Metamath Proof Explorer


Theorem 3lexlogpow5ineq5

Description: Result for bound in AKS inequality lemma. (Contributed by metakunt, 21-Aug-2024)

Ref Expression
Assertion 3lexlogpow5ineq5 log 2 3 5 15

Proof

Step Hyp Ref Expression
1 2re 2
2 1 a1i 2
3 2pos 0 < 2
4 3 a1i 0 < 2
5 3re 3
6 5 a1i 3
7 3pos 0 < 3
8 7 a1i 0 < 3
9 1red 1
10 1lt2 1 < 2
11 10 a1i 1 < 2
12 9 11 ltned 1 2
13 12 necomd 2 1
14 2 4 6 8 13 relogbcld log 2 3
15 5nn0 5 0
16 15 a1i 5 0
17 14 16 reexpcld log 2 3 5
18 16 nn0red 5
19 8 gt0ne0d 3 0
20 18 6 19 redivcld 5 3
21 20 16 reexpcld 5 3 5
22 1nn0 1 0
23 5nn 5
24 22 23 decnncl 15
25 24 a1i 15
26 25 nnred 15
27 0red 0
28 6 rehalfcld 3 2
29 6 2 8 4 divgt0d 0 < 3 2
30 3lexlogpow2ineq1 3 2 < log 2 3 log 2 3 < 5 3
31 30 simpli 3 2 < log 2 3
32 31 a1i 3 2 < log 2 3
33 27 28 14 29 32 lttrd 0 < log 2 3
34 27 14 33 ltled 0 log 2 3
35 30 simpri log 2 3 < 5 3
36 35 a1i log 2 3 < 5 3
37 14 20 36 ltled log 2 3 5 3
38 14 20 16 34 37 leexp1ad log 2 3 5 5 3 5
39 df-5 5 = 4 + 1
40 39 a1i 5 = 4 + 1
41 40 oveq2d 5 3 5 = 5 3 4 + 1
42 20 recnd 5 3
43 4nn0 4 0
44 43 a1i 4 0
45 42 44 expp1d 5 3 4 + 1 = 5 3 4 5 3
46 41 45 eqtrd 5 3 5 = 5 3 4 5 3
47 6nn0 6 0
48 2nn0 2 0
49 47 48 deccl 62 0
50 7nn0 7 0
51 50 48 deccl 72 0
52 9nn0 9 0
53 9re 9
54 53 a1i 9
55 5lt9 5 < 9
56 55 a1i 5 < 9
57 18 54 56 ltled 5 9
58 57 mptru 5 9
59 2lt10 2 < 10
60 6lt7 6 < 7
61 47 50 48 48 59 60 decltc 62 < 72
62 49 51 15 52 58 61 decleh 625 729
63 62 a1i 625 729
64 8nn0 8 0
65 eqid 81 = 81
66 0nn0 0 0
67 9cn 9
68 8cn 8
69 9t8e72 9 8 = 72
70 67 68 69 mulcomli 8 9 = 72
71 2cn 2
72 71 addid1i 2 + 0 = 2
73 50 48 66 70 72 decaddi 8 9 + 0 = 72
74 ax-1cn 1
75 67 mulid1i 9 1 = 9
76 52 dec0h 9 = 09
77 76 eqcomi 09 = 9
78 75 77 eqtr4i 9 1 = 09
79 67 74 78 mulcomli 1 9 = 09
80 52 64 22 65 52 66 73 79 decmul1c 81 9 = 729
81 80 a1i 81 9 = 729
82 81 eqcomd 729 = 81 9
83 63 82 breqtrd 625 81 9
84 eqid 4 = 4
85 2p2e4 2 + 2 = 4
86 84 85 eqtr4i 4 = 2 + 2
87 86 a1i 4 = 2 + 2
88 87 oveq2d 5 4 = 5 2 + 2
89 23 nncni 5
90 89 a1i 5
91 48 a1i 2 0
92 90 91 91 expaddd 5 2 + 2 = 5 2 5 2
93 89 sqvali 5 2 = 5 5
94 5t5e25 5 5 = 25
95 93 94 eqtri 5 2 = 25
96 95 a1i 5 2 = 25
97 96 96 oveq12d 5 2 5 2 = 25 25
98 88 92 97 3eqtrd 5 4 = 25 25
99 48 15 deccl 25 0
100 eqid 25 = 25
101 22 48 deccl 12 0
102 48 dec0h 2 = 02
103 eqid 12 = 12
104 99 nn0cni 25
105 104 mul02i 0 25 = 0
106 5p1e6 5 + 1 = 6
107 89 74 106 addcomli 1 + 5 = 6
108 105 107 oveq12i 0 25 + 1 + 5 = 0 + 6
109 6cn 6
110 109 addid2i 0 + 6 = 6
111 108 110 eqtri 0 25 + 1 + 5 = 6
112 2t2e4 2 2 = 4
113 0p1e1 0 + 1 = 1
114 112 113 oveq12i 2 2 + 0 + 1 = 4 + 1
115 4p1e5 4 + 1 = 5
116 114 115 eqtri 2 2 + 0 + 1 = 5
117 5t2e10 5 2 = 10
118 89 71 117 mulcomli 2 5 = 10
119 71 addid2i 0 + 2 = 2
120 22 66 48 118 119 decaddi 2 5 + 2 = 12
121 48 15 66 48 100 102 48 48 22 116 120 decma2c 2 25 + 2 = 52
122 66 48 22 48 102 103 99 48 15 111 121 decmac 2 25 + 12 = 62
123 22 66 48 117 119 decaddi 5 2 + 2 = 12
124 15 48 15 100 15 48 123 94 decmul2c 5 25 = 125
125 99 48 15 100 15 101 122 124 decmul1c 25 25 = 625
126 125 a1i 25 25 = 625
127 98 126 eqtr2d 625 = 5 4
128 87 oveq2d 3 4 = 3 2 + 2
129 3cn 3
130 129 a1i 3
131 130 91 91 expaddd 3 2 + 2 = 3 2 3 2
132 129 sqvali 3 2 = 3 3
133 3t3e9 3 3 = 9
134 132 133 eqtri 3 2 = 9
135 134 a1i 3 2 = 9
136 135 135 oveq12d 3 2 3 2 = 9 9
137 9t9e81 9 9 = 81
138 137 a1i 9 9 = 81
139 136 138 eqtrd 3 2 3 2 = 81
140 128 131 139 3eqtrd 3 4 = 81
141 140 eqcomd 81 = 3 4
142 141 oveq1d 81 9 = 3 4 9
143 83 127 142 3brtr3d 5 4 3 4 9
144 18 44 reexpcld 5 4
145 3rp 3 +
146 145 a1i 3 +
147 4z 4
148 147 a1i 4
149 146 148 rpexpcld 3 4 +
150 144 54 149 ledivmuld 5 4 3 4 9 5 4 3 4 9
151 143 150 mpbird 5 4 3 4 9
152 18 recnd 5
153 152 130 19 44 expdivd 5 3 4 = 5 4 3 4
154 153 eqcomd 5 4 3 4 = 5 3 4
155 26 recnd 15
156 23 nngt0i 0 < 5
157 156 a1i 0 < 5
158 27 157 ltned 0 5
159 158 necomd 5 0
160 155 152 130 159 19 divdiv2d 15 5 3 = 15 3 5
161 5cn 5
162 9t5e45 9 5 = 45
163 67 161 162 mulcomli 5 9 = 45
164 163 a1i 5 9 = 45
165 3nn0 3 0
166 eqid 15 = 15
167 129 mulid2i 1 3 = 3
168 167 oveq1i 1 3 + 1 = 3 + 1
169 3p1e4 3 + 1 = 4
170 168 169 eqtri 1 3 + 1 = 4
171 5t3e15 5 3 = 15
172 165 22 15 166 15 22 170 171 decmul1c 15 3 = 45
173 172 a1i 15 3 = 45
174 173 eqcomd 45 = 15 3
175 164 174 eqtrd 5 9 = 15 3
176 155 130 mulcld 15 3
177 67 a1i 9
178 176 152 177 159 divmuld 15 3 5 = 9 5 9 = 15 3
179 175 178 mpbird 15 3 5 = 9
180 160 179 eqtr2d 9 = 15 5 3
181 151 154 180 3brtr3d 5 3 4 15 5 3
182 20 44 reexpcld 5 3 4
183 18 157 elrpd 5 +
184 183 146 rpdivcld 5 3 +
185 182 26 184 lemuldivd 5 3 4 5 3 15 5 3 4 15 5 3
186 181 185 mpbird 5 3 4 5 3 15
187 46 186 eqbrtrd 5 3 5 15
188 17 21 26 38 187 letrd log 2 3 5 15
189 188 mptru log 2 3 5 15