Metamath Proof Explorer


Theorem 0nodd

Description: 0 is not an odd integer. (Contributed by AV, 3-Feb-2020)

Ref Expression
Hypothesis oddinmgm.e O = z | x z = 2 x + 1
Assertion 0nodd 0 O

Proof

Step Hyp Ref Expression
1 oddinmgm.e O = z | x z = 2 x + 1
2 halfnz ¬ 1 2
3 eleq1 1 2 = x 1 2 x
4 2 3 mtbii 1 2 = x ¬ x
5 znegcl x x
6 4 5 nsyl3 x ¬ 1 2 = x
7 eqcom x = 1 2 1 2 = x
8 6 7 sylnibr x ¬ x = 1 2
9 ax-1cn 1
10 2cn 2
11 2ne0 2 0
12 divneg 1 2 2 0 1 2 = 1 2
13 12 eqcomd 1 2 2 0 1 2 = 1 2
14 9 10 11 13 mp3an 1 2 = 1 2
15 14 a1i x 1 2 = 1 2
16 15 eqeq1d x 1 2 = x 1 2 = x
17 halfcn 1 2
18 17 a1i x 1 2
19 zcn x x
20 18 19 negcon1d x 1 2 = x x = 1 2
21 16 20 bitrd x 1 2 = x x = 1 2
22 8 21 mtbird x ¬ 1 2 = x
23 neg1cn 1
24 23 a1i x 1
25 2cnd x 2
26 11 a1i x 2 0
27 24 19 25 26 divmul2d x 1 2 = x 1 = 2 x
28 22 27 mtbid x ¬ 1 = 2 x
29 eqcom 0 = 2 x + 1 2 x + 1 = 0
30 29 a1i x 0 = 2 x + 1 2 x + 1 = 0
31 0cnd x 0
32 1cnd x 1
33 25 19 mulcld x 2 x
34 subadd2 0 1 2 x 0 1 = 2 x 2 x + 1 = 0
35 34 bicomd 0 1 2 x 2 x + 1 = 0 0 1 = 2 x
36 31 32 33 35 syl3anc x 2 x + 1 = 0 0 1 = 2 x
37 df-neg 1 = 0 1
38 37 eqcomi 0 1 = 1
39 38 a1i x 0 1 = 1
40 39 eqeq1d x 0 1 = 2 x 1 = 2 x
41 30 36 40 3bitrd x 0 = 2 x + 1 1 = 2 x
42 28 41 mtbird x ¬ 0 = 2 x + 1
43 42 nrex ¬ x 0 = 2 x + 1
44 43 intnan ¬ 0 x 0 = 2 x + 1
45 eqeq1 z = 0 z = 2 x + 1 0 = 2 x + 1
46 45 rexbidv z = 0 x z = 2 x + 1 x 0 = 2 x + 1
47 46 1 elrab2 0 O 0 x 0 = 2 x + 1
48 44 47 mtbir ¬ 0 O
49 48 nelir 0 O