Metamath Proof Explorer


Theorem 2llnma3r

Description: Two different intersecting lines (expressed in terms of atoms) meet at their common point (atom). (Contributed by NM, 30-Apr-2013)

Ref Expression
Hypotheses 2llnm.l ˙=K
2llnm.j ˙=joinK
2llnm.m ˙=meetK
2llnm.a A=AtomsK
Assertion 2llnma3r KHLPAQARAP˙RQ˙RP˙R˙Q˙R=R

Proof

Step Hyp Ref Expression
1 2llnm.l ˙=K
2 2llnm.j ˙=joinK
3 2llnm.m ˙=meetK
4 2llnm.a A=AtomsK
5 simp1 KHLPAQARAP˙RQ˙RKHL
6 simp21 KHLPAQARAP˙RQ˙RPA
7 simp23 KHLPAQARAP˙RQ˙RRA
8 2 4 hlatjcom KHLPARAP˙R=R˙P
9 5 6 7 8 syl3anc KHLPAQARAP˙RQ˙RP˙R=R˙P
10 simp22 KHLPAQARAP˙RQ˙RQA
11 2 4 hlatjcom KHLQARAQ˙R=R˙Q
12 5 10 7 11 syl3anc KHLPAQARAP˙RQ˙RQ˙R=R˙Q
13 9 12 oveq12d KHLPAQARAP˙RQ˙RP˙R˙Q˙R=R˙P˙R˙Q
14 simpr KHLPAQARAP˙RQ˙RQ=RQ=R
15 14 oveq2d KHLPAQARAP˙RQ˙RQ=RR˙Q=R˙R
16 simpl1 KHLPAQARAP˙RQ˙RQ=RKHL
17 simpl23 KHLPAQARAP˙RQ˙RQ=RRA
18 2 4 hlatjidm KHLRAR˙R=R
19 16 17 18 syl2anc KHLPAQARAP˙RQ˙RQ=RR˙R=R
20 15 19 eqtrd KHLPAQARAP˙RQ˙RQ=RR˙Q=R
21 20 oveq2d KHLPAQARAP˙RQ˙RQ=RR˙P˙R˙Q=R˙P˙R
22 1 2 4 hlatlej1 KHLRAPAR˙R˙P
23 5 7 6 22 syl3anc KHLPAQARAP˙RQ˙RR˙R˙P
24 hllat KHLKLat
25 24 3ad2ant1 KHLPAQARAP˙RQ˙RKLat
26 eqid BaseK=BaseK
27 26 4 atbase RARBaseK
28 7 27 syl KHLPAQARAP˙RQ˙RRBaseK
29 26 2 4 hlatjcl KHLRAPAR˙PBaseK
30 5 7 6 29 syl3anc KHLPAQARAP˙RQ˙RR˙PBaseK
31 26 1 3 latleeqm2 KLatRBaseKR˙PBaseKR˙R˙PR˙P˙R=R
32 25 28 30 31 syl3anc KHLPAQARAP˙RQ˙RR˙R˙PR˙P˙R=R
33 23 32 mpbid KHLPAQARAP˙RQ˙RR˙P˙R=R
34 33 adantr KHLPAQARAP˙RQ˙RQ=RR˙P˙R=R
35 21 34 eqtrd KHLPAQARAP˙RQ˙RQ=RR˙P˙R˙Q=R
36 simpl1 KHLPAQARAP˙RQ˙RQRKHL
37 simpl21 KHLPAQARAP˙RQ˙RQRPA
38 simpl23 KHLPAQARAP˙RQ˙RQRRA
39 simpl22 KHLPAQARAP˙RQ˙RQRQA
40 simpl3 KHLPAQARAP˙RQ˙RQRP˙RQ˙R
41 1 2 4 hlatlej2 KHLPARAR˙P˙R
42 5 6 7 41 syl3anc KHLPAQARAP˙RQ˙RR˙P˙R
43 26 4 atbase QAQBaseK
44 10 43 syl KHLPAQARAP˙RQ˙RQBaseK
45 26 2 4 hlatjcl KHLPARAP˙RBaseK
46 5 6 7 45 syl3anc KHLPAQARAP˙RQ˙RP˙RBaseK
47 26 1 2 latjle12 KLatQBaseKRBaseKP˙RBaseKQ˙P˙RR˙P˙RQ˙R˙P˙R
48 25 44 28 46 47 syl13anc KHLPAQARAP˙RQ˙RQ˙P˙RR˙P˙RQ˙R˙P˙R
49 48 biimpd KHLPAQARAP˙RQ˙RQ˙P˙RR˙P˙RQ˙R˙P˙R
50 42 49 mpan2d KHLPAQARAP˙RQ˙RQ˙P˙RQ˙R˙P˙R
51 50 adantr KHLPAQARAP˙RQ˙RQRQ˙P˙RQ˙R˙P˙R
52 simpr KHLPAQARAP˙RQ˙RQRQR
53 1 2 4 ps-1 KHLQARAQRPARAQ˙R˙P˙RQ˙R=P˙R
54 36 39 38 52 37 38 53 syl132anc KHLPAQARAP˙RQ˙RQRQ˙R˙P˙RQ˙R=P˙R
55 54 biimpd KHLPAQARAP˙RQ˙RQRQ˙R˙P˙RQ˙R=P˙R
56 eqcom Q˙R=P˙RP˙R=Q˙R
57 55 56 imbitrdi KHLPAQARAP˙RQ˙RQRQ˙R˙P˙RP˙R=Q˙R
58 51 57 syld KHLPAQARAP˙RQ˙RQRQ˙P˙RP˙R=Q˙R
59 58 necon3ad KHLPAQARAP˙RQ˙RQRP˙RQ˙R¬Q˙P˙R
60 40 59 mpd KHLPAQARAP˙RQ˙RQR¬Q˙P˙R
61 1 2 3 4 2llnma1 KHLPARAQA¬Q˙P˙RR˙P˙R˙Q=R
62 36 37 38 39 60 61 syl131anc KHLPAQARAP˙RQ˙RQRR˙P˙R˙Q=R
63 35 62 pm2.61dane KHLPAQARAP˙RQ˙RR˙P˙R˙Q=R
64 13 63 eqtrd KHLPAQARAP˙RQ˙RP˙R˙Q˙R=R