Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Quadratic reciprocity
2lgslem3d
Next ⟩
2lgslem3a1
Metamath Proof Explorer
Ascii
Unicode
Theorem
2lgslem3d
Description:
Lemma for
2lgslem3d1
.
(Contributed by
AV
, 16-Jul-2021)
Ref
Expression
Hypothesis
2lgslem2.n
⊢
N
=
P
−
1
2
−
P
4
Assertion
2lgslem3d
⊢
K
∈
ℕ
0
∧
P
=
8
K
+
7
→
N
=
2
K
+
2
Proof
Step
Hyp
Ref
Expression
1
2lgslem2.n
⊢
N
=
P
−
1
2
−
P
4
2
oveq1
⊢
P
=
8
K
+
7
→
P
−
1
=
8
K
+
7
-
1
3
2
oveq1d
⊢
P
=
8
K
+
7
→
P
−
1
2
=
8
K
+
7
-
1
2
4
fvoveq1
⊢
P
=
8
K
+
7
→
P
4
=
8
K
+
7
4
5
3
4
oveq12d
⊢
P
=
8
K
+
7
→
P
−
1
2
−
P
4
=
8
K
+
7
-
1
2
−
8
K
+
7
4
6
1
5
eqtrid
⊢
P
=
8
K
+
7
→
N
=
8
K
+
7
-
1
2
−
8
K
+
7
4
7
8nn0
⊢
8
∈
ℕ
0
8
7
a1i
⊢
K
∈
ℕ
0
→
8
∈
ℕ
0
9
id
⊢
K
∈
ℕ
0
→
K
∈
ℕ
0
10
8
9
nn0mulcld
⊢
K
∈
ℕ
0
→
8
K
∈
ℕ
0
11
10
nn0cnd
⊢
K
∈
ℕ
0
→
8
K
∈
ℂ
12
7cn
⊢
7
∈
ℂ
13
12
a1i
⊢
K
∈
ℕ
0
→
7
∈
ℂ
14
1cnd
⊢
K
∈
ℕ
0
→
1
∈
ℂ
15
11
13
14
addsubassd
⊢
K
∈
ℕ
0
→
8
K
+
7
-
1
=
8
K
+
7
-
1
16
4t2e8
⊢
4
⋅
2
=
8
17
16
eqcomi
⊢
8
=
4
⋅
2
18
17
a1i
⊢
K
∈
ℕ
0
→
8
=
4
⋅
2
19
18
oveq1d
⊢
K
∈
ℕ
0
→
8
K
=
4
⋅
2
K
20
4cn
⊢
4
∈
ℂ
21
20
a1i
⊢
K
∈
ℕ
0
→
4
∈
ℂ
22
2cn
⊢
2
∈
ℂ
23
22
a1i
⊢
K
∈
ℕ
0
→
2
∈
ℂ
24
nn0cn
⊢
K
∈
ℕ
0
→
K
∈
ℂ
25
21
23
24
mul32d
⊢
K
∈
ℕ
0
→
4
⋅
2
K
=
4
K
⋅
2
26
19
25
eqtrd
⊢
K
∈
ℕ
0
→
8
K
=
4
K
⋅
2
27
7m1e6
⊢
7
−
1
=
6
28
27
a1i
⊢
K
∈
ℕ
0
→
7
−
1
=
6
29
26
28
oveq12d
⊢
K
∈
ℕ
0
→
8
K
+
7
-
1
=
4
K
⋅
2
+
6
30
15
29
eqtrd
⊢
K
∈
ℕ
0
→
8
K
+
7
-
1
=
4
K
⋅
2
+
6
31
30
oveq1d
⊢
K
∈
ℕ
0
→
8
K
+
7
-
1
2
=
4
K
⋅
2
+
6
2
32
4nn0
⊢
4
∈
ℕ
0
33
32
a1i
⊢
K
∈
ℕ
0
→
4
∈
ℕ
0
34
33
9
nn0mulcld
⊢
K
∈
ℕ
0
→
4
K
∈
ℕ
0
35
34
nn0cnd
⊢
K
∈
ℕ
0
→
4
K
∈
ℂ
36
35
23
mulcld
⊢
K
∈
ℕ
0
→
4
K
⋅
2
∈
ℂ
37
6cn
⊢
6
∈
ℂ
38
37
a1i
⊢
K
∈
ℕ
0
→
6
∈
ℂ
39
2rp
⊢
2
∈
ℝ
+
40
39
a1i
⊢
K
∈
ℕ
0
→
2
∈
ℝ
+
41
40
rpcnne0d
⊢
K
∈
ℕ
0
→
2
∈
ℂ
∧
2
≠
0
42
divdir
⊢
4
K
⋅
2
∈
ℂ
∧
6
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
→
4
K
⋅
2
+
6
2
=
4
K
⋅
2
2
+
6
2
43
36
38
41
42
syl3anc
⊢
K
∈
ℕ
0
→
4
K
⋅
2
+
6
2
=
4
K
⋅
2
2
+
6
2
44
2ne0
⊢
2
≠
0
45
44
a1i
⊢
K
∈
ℕ
0
→
2
≠
0
46
35
23
45
divcan4d
⊢
K
∈
ℕ
0
→
4
K
⋅
2
2
=
4
K
47
3t2e6
⊢
3
⋅
2
=
6
48
47
eqcomi
⊢
6
=
3
⋅
2
49
48
oveq1i
⊢
6
2
=
3
⋅
2
2
50
3cn
⊢
3
∈
ℂ
51
50
22
44
divcan4i
⊢
3
⋅
2
2
=
3
52
49
51
eqtri
⊢
6
2
=
3
53
52
a1i
⊢
K
∈
ℕ
0
→
6
2
=
3
54
46
53
oveq12d
⊢
K
∈
ℕ
0
→
4
K
⋅
2
2
+
6
2
=
4
K
+
3
55
31
43
54
3eqtrd
⊢
K
∈
ℕ
0
→
8
K
+
7
-
1
2
=
4
K
+
3
56
4ne0
⊢
4
≠
0
57
20
56
pm3.2i
⊢
4
∈
ℂ
∧
4
≠
0
58
57
a1i
⊢
K
∈
ℕ
0
→
4
∈
ℂ
∧
4
≠
0
59
divdir
⊢
8
K
∈
ℂ
∧
7
∈
ℂ
∧
4
∈
ℂ
∧
4
≠
0
→
8
K
+
7
4
=
8
K
4
+
7
4
60
11
13
58
59
syl3anc
⊢
K
∈
ℕ
0
→
8
K
+
7
4
=
8
K
4
+
7
4
61
8cn
⊢
8
∈
ℂ
62
61
a1i
⊢
K
∈
ℕ
0
→
8
∈
ℂ
63
div23
⊢
8
∈
ℂ
∧
K
∈
ℂ
∧
4
∈
ℂ
∧
4
≠
0
→
8
K
4
=
8
4
K
64
62
24
58
63
syl3anc
⊢
K
∈
ℕ
0
→
8
K
4
=
8
4
K
65
17
oveq1i
⊢
8
4
=
4
⋅
2
4
66
22
20
56
divcan3i
⊢
4
⋅
2
4
=
2
67
65
66
eqtri
⊢
8
4
=
2
68
67
a1i
⊢
K
∈
ℕ
0
→
8
4
=
2
69
68
oveq1d
⊢
K
∈
ℕ
0
→
8
4
K
=
2
K
70
64
69
eqtrd
⊢
K
∈
ℕ
0
→
8
K
4
=
2
K
71
70
oveq1d
⊢
K
∈
ℕ
0
→
8
K
4
+
7
4
=
2
K
+
7
4
72
60
71
eqtrd
⊢
K
∈
ℕ
0
→
8
K
+
7
4
=
2
K
+
7
4
73
72
fveq2d
⊢
K
∈
ℕ
0
→
8
K
+
7
4
=
2
K
+
7
4
74
3lt4
⊢
3
<
4
75
2nn0
⊢
2
∈
ℕ
0
76
75
a1i
⊢
K
∈
ℕ
0
→
2
∈
ℕ
0
77
76
9
nn0mulcld
⊢
K
∈
ℕ
0
→
2
K
∈
ℕ
0
78
77
nn0zd
⊢
K
∈
ℕ
0
→
2
K
∈
ℤ
79
78
peano2zd
⊢
K
∈
ℕ
0
→
2
K
+
1
∈
ℤ
80
3nn0
⊢
3
∈
ℕ
0
81
80
a1i
⊢
K
∈
ℕ
0
→
3
∈
ℕ
0
82
4nn
⊢
4
∈
ℕ
83
82
a1i
⊢
K
∈
ℕ
0
→
4
∈
ℕ
84
adddivflid
⊢
2
K
+
1
∈
ℤ
∧
3
∈
ℕ
0
∧
4
∈
ℕ
→
3
<
4
↔
2
K
+
1
+
3
4
=
2
K
+
1
85
79
81
83
84
syl3anc
⊢
K
∈
ℕ
0
→
3
<
4
↔
2
K
+
1
+
3
4
=
2
K
+
1
86
23
24
mulcld
⊢
K
∈
ℕ
0
→
2
K
∈
ℂ
87
50
a1i
⊢
K
∈
ℕ
0
→
3
∈
ℂ
88
56
a1i
⊢
K
∈
ℕ
0
→
4
≠
0
89
87
21
88
divcld
⊢
K
∈
ℕ
0
→
3
4
∈
ℂ
90
86
14
89
addassd
⊢
K
∈
ℕ
0
→
2
K
+
1
+
3
4
=
2
K
+
1
+
3
4
91
4p3e7
⊢
4
+
3
=
7
92
91
eqcomi
⊢
7
=
4
+
3
93
92
oveq1i
⊢
7
4
=
4
+
3
4
94
20
50
20
56
divdiri
⊢
4
+
3
4
=
4
4
+
3
4
95
20
56
dividi
⊢
4
4
=
1
96
95
oveq1i
⊢
4
4
+
3
4
=
1
+
3
4
97
93
94
96
3eqtri
⊢
7
4
=
1
+
3
4
98
97
a1i
⊢
K
∈
ℕ
0
→
7
4
=
1
+
3
4
99
98
eqcomd
⊢
K
∈
ℕ
0
→
1
+
3
4
=
7
4
100
99
oveq2d
⊢
K
∈
ℕ
0
→
2
K
+
1
+
3
4
=
2
K
+
7
4
101
90
100
eqtrd
⊢
K
∈
ℕ
0
→
2
K
+
1
+
3
4
=
2
K
+
7
4
102
101
fveqeq2d
⊢
K
∈
ℕ
0
→
2
K
+
1
+
3
4
=
2
K
+
1
↔
2
K
+
7
4
=
2
K
+
1
103
85
102
bitrd
⊢
K
∈
ℕ
0
→
3
<
4
↔
2
K
+
7
4
=
2
K
+
1
104
74
103
mpbii
⊢
K
∈
ℕ
0
→
2
K
+
7
4
=
2
K
+
1
105
73
104
eqtrd
⊢
K
∈
ℕ
0
→
8
K
+
7
4
=
2
K
+
1
106
55
105
oveq12d
⊢
K
∈
ℕ
0
→
8
K
+
7
-
1
2
−
8
K
+
7
4
=
4
K
+
3
-
2
K
+
1
107
77
nn0cnd
⊢
K
∈
ℕ
0
→
2
K
∈
ℂ
108
35
87
107
14
addsub4d
⊢
K
∈
ℕ
0
→
4
K
+
3
-
2
K
+
1
=
4
K
−
2
K
+
3
-
1
109
2t2e4
⊢
2
⋅
2
=
4
110
109
eqcomi
⊢
4
=
2
⋅
2
111
110
a1i
⊢
K
∈
ℕ
0
→
4
=
2
⋅
2
112
111
oveq1d
⊢
K
∈
ℕ
0
→
4
K
=
2
⋅
2
K
113
23
23
24
mulassd
⊢
K
∈
ℕ
0
→
2
⋅
2
K
=
2
2
K
114
112
113
eqtrd
⊢
K
∈
ℕ
0
→
4
K
=
2
2
K
115
114
oveq1d
⊢
K
∈
ℕ
0
→
4
K
−
2
K
=
2
2
K
−
2
K
116
2txmxeqx
⊢
2
K
∈
ℂ
→
2
2
K
−
2
K
=
2
K
117
107
116
syl
⊢
K
∈
ℕ
0
→
2
2
K
−
2
K
=
2
K
118
115
117
eqtrd
⊢
K
∈
ℕ
0
→
4
K
−
2
K
=
2
K
119
3m1e2
⊢
3
−
1
=
2
120
119
a1i
⊢
K
∈
ℕ
0
→
3
−
1
=
2
121
118
120
oveq12d
⊢
K
∈
ℕ
0
→
4
K
−
2
K
+
3
-
1
=
2
K
+
2
122
106
108
121
3eqtrd
⊢
K
∈
ℕ
0
→
8
K
+
7
-
1
2
−
8
K
+
7
4
=
2
K
+
2
123
6
122
sylan9eqr
⊢
K
∈
ℕ
0
∧
P
=
8
K
+
7
→
N
=
2
K
+
2