z ) ) | 
						
							| 175 | 174 | oveq1d |  |-  ( ph -> ( ( abs ` ( ( R ` Z ) / Z ) ) x. ( log ` Z ) ) = ( ( ( abs ` ( R ` Z ) ) / Z ) x. ( log ` Z ) ) ) | 
						
							| 176 | 168 175 | eqtr4d |  |-  ( ph -> ( ( ( abs ` ( R ` Z ) ) x. ( log ` Z ) ) / Z ) = ( ( abs ` ( ( R ` Z ) / Z ) ) x. ( log ` Z ) ) ) | 
						
							| 177 | 158 163 165 166 | divassd |  |-  ( ph -> ( ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) ) / Z ) = ( ( 2 / ( log ` Z ) ) x. ( sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) / Z ) ) ) | 
						
							| 178 | 165 | adantr |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> Z e. CC ) | 
						
							| 179 | 166 | adantr |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> Z =/= 0 ) | 
						
							| 180 | 159 178 179 | absdivd |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) = ( ( abs ` ( R ` ( Z / n ) ) ) / ( abs ` Z ) ) ) | 
						
							| 181 | 172 | adantr |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( abs ` Z ) = Z ) | 
						
							| 182 | 181 | oveq2d |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( abs ` ( R ` ( Z / n ) ) ) / ( abs ` Z ) ) = ( ( abs ` ( R ` ( Z / n ) ) ) / Z ) ) | 
						
							| 183 | 180 182 | eqtrd |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) = ( ( abs ` ( R ` ( Z / n ) ) ) / Z ) ) | 
						
							| 184 | 183 | oveq1d |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) = ( ( ( abs ` ( R ` ( Z / n ) ) ) / Z ) x. ( log ` n ) ) ) | 
						
							| 185 | 160 | recnd |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( abs ` ( R ` ( Z / n ) ) ) e. CC ) | 
						
							| 186 | 149 | recnd |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( log ` n ) e. CC ) | 
						
							| 187 | 22 | rpcnne0d |  |-  ( ph -> ( Z e. CC /\ Z =/= 0 ) ) | 
						
							| 188 | 187 | adantr |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( Z e. CC /\ Z =/= 0 ) ) | 
						
							| 189 |  | div23 |  |-  ( ( ( abs ` ( R ` ( Z / n ) ) ) e. CC /\ ( log ` n ) e. CC /\ ( Z e. CC /\ Z =/= 0 ) ) -> ( ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) / Z ) = ( ( ( abs ` ( R ` ( Z / n ) ) ) / Z ) x. ( log ` n ) ) ) | 
						
							| 190 | 185 186 188 189 | syl3anc |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) / Z ) = ( ( ( abs ` ( R ` ( Z / n ) ) ) / Z ) x. ( log ` n ) ) ) | 
						
							| 191 | 184 190 | eqtr4d |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) = ( ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) / Z ) ) | 
						
							| 192 | 191 | sumeq2dv |  |-  ( ph -> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) = sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) / Z ) ) | 
						
							| 193 | 161 | recnd |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) e. CC ) | 
						
							| 194 | 138 165 193 166 | fsumdivc |  |-  ( ph -> ( sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) / Z ) = sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) / Z ) ) | 
						
							| 195 | 192 194 | eqtr4d |  |-  ( ph -> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) = ( sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) / Z ) ) | 
						
							| 196 | 195 | oveq2d |  |-  ( ph -> ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) = ( ( 2 / ( log ` Z ) ) x. ( sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) / Z ) ) ) | 
						
							| 197 | 177 196 | eqtr4d |  |-  ( ph -> ( ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) ) / Z ) = ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) | 
						
							| 198 | 176 197 | oveq12d |  |-  ( ph -> ( ( ( ( abs ` ( R ` Z ) ) x. ( log ` Z ) ) / Z ) - ( ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) ) / Z ) ) = ( ( ( abs ` ( ( R ` Z ) / Z ) ) x. ( log ` Z ) ) - ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) ) | 
						
							| 199 | 167 198 | eqtrd |  |-  ( ph -> ( ( ( ( abs ` ( R ` Z ) ) x. ( log ` Z ) ) - ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) ) ) / Z ) = ( ( ( abs ` ( ( R ` Z ) / Z ) ) x. ( log ` Z ) ) - ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) ) | 
						
							| 200 |  | 2fveq3 |  |-  ( z = Z -> ( abs ` ( R ` z ) ) = ( abs ` ( R ` Z ) ) ) | 
						
							| 201 |  | fveq2 |  |-  ( z = Z -> ( log ` z ) = ( log ` Z ) ) | 
						
							| 202 | 200 201 | oveq12d |  |-  ( z = Z -> ( ( abs ` ( R ` z ) ) x. ( log ` z ) ) = ( ( abs ` ( R ` Z ) ) x. ( log ` Z ) ) ) | 
						
							| 203 | 201 | oveq2d |  |-  ( z = Z -> ( 2 / ( log ` z ) ) = ( 2 / ( log ` Z ) ) ) | 
						
							| 204 |  | oveq2 |  |-  ( i = n -> ( z / i ) = ( z / n ) ) | 
						
							| 205 | 204 | fveq2d |  |-  ( i = n -> ( R ` ( z / i ) ) = ( R ` ( z / n ) ) ) | 
						
							| 206 | 205 | fveq2d |  |-  ( i = n -> ( abs ` ( R ` ( z / i ) ) ) = ( abs ` ( R ` ( z / n ) ) ) ) | 
						
							| 207 |  | fveq2 |  |-  ( i = n -> ( log ` i ) = ( log ` n ) ) | 
						
							| 208 | 206 207 | oveq12d |  |-  ( i = n -> ( ( abs ` ( R ` ( z / i ) ) ) x. ( log ` i ) ) = ( ( abs ` ( R ` ( z / n ) ) ) x. ( log ` n ) ) ) | 
						
							| 209 | 208 | cbvsumv |  |-  sum_ i e. ( 1 ... ( |_ ` ( z / Y ) ) ) ( ( abs ` ( R ` ( z / i ) ) ) x. ( log ` i ) ) = sum_ n e. ( 1 ... ( |_ ` ( z / Y ) ) ) ( ( abs ` ( R ` ( z / n ) ) ) x. ( log ` n ) ) | 
						
							| 210 |  | fvoveq1 |  |-  ( z = Z -> ( |_ ` ( z / Y ) ) = ( |_ ` ( Z / Y ) ) ) | 
						
							| 211 | 210 | oveq2d |  |-  ( z = Z -> ( 1 ... ( |_ ` ( z / Y ) ) ) = ( 1 ... ( |_ ` ( Z / Y ) ) ) ) | 
						
							| 212 |  | simpl |  |-  ( ( z = Z /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> z = Z ) | 
						
							| 213 | 212 | fvoveq1d |  |-  ( ( z = Z /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( R ` ( z / n ) ) = ( R ` ( Z / n ) ) ) | 
						
							| 214 | 213 | fveq2d |  |-  ( ( z = Z /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( abs ` ( R ` ( z / n ) ) ) = ( abs ` ( R ` ( Z / n ) ) ) ) | 
						
							| 215 | 214 | oveq1d |  |-  ( ( z = Z /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( abs ` ( R ` ( z / n ) ) ) x. ( log ` n ) ) = ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) ) | 
						
							| 216 | 211 215 | sumeq12rdv |  |-  ( z = Z -> sum_ n e. ( 1 ... ( |_ ` ( z / Y ) ) ) ( ( abs ` ( R ` ( z / n ) ) ) x. ( log ` n ) ) = sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) ) | 
						
							| 217 | 209 216 | eqtrid |  |-  ( z = Z -> sum_ i e. ( 1 ... ( |_ ` ( z / Y ) ) ) ( ( abs ` ( R ` ( z / i ) ) ) x. ( log ` i ) ) = sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) ) | 
						
							| 218 | 203 217 | oveq12d |  |-  ( z = Z -> ( ( 2 / ( log ` z ) ) x. sum_ i e. ( 1 ... ( |_ ` ( z / Y ) ) ) ( ( abs ` ( R ` ( z / i ) ) ) x. ( log ` i ) ) ) = ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) ) ) | 
						
							| 219 | 202 218 | oveq12d |  |-  ( z = Z -> ( ( ( abs ` ( R ` z ) ) x. ( log ` z ) ) - ( ( 2 / ( log ` z ) ) x. sum_ i e. ( 1 ... ( |_ ` ( z / Y ) ) ) ( ( abs ` ( R ` ( z / i ) ) ) x. ( log ` i ) ) ) ) = ( ( ( abs ` ( R ` Z ) ) x. ( log ` Z ) ) - ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) ) ) ) | 
						
							| 220 |  | id |  |-  ( z = Z -> z = Z ) | 
						
							| 221 | 219 220 | oveq12d |  |-  ( z = Z -> ( ( ( ( abs ` ( R ` z ) ) x. ( log ` z ) ) - ( ( 2 / ( log ` z ) ) x. sum_ i e. ( 1 ... ( |_ ` ( z / Y ) ) ) ( ( abs ` ( R ` ( z / i ) ) ) x. ( log ` i ) ) ) ) / z ) = ( ( ( ( abs ` ( R ` Z ) ) x. ( log ` Z ) ) - ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) ) ) / Z ) ) | 
						
							| 222 | 221 | breq1d |  |-  ( z = Z -> ( ( ( ( ( abs ` ( R ` z ) ) x. ( log ` z ) ) - ( ( 2 / ( log ` z ) ) x. sum_ i e. ( 1 ... ( |_ ` ( z / Y ) ) ) ( ( abs ` ( R ` ( z / i ) ) ) x. ( log ` i ) ) ) ) / z ) <_ C <-> ( ( ( ( abs ` ( R ` Z ) ) x. ( log ` Z ) ) - ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) ) ) / Z ) <_ C ) ) | 
						
							| 223 |  | 1re |  |-  1 e. RR | 
						
							| 224 |  | rexr |  |-  ( 1 e. RR -> 1 e. RR* ) | 
						
							| 225 |  | elioopnf |  |-  ( 1 e. RR* -> ( Z e. ( 1 (,) +oo ) <-> ( Z e. RR /\ 1 < Z ) ) ) | 
						
							| 226 | 223 224 225 | mp2b |  |-  ( Z e. ( 1 (,) +oo ) <-> ( Z e. RR /\ 1 < Z ) ) | 
						
							| 227 | 133 135 226 | sylanbrc |  |-  ( ph -> Z e. ( 1 (,) +oo ) ) | 
						
							| 228 | 222 20 227 | rspcdva |  |-  ( ph -> ( ( ( ( abs ` ( R ` Z ) ) x. ( log ` Z ) ) - ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( R ` ( Z / n ) ) ) x. ( log ` n ) ) ) ) / Z ) <_ C ) | 
						
							| 229 | 199 228 | eqbrtrrd |  |-  ( ph -> ( ( ( abs ` ( ( R ` Z ) / Z ) ) x. ( log ` Z ) ) - ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) <_ C ) | 
						
							| 230 | 30 152 62 | lesubadd2d |  |-  ( ph -> ( ( ( ( abs ` ( ( R ` Z ) / Z ) ) x. ( log ` Z ) ) - ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) <_ C <-> ( ( abs ` ( ( R ` Z ) / Z ) ) x. ( log ` Z ) ) <_ ( ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) + C ) ) ) | 
						
							| 231 | 229 230 | mpbid |  |-  ( ph -> ( ( abs ` ( ( R ` Z ) / Z ) ) x. ( log ` Z ) ) <_ ( ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) + C ) ) | 
						
							| 232 |  | 2cnd |  |-  ( ph -> 2 e. CC ) | 
						
							| 233 | 148 | recnd |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) e. CC ) | 
						
							| 234 | 233 186 | mulcld |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) e. CC ) | 
						
							| 235 | 138 234 | fsumcl |  |-  ( ph -> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) e. CC ) | 
						
							| 236 | 136 | rpne0d |  |-  ( ph -> ( log ` Z ) =/= 0 ) | 
						
							| 237 | 232 235 66 236 | div23d |  |-  ( ph -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) / ( log ` Z ) ) = ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) | 
						
							| 238 | 29 | resqcld |  |-  ( ph -> ( ( log ` Z ) ^ 2 ) e. RR ) | 
						
							| 239 | 57 238 | remulcld |  |-  ( ph -> ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) e. RR ) | 
						
							| 240 | 41 239 | remulcld |  |-  ( ph -> ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) e. RR ) | 
						
							| 241 |  | remulcl |  |-  ( ( 2 e. RR /\ ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) e. RR ) -> ( 2 x. ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) ) e. RR ) | 
						
							| 242 | 36 240 241 | sylancr |  |-  ( ph -> ( 2 x. ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) ) e. RR ) | 
						
							| 243 | 35 29 | remulcld |  |-  ( ph -> ( ( U x. ( ( log ` Z ) + 3 ) ) x. ( log ` Z ) ) e. RR ) | 
						
							| 244 |  | remulcl |  |-  ( ( 2 e. RR /\ sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) e. RR ) -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) e. RR ) | 
						
							| 245 | 36 151 244 | sylancr |  |-  ( ph -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) e. RR ) | 
						
							| 246 | 31 | adantr |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> U e. RR ) | 
						
							| 247 | 246 141 | nndivred |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( U / n ) e. RR ) | 
						
							| 248 | 247 148 | resubcld |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) e. RR ) | 
						
							| 249 | 248 149 | remulcld |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) e. RR ) | 
						
							| 250 | 138 249 | fsumrecl |  |-  ( ph -> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) e. RR ) | 
						
							| 251 | 37 250 | remulcld |  |-  ( ph -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) ) e. RR ) | 
						
							| 252 | 243 245 | resubcld |  |-  ( ph -> ( ( ( U x. ( ( log ` Z ) + 3 ) ) x. ( log ` Z ) ) - ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) e. RR ) | 
						
							| 253 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | pntlemf |  |-  ( ph -> ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) ) | 
						
							| 254 |  | 2pos |  |-  0 < 2 | 
						
							| 255 | 254 | a1i |  |-  ( ph -> 0 < 2 ) | 
						
							| 256 |  | lemul2 |  |-  ( ( ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) e. RR /\ sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) <-> ( 2 x. ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) ) <_ ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) ) ) ) | 
						
							| 257 | 240 250 37 255 256 | syl112anc |  |-  ( ph -> ( ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) <_ sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) <-> ( 2 x. ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) ) <_ ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) ) ) ) | 
						
							| 258 | 253 257 | mpbid |  |-  ( ph -> ( 2 x. ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) ) <_ ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) ) ) | 
						
							| 259 | 247 | recnd |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( U / n ) e. CC ) | 
						
							| 260 | 259 233 186 | subdird |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) = ( ( ( U / n ) x. ( log ` n ) ) - ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) | 
						
							| 261 | 260 | sumeq2dv |  |-  ( ph -> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) = sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) x. ( log ` n ) ) - ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) | 
						
							| 262 | 247 149 | remulcld |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( U / n ) x. ( log ` n ) ) e. RR ) | 
						
							| 263 | 262 | recnd |  |-  ( ( ph /\ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ) -> ( ( U / n ) x. ( log ` n ) ) e. CC ) | 
						
							| 264 | 138 263 234 | fsumsub |  |-  ( ph -> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) x. ( log ` n ) ) - ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) = ( sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) - sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) | 
						
							| 265 | 261 264 | eqtrd |  |-  ( ph -> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) = ( sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) - sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) | 
						
							| 266 | 265 | oveq2d |  |-  ( ph -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) ) = ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) - sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) ) | 
						
							| 267 | 138 262 | fsumrecl |  |-  ( ph -> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) e. RR ) | 
						
							| 268 | 267 | recnd |  |-  ( ph -> sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) e. CC ) | 
						
							| 269 | 232 268 235 | subdid |  |-  ( ph -> ( 2 x. ( sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) - sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) = ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) ) - ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) ) | 
						
							| 270 | 266 269 | eqtrd |  |-  ( ph -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) ) = ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) ) - ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) ) | 
						
							| 271 |  | remulcl |  |-  ( ( 2 e. RR /\ sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) e. RR ) -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) ) e. RR ) | 
						
							| 272 | 36 267 271 | sylancr |  |-  ( ph -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) ) e. RR ) | 
						
							| 273 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | pntlemk |  |-  ( ph -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) ) <_ ( ( U x. ( ( log ` Z ) + 3 ) ) x. ( log ` Z ) ) ) | 
						
							| 274 | 272 243 245 273 | lesub1dd |  |-  ( ph -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( U / n ) x. ( log ` n ) ) ) - ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) <_ ( ( ( U x. ( ( log ` Z ) + 3 ) ) x. ( log ` Z ) ) - ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) ) | 
						
							| 275 | 270 274 | eqbrtrd |  |-  ( ph -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( ( U / n ) - ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) ) x. ( log ` n ) ) ) <_ ( ( ( U x. ( ( log ` Z ) + 3 ) ) x. ( log ` Z ) ) - ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) ) | 
						
							| 276 | 242 251 252 258 275 | letrd |  |-  ( ph -> ( 2 x. ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) ) <_ ( ( ( U x. ( ( log ` Z ) + 3 ) ) x. ( log ` Z ) ) - ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) ) ) | 
						
							| 277 | 242 243 245 276 | lesubd |  |-  ( ph -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) <_ ( ( ( U x. ( ( log ` Z ) + 3 ) ) x. ( log ` Z ) ) - ( 2 x. ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) ) ) ) | 
						
							| 278 | 35 | recnd |  |-  ( ph -> ( U x. ( ( log ` Z ) + 3 ) ) e. CC ) | 
						
							| 279 | 60 | recnd |  |-  ( ph -> ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) e. CC ) | 
						
							| 280 | 278 279 66 | subdird |  |-  ( ph -> ( ( ( U x. ( ( log ` Z ) + 3 ) ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) x. ( log ` Z ) ) = ( ( ( U x. ( ( log ` Z ) + 3 ) ) x. ( log ` Z ) ) - ( ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) x. ( log ` Z ) ) ) ) | 
						
							| 281 | 59 | recnd |  |-  ( ph -> ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) e. CC ) | 
						
							| 282 | 232 281 66 | mulassd |  |-  ( ph -> ( ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) x. ( log ` Z ) ) = ( 2 x. ( ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) x. ( log ` Z ) ) ) ) | 
						
							| 283 | 65 66 66 | mulassd |  |-  ( ph -> ( ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) x. ( log ` Z ) ) = ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( ( log ` Z ) x. ( log ` Z ) ) ) ) | 
						
							| 284 | 66 | sqvald |  |-  ( ph -> ( ( log ` Z ) ^ 2 ) = ( ( log ` Z ) x. ( log ` Z ) ) ) | 
						
							| 285 | 284 | oveq2d |  |-  ( ph -> ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( ( log ` Z ) ^ 2 ) ) = ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( ( log ` Z ) x. ( log ` Z ) ) ) ) | 
						
							| 286 | 56 | rpcnd |  |-  ( ph -> ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) e. CC ) | 
						
							| 287 | 238 | recnd |  |-  ( ph -> ( ( log ` Z ) ^ 2 ) e. CC ) | 
						
							| 288 | 122 286 287 | mulassd |  |-  ( ph -> ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( ( log ` Z ) ^ 2 ) ) = ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) ) | 
						
							| 289 | 283 285 288 | 3eqtr2d |  |-  ( ph -> ( ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) x. ( log ` Z ) ) = ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) ) | 
						
							| 290 | 289 | oveq2d |  |-  ( ph -> ( 2 x. ( ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) x. ( log ` Z ) ) ) = ( 2 x. ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) ) ) | 
						
							| 291 | 282 290 | eqtrd |  |-  ( ph -> ( ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) x. ( log ` Z ) ) = ( 2 x. ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) ) ) | 
						
							| 292 | 291 | oveq2d |  |-  ( ph -> ( ( ( U x. ( ( log ` Z ) + 3 ) ) x. ( log ` Z ) ) - ( ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) x. ( log ` Z ) ) ) = ( ( ( U x. ( ( log ` Z ) + 3 ) ) x. ( log ` Z ) ) - ( 2 x. ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) ) ) ) | 
						
							| 293 | 280 292 | eqtrd |  |-  ( ph -> ( ( ( U x. ( ( log ` Z ) + 3 ) ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) x. ( log ` Z ) ) = ( ( ( U x. ( ( log ` Z ) + 3 ) ) x. ( log ` Z ) ) - ( 2 x. ( ( U - E ) x. ( ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) x. ( ( log ` Z ) ^ 2 ) ) ) ) ) ) | 
						
							| 294 | 277 293 | breqtrrd |  |-  ( ph -> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) <_ ( ( ( U x. ( ( log ` Z ) + 3 ) ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) x. ( log ` Z ) ) ) | 
						
							| 295 | 245 61 136 | ledivmul2d |  |-  ( ph -> ( ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) / ( log ` Z ) ) <_ ( ( U x. ( ( log ` Z ) + 3 ) ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) <-> ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) <_ ( ( ( U x. ( ( log ` Z ) + 3 ) ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) x. ( log ` Z ) ) ) ) | 
						
							| 296 | 294 295 | mpbird |  |-  ( ph -> ( ( 2 x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) / ( log ` Z ) ) <_ ( ( U x. ( ( log ` Z ) + 3 ) ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) ) | 
						
							| 297 | 237 296 | eqbrtrrd |  |-  ( ph -> ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) <_ ( ( U x. ( ( log ` Z ) + 3 ) ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) ) | 
						
							| 298 | 152 61 62 297 | leadd1dd |  |-  ( ph -> ( ( ( 2 / ( log ` Z ) ) x. sum_ n e. ( 1 ... ( |_ ` ( Z / Y ) ) ) ( ( abs ` ( ( R ` ( Z / n ) ) / Z ) ) x. ( log ` n ) ) ) + C ) <_ ( ( ( U x. ( ( log ` Z ) + 3 ) ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) + C ) ) | 
						
							| 299 | 30 153 63 231 298 | letrd |  |-  ( ph -> ( ( abs ` ( ( R ` Z ) / Z ) ) x. ( log ` Z ) ) <_ ( ( ( U x. ( ( log ` Z ) + 3 ) ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) + C ) ) | 
						
							| 300 |  | remulcl |  |-  ( ( U e. RR /\ 3 e. RR ) -> ( U x. 3 ) e. RR ) | 
						
							| 301 | 31 32 300 | sylancl |  |-  ( ph -> ( U x. 3 ) e. RR ) | 
						
							| 302 | 301 62 | readdcld |  |-  ( ph -> ( ( U x. 3 ) + C ) e. RR ) | 
						
							| 303 | 21 | simp3d |  |-  ( ph -> ( ( 4 / ( L x. E ) ) <_ ( sqrt ` Z ) /\ ( ( ( log ` X ) / ( log ` K ) ) + 2 ) <_ ( ( ( log ` Z ) / ( log ` K ) ) / 4 ) /\ ( ( U x. 3 ) + C ) <_ ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) | 
						
							| 304 | 303 | simp3d |  |-  ( ph -> ( ( U x. 3 ) + C ) <_ ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) | 
						
							| 305 | 302 59 130 304 | leadd2dd |  |-  ( ph -> ( ( U x. ( log ` Z ) ) + ( ( U x. 3 ) + C ) ) <_ ( ( U x. ( log ` Z ) ) + ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) | 
						
							| 306 | 33 | recnd |  |-  ( ph -> 3 e. CC ) | 
						
							| 307 | 64 66 306 | adddid |  |-  ( ph -> ( U x. ( ( log ` Z ) + 3 ) ) = ( ( U x. ( log ` Z ) ) + ( U x. 3 ) ) ) | 
						
							| 308 | 307 | oveq1d |  |-  ( ph -> ( ( U x. ( ( log ` Z ) + 3 ) ) + C ) = ( ( ( U x. ( log ` Z ) ) + ( U x. 3 ) ) + C ) ) | 
						
							| 309 | 130 | recnd |  |-  ( ph -> ( U x. ( log ` Z ) ) e. CC ) | 
						
							| 310 | 64 306 | mulcld |  |-  ( ph -> ( U x. 3 ) e. CC ) | 
						
							| 311 | 13 | rpcnd |  |-  ( ph -> C e. CC ) | 
						
							| 312 | 309 310 311 | addassd |  |-  ( ph -> ( ( ( U x. ( log ` Z ) ) + ( U x. 3 ) ) + C ) = ( ( U x. ( log ` Z ) ) + ( ( U x. 3 ) + C ) ) ) | 
						
							| 313 | 308 312 | eqtrd |  |-  ( ph -> ( ( U x. ( ( log ` Z ) + 3 ) ) + C ) = ( ( U x. ( log ` Z ) ) + ( ( U x. 3 ) + C ) ) ) | 
						
							| 314 | 281 | 2timesd |  |-  ( ph -> ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) = ( ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) + ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) | 
						
							| 315 | 314 | oveq2d |  |-  ( ph -> ( ( ( U x. ( log ` Z ) ) - ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) + ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) = ( ( ( U x. ( log ` Z ) ) - ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) + ( ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) + ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) ) | 
						
							| 316 | 309 281 281 | nppcan3d |  |-  ( ph -> ( ( ( U x. ( log ` Z ) ) - ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) + ( ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) + ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) = ( ( U x. ( log ` Z ) ) + ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) | 
						
							| 317 | 315 316 | eqtrd |  |-  ( ph -> ( ( ( U x. ( log ` Z ) ) - ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) + ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) = ( ( U x. ( log ` Z ) ) + ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) | 
						
							| 318 | 305 313 317 | 3brtr4d |  |-  ( ph -> ( ( U x. ( ( log ` Z ) + 3 ) ) + C ) <_ ( ( ( U x. ( log ` Z ) ) - ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) + ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) ) | 
						
							| 319 | 35 62 | readdcld |  |-  ( ph -> ( ( U x. ( ( log ` Z ) + 3 ) ) + C ) e. RR ) | 
						
							| 320 | 319 60 131 | lesubaddd |  |-  ( ph -> ( ( ( ( U x. ( ( log ` Z ) + 3 ) ) + C ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) <_ ( ( U x. ( log ` Z ) ) - ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) <-> ( ( U x. ( ( log ` Z ) + 3 ) ) + C ) <_ ( ( ( U x. ( log ` Z ) ) - ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) + ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) ) ) | 
						
							| 321 | 318 320 | mpbird |  |-  ( ph -> ( ( ( U x. ( ( log ` Z ) + 3 ) ) + C ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) <_ ( ( U x. ( log ` Z ) ) - ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) | 
						
							| 322 | 278 311 279 | addsubd |  |-  ( ph -> ( ( ( U x. ( ( log ` Z ) + 3 ) ) + C ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) = ( ( ( U x. ( ( log ` Z ) + 3 ) ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) + C ) ) | 
						
							| 323 | 321 322 129 | 3brtr3d |  |-  ( ph -> ( ( ( U x. ( ( log ` Z ) + 3 ) ) - ( 2 x. ( ( ( U - E ) x. ( ( L x. ( E ^ 2 ) ) / ( ; 3 2 x. B ) ) ) x. ( log ` Z ) ) ) ) + C ) <_ ( ( U - ( F x. ( U ^ 3 ) ) ) x. ( log ` Z ) ) ) | 
						
							| 324 | 30 63 132 299 323 | letrd |  |-  ( ph -> ( ( abs ` ( ( R ` Z ) / Z ) ) x. ( log ` Z ) ) <_ ( ( U - ( F x. ( U ^ 3 ) ) ) x. ( log ` Z ) ) ) | 
						
							| 325 |  | 3z |  |-  3 e. ZZ | 
						
							| 326 |  | rpexpcl |  |-  ( ( U e. RR+ /\ 3 e. ZZ ) -> ( U ^ 3 ) e. RR+ ) | 
						
							| 327 | 7 325 326 | sylancl |  |-  ( ph -> ( U ^ 3 ) e. RR+ ) | 
						
							| 328 | 101 327 | rpmulcld |  |-  ( ph -> ( F x. ( U ^ 3 ) ) e. RR+ ) | 
						
							| 329 | 328 | rpred |  |-  ( ph -> ( F x. ( U ^ 3 ) ) e. RR ) | 
						
							| 330 | 31 329 | resubcld |  |-  ( ph -> ( U - ( F x. ( U ^ 3 ) ) ) e. RR ) | 
						
							| 331 | 28 330 136 | lemul1d |  |-  ( ph -> ( ( abs ` ( ( R ` Z ) / Z ) ) <_ ( U - ( F x. ( U ^ 3 ) ) ) <-> ( ( abs ` ( ( R ` Z ) / Z ) ) x. ( log ` Z ) ) <_ ( ( U - ( F x. ( U ^ 3 ) ) ) x. ( log ` Z ) ) ) ) | 
						
							| 332 | 324 331 | mpbird |  |-  ( ph -> ( abs ` ( ( R ` Z ) / Z ) ) <_ ( U - ( F x. ( U ^ 3 ) ) ) ) |