Metamath Proof Explorer


Theorem 4atexlemex2

Description: Lemma for 4atexlem7 . Show that when C =/= S , C satisfies the existence condition of the consequent. (Contributed by NM, 25-Nov-2012)

Ref Expression
Hypotheses 4thatlem.ph φKHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙Q
4thatlem0.l ˙=K
4thatlem0.j ˙=joinK
4thatlem0.m ˙=meetK
4thatlem0.a A=AtomsK
4thatlem0.h H=LHypK
4thatlem0.u U=P˙Q˙W
4thatlem0.v V=P˙S˙W
4thatlem0.c C=Q˙T˙P˙S
Assertion 4atexlemex2 φCSzA¬z˙WP˙z=S˙z

Proof

Step Hyp Ref Expression
1 4thatlem.ph φKHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙Q
2 4thatlem0.l ˙=K
3 4thatlem0.j ˙=joinK
4 4thatlem0.m ˙=meetK
5 4thatlem0.a A=AtomsK
6 4thatlem0.h H=LHypK
7 4thatlem0.u U=P˙Q˙W
8 4thatlem0.v V=P˙S˙W
9 4thatlem0.c C=Q˙T˙P˙S
10 1 2 3 4 5 6 7 8 9 4atexlemc φCA
11 10 adantr φCSCA
12 1 2 3 4 5 6 7 8 9 4atexlemnclw φ¬C˙W
13 12 adantr φCS¬C˙W
14 1 2 3 4 5 6 7 8 4atexlemntlpq φ¬T˙P˙Q
15 id C=PC=P
16 9 15 eqtr3id C=PQ˙T˙P˙S=P
17 16 adantl φC=PQ˙T˙P˙S=P
18 1 4atexlemkl φKLat
19 1 3 5 4atexlemqtb φQ˙TBaseK
20 1 3 5 4atexlempsb φP˙SBaseK
21 eqid BaseK=BaseK
22 21 2 4 latmle1 KLatQ˙TBaseKP˙SBaseKQ˙T˙P˙S˙Q˙T
23 18 19 20 22 syl3anc φQ˙T˙P˙S˙Q˙T
24 1 4atexlemk φKHL
25 1 4atexlemq φQA
26 1 4atexlemt φTA
27 3 5 hlatjcom KHLQATAQ˙T=T˙Q
28 24 25 26 27 syl3anc φQ˙T=T˙Q
29 23 28 breqtrd φQ˙T˙P˙S˙T˙Q
30 29 adantr φC=PQ˙T˙P˙S˙T˙Q
31 17 30 eqbrtrrd φC=PP˙T˙Q
32 1 4atexlemkc φKCvLat
33 1 4atexlemp φPA
34 1 4atexlempnq φPQ
35 2 3 5 cvlatexch2 KCvLatPATAQAPQP˙T˙QT˙P˙Q
36 32 33 26 25 34 35 syl131anc φP˙T˙QT˙P˙Q
37 36 adantr φC=PP˙T˙QT˙P˙Q
38 31 37 mpd φC=PT˙P˙Q
39 38 ex φC=PT˙P˙Q
40 39 necon3bd φ¬T˙P˙QCP
41 14 40 mpd φCP
42 41 adantr φCSCP
43 simpr φCSCS
44 21 2 4 latmle2 KLatQ˙TBaseKP˙SBaseKQ˙T˙P˙S˙P˙S
45 18 19 20 44 syl3anc φQ˙T˙P˙S˙P˙S
46 9 45 eqbrtrid φC˙P˙S
47 46 adantr φCSC˙P˙S
48 1 4atexlems φSA
49 1 2 3 5 4atexlempns φPS
50 5 2 3 cvlsupr2 KCvLatPASACAPSP˙C=S˙CCPCSC˙P˙S
51 32 33 48 10 49 50 syl131anc φP˙C=S˙CCPCSC˙P˙S
52 51 adantr φCSP˙C=S˙CCPCSC˙P˙S
53 42 43 47 52 mpbir3and φCSP˙C=S˙C
54 breq1 z=Cz˙WC˙W
55 54 notbid z=C¬z˙W¬C˙W
56 oveq2 z=CP˙z=P˙C
57 oveq2 z=CS˙z=S˙C
58 56 57 eqeq12d z=CP˙z=S˙zP˙C=S˙C
59 55 58 anbi12d z=C¬z˙WP˙z=S˙z¬C˙WP˙C=S˙C
60 59 rspcev CA¬C˙WP˙C=S˙CzA¬z˙WP˙z=S˙z
61 11 13 53 60 syl12anc φCSzA¬z˙WP˙z=S˙z