Metamath Proof Explorer


Theorem 2idlcpblrng

Description: The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015) Generalization for non-unital rings and two-sided ideals which are subgroups of the additive group of the non-unital ring. (Revised by AV, 23-Feb-2025) TODO: Replace 2idlcpbl if moved to main.

Ref Expression
Hypotheses 2idlcpblrng.x X=BaseR
2idlcpblrng.r E=R~QGS
2idlcpblrng.i I=2IdealR
2idlcpblrng.t ·˙=R
Assertion 2idlcpblrng RRngSISSubGrpRAECBEDA·˙BEC·˙D

Proof

Step Hyp Ref Expression
1 2idlcpblrng.x X=BaseR
2 2idlcpblrng.r E=R~QGS
3 2idlcpblrng.i I=2IdealR
4 2idlcpblrng.t ·˙=R
5 simpl1 RRngSISSubGrpRAECBEDRRng
6 simpl3 RRngSISSubGrpRAECBEDSSubGrpR
7 1 2 eqger SSubGrpREErX
8 6 7 syl RRngSISSubGrpRAECBEDEErX
9 simprl RRngSISSubGrpRAECBEDAEC
10 8 9 ersym RRngSISSubGrpRAECBEDCEA
11 rngabl RRngRAbel
12 11 3ad2ant1 RRngSISSubGrpRRAbel
13 eqid LIdealR=LIdealR
14 eqid opprR=opprR
15 eqid LIdealopprR=LIdealopprR
16 13 14 15 3 2idlelb SISLIdealRSLIdealopprR
17 16 simplbi SISLIdealR
18 17 3ad2ant2 RRngSISSubGrpRSLIdealR
19 18 adantr RRngSISSubGrpRAECBEDSLIdealR
20 1 13 lidlss SLIdealRSX
21 19 20 syl RRngSISSubGrpRAECBEDSX
22 eqid -R=-R
23 1 22 2 eqgabl RAbelSXCEACXAXA-RCS
24 12 21 23 syl2an2r RRngSISSubGrpRAECBEDCEACXAXA-RCS
25 10 24 mpbid RRngSISSubGrpRAECBEDCXAXA-RCS
26 25 simp2d RRngSISSubGrpRAECBEDAX
27 simprr RRngSISSubGrpRAECBEDBED
28 1 22 2 eqgabl RAbelSXBEDBXDXD-RBS
29 12 21 28 syl2an2r RRngSISSubGrpRAECBEDBEDBXDXD-RBS
30 27 29 mpbid RRngSISSubGrpRAECBEDBXDXD-RBS
31 30 simp1d RRngSISSubGrpRAECBEDBX
32 1 4 rngcl RRngAXBXA·˙BX
33 5 26 31 32 syl3anc RRngSISSubGrpRAECBEDA·˙BX
34 25 simp1d RRngSISSubGrpRAECBEDCX
35 30 simp2d RRngSISSubGrpRAECBEDDX
36 1 4 rngcl RRngCXDXC·˙DX
37 5 34 35 36 syl3anc RRngSISSubGrpRAECBEDC·˙DX
38 rnggrp RRngRGrp
39 38 3ad2ant1 RRngSISSubGrpRRGrp
40 39 adantr RRngSISSubGrpRAECBEDRGrp
41 1 4 rngcl RRngCXBXC·˙BX
42 5 34 31 41 syl3anc RRngSISSubGrpRAECBEDC·˙BX
43 1 22 grpnnncan2 RGrpC·˙DXA·˙BXC·˙BXC·˙D-RC·˙B-RA·˙B-RC·˙B=C·˙D-RA·˙B
44 40 37 33 42 43 syl13anc RRngSISSubGrpRAECBEDC·˙D-RC·˙B-RA·˙B-RC·˙B=C·˙D-RA·˙B
45 1 4 22 5 34 35 31 rngsubdi RRngSISSubGrpRAECBEDC·˙D-RB=C·˙D-RC·˙B
46 eqid 0R=0R
47 46 subg0cl SSubGrpR0RS
48 47 3ad2ant3 RRngSISSubGrpR0RS
49 48 adantr RRngSISSubGrpRAECBED0RS
50 30 simp3d RRngSISSubGrpRAECBEDD-RBS
51 46 1 4 13 rnglidlmcl RRngSLIdealR0RSCXD-RBSC·˙D-RBS
52 5 19 49 34 50 51 syl32anc RRngSISSubGrpRAECBEDC·˙D-RBS
53 45 52 eqeltrrd RRngSISSubGrpRAECBEDC·˙D-RC·˙BS
54 eqid opprR=opprR
55 1 4 14 54 opprmul BopprRA-RC=A-RC·˙B
56 1 4 22 5 26 34 31 rngsubdir RRngSISSubGrpRAECBEDA-RC·˙B=A·˙B-RC·˙B
57 55 56 eqtrid RRngSISSubGrpRAECBEDBopprRA-RC=A·˙B-RC·˙B
58 14 opprrng RRngopprRRng
59 58 3ad2ant1 RRngSISSubGrpRopprRRng
60 59 adantr RRngSISSubGrpRAECBEDopprRRng
61 16 simprbi SISLIdealopprR
62 61 3ad2ant2 RRngSISSubGrpRSLIdealopprR
63 62 adantr RRngSISSubGrpRAECBEDSLIdealopprR
64 25 simp3d RRngSISSubGrpRAECBEDA-RCS
65 14 46 oppr0 0R=0opprR
66 14 1 opprbas X=BaseopprR
67 65 66 54 15 rnglidlmcl opprRRngSLIdealopprR0RSBXA-RCSBopprRA-RCS
68 60 63 49 31 64 67 syl32anc RRngSISSubGrpRAECBEDBopprRA-RCS
69 57 68 eqeltrrd RRngSISSubGrpRAECBEDA·˙B-RC·˙BS
70 22 subgsubcl SSubGrpRC·˙D-RC·˙BSA·˙B-RC·˙BSC·˙D-RC·˙B-RA·˙B-RC·˙BS
71 6 53 69 70 syl3anc RRngSISSubGrpRAECBEDC·˙D-RC·˙B-RA·˙B-RC·˙BS
72 44 71 eqeltrrd RRngSISSubGrpRAECBEDC·˙D-RA·˙BS
73 1 22 2 eqgabl RAbelSXA·˙BEC·˙DA·˙BXC·˙DXC·˙D-RA·˙BS
74 12 21 73 syl2an2r RRngSISSubGrpRAECBEDA·˙BEC·˙DA·˙BXC·˙DXC·˙D-RA·˙BS
75 33 37 72 74 mpbir3and RRngSISSubGrpRAECBEDA·˙BEC·˙D
76 75 ex RRngSISSubGrpRAECBEDA·˙BEC·˙D