Metamath Proof Explorer


Theorem 2lgslem3d

Description: Lemma for 2lgslem3d1 . (Contributed by AV, 16-Jul-2021)

Ref Expression
Hypothesis 2lgslem2.n N=P12P4
Assertion 2lgslem3d K0P=8K+7N=2K+2

Proof

Step Hyp Ref Expression
1 2lgslem2.n N=P12P4
2 oveq1 P=8K+7P1=8K+7-1
3 2 oveq1d P=8K+7P12=8K+7-12
4 fvoveq1 P=8K+7P4=8K+74
5 3 4 oveq12d P=8K+7P12P4=8K+7-128K+74
6 1 5 eqtrid P=8K+7N=8K+7-128K+74
7 8nn0 80
8 7 a1i K080
9 id K0K0
10 8 9 nn0mulcld K08K0
11 10 nn0cnd K08K
12 7cn 7
13 12 a1i K07
14 1cnd K01
15 11 13 14 addsubassd K08K+7-1=8K+7-1
16 4t2e8 42=8
17 16 eqcomi 8=42
18 17 a1i K08=42
19 18 oveq1d K08K=42K
20 4cn 4
21 20 a1i K04
22 2cn 2
23 22 a1i K02
24 nn0cn K0K
25 21 23 24 mul32d K042K=4K2
26 19 25 eqtrd K08K=4K2
27 7m1e6 71=6
28 27 a1i K071=6
29 26 28 oveq12d K08K+7-1=4K2+6
30 15 29 eqtrd K08K+7-1=4K2+6
31 30 oveq1d K08K+7-12=4K2+62
32 4nn0 40
33 32 a1i K040
34 33 9 nn0mulcld K04K0
35 34 nn0cnd K04K
36 35 23 mulcld K04K2
37 6cn 6
38 37 a1i K06
39 2rp 2+
40 39 a1i K02+
41 40 rpcnne0d K0220
42 divdir 4K262204K2+62=4K22+62
43 36 38 41 42 syl3anc K04K2+62=4K22+62
44 2ne0 20
45 44 a1i K020
46 35 23 45 divcan4d K04K22=4K
47 3t2e6 32=6
48 47 eqcomi 6=32
49 48 oveq1i 62=322
50 3cn 3
51 50 22 44 divcan4i 322=3
52 49 51 eqtri 62=3
53 52 a1i K062=3
54 46 53 oveq12d K04K22+62=4K+3
55 31 43 54 3eqtrd K08K+7-12=4K+3
56 4ne0 40
57 20 56 pm3.2i 440
58 57 a1i K0440
59 divdir 8K74408K+74=8K4+74
60 11 13 58 59 syl3anc K08K+74=8K4+74
61 8cn 8
62 61 a1i K08
63 div23 8K4408K4=84K
64 62 24 58 63 syl3anc K08K4=84K
65 17 oveq1i 84=424
66 22 20 56 divcan3i 424=2
67 65 66 eqtri 84=2
68 67 a1i K084=2
69 68 oveq1d K084K=2K
70 64 69 eqtrd K08K4=2K
71 70 oveq1d K08K4+74=2K+74
72 60 71 eqtrd K08K+74=2K+74
73 72 fveq2d K08K+74=2K+74
74 3lt4 3<4
75 2nn0 20
76 75 a1i K020
77 76 9 nn0mulcld K02K0
78 77 nn0zd K02K
79 78 peano2zd K02K+1
80 3nn0 30
81 80 a1i K030
82 4nn 4
83 82 a1i K04
84 adddivflid 2K+13043<42K+1+34=2K+1
85 79 81 83 84 syl3anc K03<42K+1+34=2K+1
86 23 24 mulcld K02K
87 50 a1i K03
88 56 a1i K040
89 87 21 88 divcld K034
90 86 14 89 addassd K02K+1+34=2K+1+34
91 4p3e7 4+3=7
92 91 eqcomi 7=4+3
93 92 oveq1i 74=4+34
94 20 50 20 56 divdiri 4+34=44+34
95 20 56 dividi 44=1
96 95 oveq1i 44+34=1+34
97 93 94 96 3eqtri 74=1+34
98 97 a1i K074=1+34
99 98 eqcomd K01+34=74
100 99 oveq2d K02K+1+34=2K+74
101 90 100 eqtrd K02K+1+34=2K+74
102 101 fveqeq2d K02K+1+34=2K+12K+74=2K+1
103 85 102 bitrd K03<42K+74=2K+1
104 74 103 mpbii K02K+74=2K+1
105 73 104 eqtrd K08K+74=2K+1
106 55 105 oveq12d K08K+7-128K+74=4K+3-2K+1
107 77 nn0cnd K02K
108 35 87 107 14 addsub4d K04K+3-2K+1=4K2K+3-1
109 2t2e4 22=4
110 109 eqcomi 4=22
111 110 a1i K04=22
112 111 oveq1d K04K=22K
113 23 23 24 mulassd K022K=22K
114 112 113 eqtrd K04K=22K
115 114 oveq1d K04K2K=22K2K
116 2txmxeqx 2K22K2K=2K
117 107 116 syl K022K2K=2K
118 115 117 eqtrd K04K2K=2K
119 3m1e2 31=2
120 119 a1i K031=2
121 118 120 oveq12d K04K2K+3-1=2K+2
122 106 108 121 3eqtrd K08K+7-128K+74=2K+2
123 6 122 sylan9eqr K0P=8K+7N=2K+2