| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reparpht.1 |
|- ( ph -> F e. ( II Cn J ) ) |
| 2 |
|
reparpht.2 |
|- ( ph -> G e. ( II Cn II ) ) |
| 3 |
|
reparpht.3 |
|- ( ph -> ( G ` 0 ) = 0 ) |
| 4 |
|
reparpht.4 |
|- ( ph -> ( G ` 1 ) = 1 ) |
| 5 |
|
reparphtiOLD.5 |
|- H = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( F ` ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) ) |
| 6 |
|
cnco |
|- ( ( G e. ( II Cn II ) /\ F e. ( II Cn J ) ) -> ( F o. G ) e. ( II Cn J ) ) |
| 7 |
2 1 6
|
syl2anc |
|- ( ph -> ( F o. G ) e. ( II Cn J ) ) |
| 8 |
|
iitopon |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |
| 9 |
8
|
a1i |
|- ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) |
| 10 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 11 |
10
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
| 12 |
|
cnrest2r |
|- ( ( TopOpen ` CCfld ) e. Top -> ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) C_ ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) ) |
| 13 |
11 12
|
mp1i |
|- ( ph -> ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) C_ ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) ) |
| 14 |
9 9
|
cnmpt2nd |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> y ) e. ( ( II tX II ) Cn II ) ) |
| 15 |
|
iirevcn |
|- ( z e. ( 0 [,] 1 ) |-> ( 1 - z ) ) e. ( II Cn II ) |
| 16 |
15
|
a1i |
|- ( ph -> ( z e. ( 0 [,] 1 ) |-> ( 1 - z ) ) e. ( II Cn II ) ) |
| 17 |
|
oveq2 |
|- ( z = y -> ( 1 - z ) = ( 1 - y ) ) |
| 18 |
9 9 14 9 16 17
|
cnmpt21 |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( 1 - y ) ) e. ( ( II tX II ) Cn II ) ) |
| 19 |
10
|
dfii3 |
|- II = ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) |
| 20 |
19
|
oveq2i |
|- ( ( II tX II ) Cn II ) = ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) |
| 21 |
18 20
|
eleqtrdi |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( 1 - y ) ) e. ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) ) |
| 22 |
13 21
|
sseldd |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( 1 - y ) ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) ) |
| 23 |
9 9
|
cnmpt1st |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> x ) e. ( ( II tX II ) Cn II ) ) |
| 24 |
9 9 23 2
|
cnmpt21f |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( G ` x ) ) e. ( ( II tX II ) Cn II ) ) |
| 25 |
24 20
|
eleqtrdi |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( G ` x ) ) e. ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) ) |
| 26 |
13 25
|
sseldd |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( G ` x ) ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) ) |
| 27 |
10
|
mulcn |
|- x. e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 28 |
27
|
a1i |
|- ( ph -> x. e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 29 |
9 9 22 26 28
|
cnmpt22f |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( 1 - y ) x. ( G ` x ) ) ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) ) |
| 30 |
14 20
|
eleqtrdi |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> y ) e. ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) ) |
| 31 |
13 30
|
sseldd |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> y ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) ) |
| 32 |
23 20
|
eleqtrdi |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> x ) e. ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) ) |
| 33 |
13 32
|
sseldd |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> x ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) ) |
| 34 |
9 9 31 33 28
|
cnmpt22f |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( y x. x ) ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) ) |
| 35 |
10
|
addcn |
|- + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 36 |
35
|
a1i |
|- ( ph -> + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 37 |
9 9 29 34 36
|
cnmpt22f |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) ) |
| 38 |
10
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 39 |
38
|
a1i |
|- ( ph -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 40 |
|
iiuni |
|- ( 0 [,] 1 ) = U. II |
| 41 |
40 40
|
cnf |
|- ( G e. ( II Cn II ) -> G : ( 0 [,] 1 ) --> ( 0 [,] 1 ) ) |
| 42 |
2 41
|
syl |
|- ( ph -> G : ( 0 [,] 1 ) --> ( 0 [,] 1 ) ) |
| 43 |
42
|
ffvelcdmda |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( G ` x ) e. ( 0 [,] 1 ) ) |
| 44 |
43
|
adantrr |
|- ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> ( G ` x ) e. ( 0 [,] 1 ) ) |
| 45 |
|
simprl |
|- ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> x e. ( 0 [,] 1 ) ) |
| 46 |
|
simprr |
|- ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> y e. ( 0 [,] 1 ) ) |
| 47 |
|
0re |
|- 0 e. RR |
| 48 |
|
1re |
|- 1 e. RR |
| 49 |
|
icccvx |
|- ( ( 0 e. RR /\ 1 e. RR ) -> ( ( ( G ` x ) e. ( 0 [,] 1 ) /\ x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) -> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) e. ( 0 [,] 1 ) ) ) |
| 50 |
47 48 49
|
mp2an |
|- ( ( ( G ` x ) e. ( 0 [,] 1 ) /\ x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) -> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) e. ( 0 [,] 1 ) ) |
| 51 |
44 45 46 50
|
syl3anc |
|- ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) e. ( 0 [,] 1 ) ) |
| 52 |
51
|
ralrimivva |
|- ( ph -> A. x e. ( 0 [,] 1 ) A. y e. ( 0 [,] 1 ) ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) e. ( 0 [,] 1 ) ) |
| 53 |
|
eqid |
|- ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) |
| 54 |
53
|
fmpo |
|- ( A. x e. ( 0 [,] 1 ) A. y e. ( 0 [,] 1 ) ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) e. ( 0 [,] 1 ) <-> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> ( 0 [,] 1 ) ) |
| 55 |
52 54
|
sylib |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> ( 0 [,] 1 ) ) |
| 56 |
55
|
frnd |
|- ( ph -> ran ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) C_ ( 0 [,] 1 ) ) |
| 57 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
| 58 |
|
ax-resscn |
|- RR C_ CC |
| 59 |
57 58
|
sstri |
|- ( 0 [,] 1 ) C_ CC |
| 60 |
59
|
a1i |
|- ( ph -> ( 0 [,] 1 ) C_ CC ) |
| 61 |
|
cnrest2 |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) C_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) C_ CC ) -> ( ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) <-> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) e. ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) ) ) |
| 62 |
39 56 60 61
|
syl3anc |
|- ( ph -> ( ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) e. ( ( II tX II ) Cn ( TopOpen ` CCfld ) ) <-> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) e. ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) ) ) |
| 63 |
37 62
|
mpbid |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) e. ( ( II tX II ) Cn ( ( TopOpen ` CCfld ) |`t ( 0 [,] 1 ) ) ) ) |
| 64 |
63 20
|
eleqtrrdi |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) e. ( ( II tX II ) Cn II ) ) |
| 65 |
9 9 64 1
|
cnmpt21f |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( F ` ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) ) e. ( ( II tX II ) Cn J ) ) |
| 66 |
5 65
|
eqeltrid |
|- ( ph -> H e. ( ( II tX II ) Cn J ) ) |
| 67 |
42
|
ffvelcdmda |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( G ` s ) e. ( 0 [,] 1 ) ) |
| 68 |
59 67
|
sselid |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( G ` s ) e. CC ) |
| 69 |
68
|
mullidd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 x. ( G ` s ) ) = ( G ` s ) ) |
| 70 |
59
|
sseli |
|- ( s e. ( 0 [,] 1 ) -> s e. CC ) |
| 71 |
70
|
adantl |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> s e. CC ) |
| 72 |
71
|
mul02d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 x. s ) = 0 ) |
| 73 |
69 72
|
oveq12d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 1 x. ( G ` s ) ) + ( 0 x. s ) ) = ( ( G ` s ) + 0 ) ) |
| 74 |
68
|
addridd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( G ` s ) + 0 ) = ( G ` s ) ) |
| 75 |
73 74
|
eqtrd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 1 x. ( G ` s ) ) + ( 0 x. s ) ) = ( G ` s ) ) |
| 76 |
75
|
fveq2d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` ( ( 1 x. ( G ` s ) ) + ( 0 x. s ) ) ) = ( F ` ( G ` s ) ) ) |
| 77 |
|
simpr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> s e. ( 0 [,] 1 ) ) |
| 78 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
| 79 |
|
simpr |
|- ( ( x = s /\ y = 0 ) -> y = 0 ) |
| 80 |
79
|
oveq2d |
|- ( ( x = s /\ y = 0 ) -> ( 1 - y ) = ( 1 - 0 ) ) |
| 81 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
| 82 |
80 81
|
eqtrdi |
|- ( ( x = s /\ y = 0 ) -> ( 1 - y ) = 1 ) |
| 83 |
|
simpl |
|- ( ( x = s /\ y = 0 ) -> x = s ) |
| 84 |
83
|
fveq2d |
|- ( ( x = s /\ y = 0 ) -> ( G ` x ) = ( G ` s ) ) |
| 85 |
82 84
|
oveq12d |
|- ( ( x = s /\ y = 0 ) -> ( ( 1 - y ) x. ( G ` x ) ) = ( 1 x. ( G ` s ) ) ) |
| 86 |
79 83
|
oveq12d |
|- ( ( x = s /\ y = 0 ) -> ( y x. x ) = ( 0 x. s ) ) |
| 87 |
85 86
|
oveq12d |
|- ( ( x = s /\ y = 0 ) -> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) = ( ( 1 x. ( G ` s ) ) + ( 0 x. s ) ) ) |
| 88 |
87
|
fveq2d |
|- ( ( x = s /\ y = 0 ) -> ( F ` ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) = ( F ` ( ( 1 x. ( G ` s ) ) + ( 0 x. s ) ) ) ) |
| 89 |
|
fvex |
|- ( F ` ( ( 1 x. ( G ` s ) ) + ( 0 x. s ) ) ) e. _V |
| 90 |
88 5 89
|
ovmpoa |
|- ( ( s e. ( 0 [,] 1 ) /\ 0 e. ( 0 [,] 1 ) ) -> ( s H 0 ) = ( F ` ( ( 1 x. ( G ` s ) ) + ( 0 x. s ) ) ) ) |
| 91 |
77 78 90
|
sylancl |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s H 0 ) = ( F ` ( ( 1 x. ( G ` s ) ) + ( 0 x. s ) ) ) ) |
| 92 |
|
fvco3 |
|- ( ( G : ( 0 [,] 1 ) --> ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> ( ( F o. G ) ` s ) = ( F ` ( G ` s ) ) ) |
| 93 |
42 92
|
sylan |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( F o. G ) ` s ) = ( F ` ( G ` s ) ) ) |
| 94 |
76 91 93
|
3eqtr4d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s H 0 ) = ( ( F o. G ) ` s ) ) |
| 95 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
| 96 |
|
simpr |
|- ( ( x = s /\ y = 1 ) -> y = 1 ) |
| 97 |
96
|
oveq2d |
|- ( ( x = s /\ y = 1 ) -> ( 1 - y ) = ( 1 - 1 ) ) |
| 98 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 99 |
97 98
|
eqtrdi |
|- ( ( x = s /\ y = 1 ) -> ( 1 - y ) = 0 ) |
| 100 |
|
simpl |
|- ( ( x = s /\ y = 1 ) -> x = s ) |
| 101 |
100
|
fveq2d |
|- ( ( x = s /\ y = 1 ) -> ( G ` x ) = ( G ` s ) ) |
| 102 |
99 101
|
oveq12d |
|- ( ( x = s /\ y = 1 ) -> ( ( 1 - y ) x. ( G ` x ) ) = ( 0 x. ( G ` s ) ) ) |
| 103 |
96 100
|
oveq12d |
|- ( ( x = s /\ y = 1 ) -> ( y x. x ) = ( 1 x. s ) ) |
| 104 |
102 103
|
oveq12d |
|- ( ( x = s /\ y = 1 ) -> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) = ( ( 0 x. ( G ` s ) ) + ( 1 x. s ) ) ) |
| 105 |
104
|
fveq2d |
|- ( ( x = s /\ y = 1 ) -> ( F ` ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) = ( F ` ( ( 0 x. ( G ` s ) ) + ( 1 x. s ) ) ) ) |
| 106 |
|
fvex |
|- ( F ` ( ( 0 x. ( G ` s ) ) + ( 1 x. s ) ) ) e. _V |
| 107 |
105 5 106
|
ovmpoa |
|- ( ( s e. ( 0 [,] 1 ) /\ 1 e. ( 0 [,] 1 ) ) -> ( s H 1 ) = ( F ` ( ( 0 x. ( G ` s ) ) + ( 1 x. s ) ) ) ) |
| 108 |
77 95 107
|
sylancl |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s H 1 ) = ( F ` ( ( 0 x. ( G ` s ) ) + ( 1 x. s ) ) ) ) |
| 109 |
68
|
mul02d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 x. ( G ` s ) ) = 0 ) |
| 110 |
71
|
mullidd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 x. s ) = s ) |
| 111 |
109 110
|
oveq12d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 0 x. ( G ` s ) ) + ( 1 x. s ) ) = ( 0 + s ) ) |
| 112 |
71
|
addlidd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 + s ) = s ) |
| 113 |
111 112
|
eqtrd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 0 x. ( G ` s ) ) + ( 1 x. s ) ) = s ) |
| 114 |
113
|
fveq2d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` ( ( 0 x. ( G ` s ) ) + ( 1 x. s ) ) ) = ( F ` s ) ) |
| 115 |
108 114
|
eqtrd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s H 1 ) = ( F ` s ) ) |
| 116 |
3
|
adantr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( G ` 0 ) = 0 ) |
| 117 |
116
|
oveq2d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 1 - s ) x. ( G ` 0 ) ) = ( ( 1 - s ) x. 0 ) ) |
| 118 |
|
ax-1cn |
|- 1 e. CC |
| 119 |
|
subcl |
|- ( ( 1 e. CC /\ s e. CC ) -> ( 1 - s ) e. CC ) |
| 120 |
118 71 119
|
sylancr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 - s ) e. CC ) |
| 121 |
120
|
mul01d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 1 - s ) x. 0 ) = 0 ) |
| 122 |
117 121
|
eqtrd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 1 - s ) x. ( G ` 0 ) ) = 0 ) |
| 123 |
71
|
mul01d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s x. 0 ) = 0 ) |
| 124 |
122 123
|
oveq12d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 1 - s ) x. ( G ` 0 ) ) + ( s x. 0 ) ) = ( 0 + 0 ) ) |
| 125 |
|
00id |
|- ( 0 + 0 ) = 0 |
| 126 |
124 125
|
eqtrdi |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 1 - s ) x. ( G ` 0 ) ) + ( s x. 0 ) ) = 0 ) |
| 127 |
126
|
fveq2d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` ( ( ( 1 - s ) x. ( G ` 0 ) ) + ( s x. 0 ) ) ) = ( F ` 0 ) ) |
| 128 |
|
simpr |
|- ( ( x = 0 /\ y = s ) -> y = s ) |
| 129 |
128
|
oveq2d |
|- ( ( x = 0 /\ y = s ) -> ( 1 - y ) = ( 1 - s ) ) |
| 130 |
|
simpl |
|- ( ( x = 0 /\ y = s ) -> x = 0 ) |
| 131 |
130
|
fveq2d |
|- ( ( x = 0 /\ y = s ) -> ( G ` x ) = ( G ` 0 ) ) |
| 132 |
129 131
|
oveq12d |
|- ( ( x = 0 /\ y = s ) -> ( ( 1 - y ) x. ( G ` x ) ) = ( ( 1 - s ) x. ( G ` 0 ) ) ) |
| 133 |
128 130
|
oveq12d |
|- ( ( x = 0 /\ y = s ) -> ( y x. x ) = ( s x. 0 ) ) |
| 134 |
132 133
|
oveq12d |
|- ( ( x = 0 /\ y = s ) -> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) = ( ( ( 1 - s ) x. ( G ` 0 ) ) + ( s x. 0 ) ) ) |
| 135 |
134
|
fveq2d |
|- ( ( x = 0 /\ y = s ) -> ( F ` ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) = ( F ` ( ( ( 1 - s ) x. ( G ` 0 ) ) + ( s x. 0 ) ) ) ) |
| 136 |
|
fvex |
|- ( F ` ( ( ( 1 - s ) x. ( G ` 0 ) ) + ( s x. 0 ) ) ) e. _V |
| 137 |
135 5 136
|
ovmpoa |
|- ( ( 0 e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> ( 0 H s ) = ( F ` ( ( ( 1 - s ) x. ( G ` 0 ) ) + ( s x. 0 ) ) ) ) |
| 138 |
78 77 137
|
sylancr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 H s ) = ( F ` ( ( ( 1 - s ) x. ( G ` 0 ) ) + ( s x. 0 ) ) ) ) |
| 139 |
|
fvco3 |
|- ( ( G : ( 0 [,] 1 ) --> ( 0 [,] 1 ) /\ 0 e. ( 0 [,] 1 ) ) -> ( ( F o. G ) ` 0 ) = ( F ` ( G ` 0 ) ) ) |
| 140 |
42 78 139
|
sylancl |
|- ( ph -> ( ( F o. G ) ` 0 ) = ( F ` ( G ` 0 ) ) ) |
| 141 |
3
|
fveq2d |
|- ( ph -> ( F ` ( G ` 0 ) ) = ( F ` 0 ) ) |
| 142 |
140 141
|
eqtrd |
|- ( ph -> ( ( F o. G ) ` 0 ) = ( F ` 0 ) ) |
| 143 |
142
|
adantr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( F o. G ) ` 0 ) = ( F ` 0 ) ) |
| 144 |
127 138 143
|
3eqtr4d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 H s ) = ( ( F o. G ) ` 0 ) ) |
| 145 |
4
|
adantr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( G ` 1 ) = 1 ) |
| 146 |
145
|
oveq2d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 1 - s ) x. ( G ` 1 ) ) = ( ( 1 - s ) x. 1 ) ) |
| 147 |
120
|
mulridd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 1 - s ) x. 1 ) = ( 1 - s ) ) |
| 148 |
146 147
|
eqtrd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 1 - s ) x. ( G ` 1 ) ) = ( 1 - s ) ) |
| 149 |
71
|
mulridd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s x. 1 ) = s ) |
| 150 |
148 149
|
oveq12d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 1 - s ) x. ( G ` 1 ) ) + ( s x. 1 ) ) = ( ( 1 - s ) + s ) ) |
| 151 |
|
npcan |
|- ( ( 1 e. CC /\ s e. CC ) -> ( ( 1 - s ) + s ) = 1 ) |
| 152 |
118 71 151
|
sylancr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 1 - s ) + s ) = 1 ) |
| 153 |
150 152
|
eqtrd |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( ( 1 - s ) x. ( G ` 1 ) ) + ( s x. 1 ) ) = 1 ) |
| 154 |
153
|
fveq2d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` ( ( ( 1 - s ) x. ( G ` 1 ) ) + ( s x. 1 ) ) ) = ( F ` 1 ) ) |
| 155 |
|
simpr |
|- ( ( x = 1 /\ y = s ) -> y = s ) |
| 156 |
155
|
oveq2d |
|- ( ( x = 1 /\ y = s ) -> ( 1 - y ) = ( 1 - s ) ) |
| 157 |
|
simpl |
|- ( ( x = 1 /\ y = s ) -> x = 1 ) |
| 158 |
157
|
fveq2d |
|- ( ( x = 1 /\ y = s ) -> ( G ` x ) = ( G ` 1 ) ) |
| 159 |
156 158
|
oveq12d |
|- ( ( x = 1 /\ y = s ) -> ( ( 1 - y ) x. ( G ` x ) ) = ( ( 1 - s ) x. ( G ` 1 ) ) ) |
| 160 |
155 157
|
oveq12d |
|- ( ( x = 1 /\ y = s ) -> ( y x. x ) = ( s x. 1 ) ) |
| 161 |
159 160
|
oveq12d |
|- ( ( x = 1 /\ y = s ) -> ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) = ( ( ( 1 - s ) x. ( G ` 1 ) ) + ( s x. 1 ) ) ) |
| 162 |
161
|
fveq2d |
|- ( ( x = 1 /\ y = s ) -> ( F ` ( ( ( 1 - y ) x. ( G ` x ) ) + ( y x. x ) ) ) = ( F ` ( ( ( 1 - s ) x. ( G ` 1 ) ) + ( s x. 1 ) ) ) ) |
| 163 |
|
fvex |
|- ( F ` ( ( ( 1 - s ) x. ( G ` 1 ) ) + ( s x. 1 ) ) ) e. _V |
| 164 |
162 5 163
|
ovmpoa |
|- ( ( 1 e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> ( 1 H s ) = ( F ` ( ( ( 1 - s ) x. ( G ` 1 ) ) + ( s x. 1 ) ) ) ) |
| 165 |
95 77 164
|
sylancr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 H s ) = ( F ` ( ( ( 1 - s ) x. ( G ` 1 ) ) + ( s x. 1 ) ) ) ) |
| 166 |
|
fvco3 |
|- ( ( G : ( 0 [,] 1 ) --> ( 0 [,] 1 ) /\ 1 e. ( 0 [,] 1 ) ) -> ( ( F o. G ) ` 1 ) = ( F ` ( G ` 1 ) ) ) |
| 167 |
42 95 166
|
sylancl |
|- ( ph -> ( ( F o. G ) ` 1 ) = ( F ` ( G ` 1 ) ) ) |
| 168 |
4
|
fveq2d |
|- ( ph -> ( F ` ( G ` 1 ) ) = ( F ` 1 ) ) |
| 169 |
167 168
|
eqtrd |
|- ( ph -> ( ( F o. G ) ` 1 ) = ( F ` 1 ) ) |
| 170 |
169
|
adantr |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( F o. G ) ` 1 ) = ( F ` 1 ) ) |
| 171 |
154 165 170
|
3eqtr4d |
|- ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 H s ) = ( ( F o. G ) ` 1 ) ) |
| 172 |
7 1 66 94 115 144 171
|
isphtpy2d |
|- ( ph -> H e. ( ( F o. G ) ( PHtpy ` J ) F ) ) |