Metamath Proof Explorer


Theorem 4atexlemc

Description: Lemma for 4atexlem7 . (Contributed by NM, 24-Nov-2012)

Ref Expression
Hypotheses 4thatlem.ph φKHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙Q
4thatlem0.l ˙=K
4thatlem0.j ˙=joinK
4thatlem0.m ˙=meetK
4thatlem0.a A=AtomsK
4thatlem0.h H=LHypK
4thatlem0.u U=P˙Q˙W
4thatlem0.v V=P˙S˙W
4thatlem0.c C=Q˙T˙P˙S
Assertion 4atexlemc φCA

Proof

Step Hyp Ref Expression
1 4thatlem.ph φKHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙Q
2 4thatlem0.l ˙=K
3 4thatlem0.j ˙=joinK
4 4thatlem0.m ˙=meetK
5 4thatlem0.a A=AtomsK
6 4thatlem0.h H=LHypK
7 4thatlem0.u U=P˙Q˙W
8 4thatlem0.v V=P˙S˙W
9 4thatlem0.c C=Q˙T˙P˙S
10 1 4atexlemkl φKLat
11 1 3 5 4atexlemqtb φQ˙TBaseK
12 1 3 5 4atexlempsb φP˙SBaseK
13 eqid BaseK=BaseK
14 13 4 latmcom KLatQ˙TBaseKP˙SBaseKQ˙T˙P˙S=P˙S˙Q˙T
15 10 11 12 14 syl3anc φQ˙T˙P˙S=P˙S˙Q˙T
16 9 15 eqtrid φC=P˙S˙Q˙T
17 1 4atexlemk φKHL
18 1 4atexlemp φPA
19 1 4atexlems φSA
20 1 4atexlemq φQA
21 1 4atexlemt φTA
22 1 2 3 5 4atexlempns φPS
23 1 2 3 4 5 6 7 8 4atexlemntlpq φ¬T˙P˙Q
24 2 3 5 atnlej2 KHLTAPAQA¬T˙P˙QTQ
25 24 necomd KHLTAPAQA¬T˙P˙QQT
26 17 21 18 20 23 25 syl131anc φQT
27 1 4atexlempnq φPQ
28 1 4atexlemnslpq φ¬S˙P˙Q
29 2 3 5 4atlem0ae KHLPAQASAPQ¬S˙P˙Q¬Q˙P˙S
30 17 18 20 19 27 28 29 syl132anc φ¬Q˙P˙S
31 13 5 atbase TATBaseK
32 21 31 syl φTBaseK
33 1 2 3 4 5 6 7 4atexlemu φUA
34 1 2 3 4 5 6 7 8 4atexlemv φVA
35 13 3 5 hlatjcl KHLUAVAU˙VBaseK
36 17 33 34 35 syl3anc φU˙VBaseK
37 13 5 atbase QAQBaseK
38 20 37 syl φQBaseK
39 13 3 latjcl KLatP˙SBaseKQBaseKP˙S˙QBaseK
40 10 12 38 39 syl3anc φP˙S˙QBaseK
41 1 4atexlemkc φKCvLat
42 1 2 3 4 5 6 7 8 4atexlemunv φUV
43 1 4atexlemutvt φU˙T=V˙T
44 5 2 3 cvlsupr4 KCvLatUAVATAUVU˙T=V˙TT˙U˙V
45 41 33 34 21 42 43 44 syl132anc φT˙U˙V
46 13 3 5 hlatjcl KHLPAQAP˙QBaseK
47 17 18 20 46 syl3anc φP˙QBaseK
48 1 6 4atexlemwb φWBaseK
49 13 2 4 latmle1 KLatP˙QBaseKWBaseKP˙Q˙W˙P˙Q
50 10 47 48 49 syl3anc φP˙Q˙W˙P˙Q
51 7 50 eqbrtrid φU˙P˙Q
52 13 2 4 latmle1 KLatP˙SBaseKWBaseKP˙S˙W˙P˙S
53 10 12 48 52 syl3anc φP˙S˙W˙P˙S
54 8 53 eqbrtrid φV˙P˙S
55 13 5 atbase UAUBaseK
56 33 55 syl φUBaseK
57 13 5 atbase VAVBaseK
58 34 57 syl φVBaseK
59 13 2 3 latjlej12 KLatUBaseKP˙QBaseKVBaseKP˙SBaseKU˙P˙QV˙P˙SU˙V˙P˙Q˙P˙S
60 10 56 47 58 12 59 syl122anc φU˙P˙QV˙P˙SU˙V˙P˙Q˙P˙S
61 51 54 60 mp2and φU˙V˙P˙Q˙P˙S
62 3 5 hlatjass KHLPAQASAP˙Q˙S=P˙Q˙S
63 17 18 20 19 62 syl13anc φP˙Q˙S=P˙Q˙S
64 13 5 atbase PAPBaseK
65 18 64 syl φPBaseK
66 13 5 atbase SASBaseK
67 19 66 syl φSBaseK
68 13 3 latj32 KLatPBaseKQBaseKSBaseKP˙Q˙S=P˙S˙Q
69 10 65 38 67 68 syl13anc φP˙Q˙S=P˙S˙Q
70 13 3 latjjdi KLatPBaseKQBaseKSBaseKP˙Q˙S=P˙Q˙P˙S
71 10 65 38 67 70 syl13anc φP˙Q˙S=P˙Q˙P˙S
72 63 69 71 3eqtr3rd φP˙Q˙P˙S=P˙S˙Q
73 61 72 breqtrd φU˙V˙P˙S˙Q
74 13 2 10 32 36 40 45 73 lattrd φT˙P˙S˙Q
75 2 3 4 5 2atmat KHLPASAQATAPSQT¬Q˙P˙ST˙P˙S˙QP˙S˙Q˙TA
76 17 18 19 20 21 22 26 30 74 75 syl333anc φP˙S˙Q˙TA
77 16 76 eqeltrd φCA