Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for metakunt
Logarithm inequalities
3lexlogpow5ineq5
Next ⟩
Miscellaneous results for AKS formalisation
Metamath Proof Explorer
Ascii
Unicode
Theorem
3lexlogpow5ineq5
Description:
Result for bound in AKS inequality lemma.
(Contributed by
metakunt
, 21-Aug-2024)
Ref
Expression
Assertion
3lexlogpow5ineq5
⊢
log
2
3
5
≤
15
Proof
Step
Hyp
Ref
Expression
1
2re
⊢
2
∈
ℝ
2
1
a1i
⊢
⊤
→
2
∈
ℝ
3
2pos
⊢
0
<
2
4
3
a1i
⊢
⊤
→
0
<
2
5
3re
⊢
3
∈
ℝ
6
5
a1i
⊢
⊤
→
3
∈
ℝ
7
3pos
⊢
0
<
3
8
7
a1i
⊢
⊤
→
0
<
3
9
1red
⊢
⊤
→
1
∈
ℝ
10
1lt2
⊢
1
<
2
11
10
a1i
⊢
⊤
→
1
<
2
12
9
11
ltned
⊢
⊤
→
1
≠
2
13
12
necomd
⊢
⊤
→
2
≠
1
14
2
4
6
8
13
relogbcld
⊢
⊤
→
log
2
3
∈
ℝ
15
5nn0
⊢
5
∈
ℕ
0
16
15
a1i
⊢
⊤
→
5
∈
ℕ
0
17
14
16
reexpcld
⊢
⊤
→
log
2
3
5
∈
ℝ
18
16
nn0red
⊢
⊤
→
5
∈
ℝ
19
8
gt0ne0d
⊢
⊤
→
3
≠
0
20
18
6
19
redivcld
⊢
⊤
→
5
3
∈
ℝ
21
20
16
reexpcld
⊢
⊤
→
5
3
5
∈
ℝ
22
1nn0
⊢
1
∈
ℕ
0
23
5nn
⊢
5
∈
ℕ
24
22
23
decnncl
⊢
15
∈
ℕ
25
24
a1i
⊢
⊤
→
15
∈
ℕ
26
25
nnred
⊢
⊤
→
15
∈
ℝ
27
0red
⊢
⊤
→
0
∈
ℝ
28
6
rehalfcld
⊢
⊤
→
3
2
∈
ℝ
29
6
2
8
4
divgt0d
⊢
⊤
→
0
<
3
2
30
3lexlogpow2ineq1
⊢
3
2
<
log
2
3
∧
log
2
3
<
5
3
31
30
simpli
⊢
3
2
<
log
2
3
32
31
a1i
⊢
⊤
→
3
2
<
log
2
3
33
27
28
14
29
32
lttrd
⊢
⊤
→
0
<
log
2
3
34
27
14
33
ltled
⊢
⊤
→
0
≤
log
2
3
35
30
simpri
⊢
log
2
3
<
5
3
36
35
a1i
⊢
⊤
→
log
2
3
<
5
3
37
14
20
36
ltled
⊢
⊤
→
log
2
3
≤
5
3
38
14
20
16
34
37
leexp1ad
⊢
⊤
→
log
2
3
5
≤
5
3
5
39
df-5
⊢
5
=
4
+
1
40
39
a1i
⊢
⊤
→
5
=
4
+
1
41
40
oveq2d
⊢
⊤
→
5
3
5
=
5
3
4
+
1
42
20
recnd
⊢
⊤
→
5
3
∈
ℂ
43
4nn0
⊢
4
∈
ℕ
0
44
43
a1i
⊢
⊤
→
4
∈
ℕ
0
45
42
44
expp1d
⊢
⊤
→
5
3
4
+
1
=
5
3
4
⁢
5
3
46
41
45
eqtrd
⊢
⊤
→
5
3
5
=
5
3
4
⁢
5
3
47
6nn0
⊢
6
∈
ℕ
0
48
2nn0
⊢
2
∈
ℕ
0
49
47
48
deccl
⊢
62
∈
ℕ
0
50
7nn0
⊢
7
∈
ℕ
0
51
50
48
deccl
⊢
72
∈
ℕ
0
52
9nn0
⊢
9
∈
ℕ
0
53
9re
⊢
9
∈
ℝ
54
53
a1i
⊢
⊤
→
9
∈
ℝ
55
5lt9
⊢
5
<
9
56
55
a1i
⊢
⊤
→
5
<
9
57
18
54
56
ltled
⊢
⊤
→
5
≤
9
58
57
mptru
⊢
5
≤
9
59
2lt10
⊢
2
<
10
60
6lt7
⊢
6
<
7
61
47
50
48
48
59
60
decltc
⊢
62
<
72
62
49
51
15
52
58
61
decleh
⊢
625
≤
729
63
62
a1i
⊢
⊤
→
625
≤
729
64
8nn0
⊢
8
∈
ℕ
0
65
eqid
⊢
81
=
81
66
0nn0
⊢
0
∈
ℕ
0
67
9cn
⊢
9
∈
ℂ
68
8cn
⊢
8
∈
ℂ
69
9t8e72
⊢
9
⋅
8
=
72
70
67
68
69
mulcomli
⊢
8
⋅
9
=
72
71
2cn
⊢
2
∈
ℂ
72
71
addid1i
⊢
2
+
0
=
2
73
50
48
66
70
72
decaddi
⊢
8
⋅
9
+
0
=
72
74
ax-1cn
⊢
1
∈
ℂ
75
67
mulid1i
⊢
9
⋅
1
=
9
76
52
dec0h
⊢
9
=
09
77
76
eqcomi
⊢
09
=
9
78
75
77
eqtr4i
⊢
9
⋅
1
=
09
79
67
74
78
mulcomli
⊢
1
⋅
9
=
09
80
52
64
22
65
52
66
73
79
decmul1c
⊢
81
⋅
9
=
729
81
80
a1i
⊢
⊤
→
81
⋅
9
=
729
82
81
eqcomd
⊢
⊤
→
729
=
81
⋅
9
83
63
82
breqtrd
⊢
⊤
→
625
≤
81
⋅
9
84
eqid
⊢
4
=
4
85
2p2e4
⊢
2
+
2
=
4
86
84
85
eqtr4i
⊢
4
=
2
+
2
87
86
a1i
⊢
⊤
→
4
=
2
+
2
88
87
oveq2d
⊢
⊤
→
5
4
=
5
2
+
2
89
23
nncni
⊢
5
∈
ℂ
90
89
a1i
⊢
⊤
→
5
∈
ℂ
91
48
a1i
⊢
⊤
→
2
∈
ℕ
0
92
90
91
91
expaddd
⊢
⊤
→
5
2
+
2
=
5
2
⁢
5
2
93
89
sqvali
⊢
5
2
=
5
⋅
5
94
5t5e25
⊢
5
⋅
5
=
25
95
93
94
eqtri
⊢
5
2
=
25
96
95
a1i
⊢
⊤
→
5
2
=
25
97
96
96
oveq12d
⊢
⊤
→
5
2
⁢
5
2
=
25
⋅
25
98
88
92
97
3eqtrd
⊢
⊤
→
5
4
=
25
⋅
25
99
48
15
deccl
⊢
25
∈
ℕ
0
100
eqid
⊢
25
=
25
101
22
48
deccl
⊢
12
∈
ℕ
0
102
48
dec0h
⊢
2
=
02
103
eqid
⊢
12
=
12
104
99
nn0cni
⊢
25
∈
ℂ
105
104
mul02i
⊢
0
⋅
25
=
0
106
5p1e6
⊢
5
+
1
=
6
107
89
74
106
addcomli
⊢
1
+
5
=
6
108
105
107
oveq12i
⊢
0
⋅
25
+
1
+
5
=
0
+
6
109
6cn
⊢
6
∈
ℂ
110
109
addid2i
⊢
0
+
6
=
6
111
108
110
eqtri
⊢
0
⋅
25
+
1
+
5
=
6
112
2t2e4
⊢
2
⋅
2
=
4
113
0p1e1
⊢
0
+
1
=
1
114
112
113
oveq12i
⊢
2
⋅
2
+
0
+
1
=
4
+
1
115
4p1e5
⊢
4
+
1
=
5
116
114
115
eqtri
⊢
2
⋅
2
+
0
+
1
=
5
117
5t2e10
⊢
5
⋅
2
=
10
118
89
71
117
mulcomli
⊢
2
⋅
5
=
10
119
71
addid2i
⊢
0
+
2
=
2
120
22
66
48
118
119
decaddi
⊢
2
⋅
5
+
2
=
12
121
48
15
66
48
100
102
48
48
22
116
120
decma2c
⊢
2
⋅
25
+
2
=
52
122
66
48
22
48
102
103
99
48
15
111
121
decmac
⊢
2
⋅
25
+
12
=
62
123
22
66
48
117
119
decaddi
⊢
5
⋅
2
+
2
=
12
124
15
48
15
100
15
48
123
94
decmul2c
⊢
5
⋅
25
=
125
125
99
48
15
100
15
101
122
124
decmul1c
⊢
25
⋅
25
=
625
126
125
a1i
⊢
⊤
→
25
⋅
25
=
625
127
98
126
eqtr2d
⊢
⊤
→
625
=
5
4
128
87
oveq2d
⊢
⊤
→
3
4
=
3
2
+
2
129
3cn
⊢
3
∈
ℂ
130
129
a1i
⊢
⊤
→
3
∈
ℂ
131
130
91
91
expaddd
⊢
⊤
→
3
2
+
2
=
3
2
⁢
3
2
132
129
sqvali
⊢
3
2
=
3
⋅
3
133
3t3e9
⊢
3
⋅
3
=
9
134
132
133
eqtri
⊢
3
2
=
9
135
134
a1i
⊢
⊤
→
3
2
=
9
136
135
135
oveq12d
⊢
⊤
→
3
2
⁢
3
2
=
9
⋅
9
137
9t9e81
⊢
9
⋅
9
=
81
138
137
a1i
⊢
⊤
→
9
⋅
9
=
81
139
136
138
eqtrd
⊢
⊤
→
3
2
⁢
3
2
=
81
140
128
131
139
3eqtrd
⊢
⊤
→
3
4
=
81
141
140
eqcomd
⊢
⊤
→
81
=
3
4
142
141
oveq1d
⊢
⊤
→
81
⋅
9
=
3
4
⋅
9
143
83
127
142
3brtr3d
⊢
⊤
→
5
4
≤
3
4
⋅
9
144
18
44
reexpcld
⊢
⊤
→
5
4
∈
ℝ
145
3rp
⊢
3
∈
ℝ
+
146
145
a1i
⊢
⊤
→
3
∈
ℝ
+
147
4z
⊢
4
∈
ℤ
148
147
a1i
⊢
⊤
→
4
∈
ℤ
149
146
148
rpexpcld
⊢
⊤
→
3
4
∈
ℝ
+
150
144
54
149
ledivmuld
⊢
⊤
→
5
4
3
4
≤
9
↔
5
4
≤
3
4
⋅
9
151
143
150
mpbird
⊢
⊤
→
5
4
3
4
≤
9
152
18
recnd
⊢
⊤
→
5
∈
ℂ
153
152
130
19
44
expdivd
⊢
⊤
→
5
3
4
=
5
4
3
4
154
153
eqcomd
⊢
⊤
→
5
4
3
4
=
5
3
4
155
26
recnd
⊢
⊤
→
15
∈
ℂ
156
23
nngt0i
⊢
0
<
5
157
156
a1i
⊢
⊤
→
0
<
5
158
27
157
ltned
⊢
⊤
→
0
≠
5
159
158
necomd
⊢
⊤
→
5
≠
0
160
155
152
130
159
19
divdiv2d
⊢
⊤
→
15
5
3
=
15
⋅
3
5
161
5cn
⊢
5
∈
ℂ
162
9t5e45
⊢
9
⋅
5
=
45
163
67
161
162
mulcomli
⊢
5
⋅
9
=
45
164
163
a1i
⊢
⊤
→
5
⋅
9
=
45
165
3nn0
⊢
3
∈
ℕ
0
166
eqid
⊢
15
=
15
167
129
mulid2i
⊢
1
⋅
3
=
3
168
167
oveq1i
⊢
1
⋅
3
+
1
=
3
+
1
169
3p1e4
⊢
3
+
1
=
4
170
168
169
eqtri
⊢
1
⋅
3
+
1
=
4
171
5t3e15
⊢
5
⋅
3
=
15
172
165
22
15
166
15
22
170
171
decmul1c
⊢
15
⋅
3
=
45
173
172
a1i
⊢
⊤
→
15
⋅
3
=
45
174
173
eqcomd
⊢
⊤
→
45
=
15
⋅
3
175
164
174
eqtrd
⊢
⊤
→
5
⋅
9
=
15
⋅
3
176
155
130
mulcld
⊢
⊤
→
15
⋅
3
∈
ℂ
177
67
a1i
⊢
⊤
→
9
∈
ℂ
178
176
152
177
159
divmuld
⊢
⊤
→
15
⋅
3
5
=
9
↔
5
⋅
9
=
15
⋅
3
179
175
178
mpbird
⊢
⊤
→
15
⋅
3
5
=
9
180
160
179
eqtr2d
⊢
⊤
→
9
=
15
5
3
181
151
154
180
3brtr3d
⊢
⊤
→
5
3
4
≤
15
5
3
182
20
44
reexpcld
⊢
⊤
→
5
3
4
∈
ℝ
183
18
157
elrpd
⊢
⊤
→
5
∈
ℝ
+
184
183
146
rpdivcld
⊢
⊤
→
5
3
∈
ℝ
+
185
182
26
184
lemuldivd
⊢
⊤
→
5
3
4
⁢
5
3
≤
15
↔
5
3
4
≤
15
5
3
186
181
185
mpbird
⊢
⊤
→
5
3
4
⁢
5
3
≤
15
187
46
186
eqbrtrd
⊢
⊤
→
5
3
5
≤
15
188
17
21
26
38
187
letrd
⊢
⊤
→
log
2
3
5
≤
15
189
188
mptru
⊢
log
2
3
5
≤
15