Metamath Proof Explorer


Theorem 4atexlemnclw

Description: Lemma for 4atexlem7 . (Contributed by NM, 24-Nov-2012)

Ref Expression
Hypotheses 4thatlem.ph φKHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙Q
4thatlem0.l ˙=K
4thatlem0.j ˙=joinK
4thatlem0.m ˙=meetK
4thatlem0.a A=AtomsK
4thatlem0.h H=LHypK
4thatlem0.u U=P˙Q˙W
4thatlem0.v V=P˙S˙W
4thatlem0.c C=Q˙T˙P˙S
Assertion 4atexlemnclw φ¬C˙W

Proof

Step Hyp Ref Expression
1 4thatlem.ph φKHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙Q
2 4thatlem0.l ˙=K
3 4thatlem0.j ˙=joinK
4 4thatlem0.m ˙=meetK
5 4thatlem0.a A=AtomsK
6 4thatlem0.h H=LHypK
7 4thatlem0.u U=P˙Q˙W
8 4thatlem0.v V=P˙S˙W
9 4thatlem0.c C=Q˙T˙P˙S
10 1 4atexlemkl φKLat
11 1 3 5 4atexlemqtb φQ˙TBaseK
12 1 3 5 4atexlempsb φP˙SBaseK
13 eqid BaseK=BaseK
14 13 2 4 latmle1 KLatQ˙TBaseKP˙SBaseKQ˙T˙P˙S˙Q˙T
15 10 11 12 14 syl3anc φQ˙T˙P˙S˙Q˙T
16 9 15 eqbrtrid φC˙Q˙T
17 simp13r KHLWHPA¬P˙WQA¬Q˙WSARA¬R˙WP˙R=Q˙RTAU˙T=V˙TPQ¬S˙P˙Q¬Q˙W
18 1 17 sylbi φ¬Q˙W
19 1 4atexlemkc φKCvLat
20 1 2 3 4 5 6 7 8 4atexlemv φVA
21 1 4atexlemq φQA
22 1 4atexlemt φTA
23 1 2 3 4 5 6 7 4atexlemu φUA
24 1 2 3 4 5 6 7 8 4atexlemunv φUV
25 1 4atexlemutvt φU˙T=V˙T
26 5 3 cvlsupr6 KCvLatUAVATAUVU˙T=V˙TTV
27 26 necomd KCvLatUAVATAUVU˙T=V˙TVT
28 19 23 20 22 24 25 27 syl132anc φVT
29 2 3 5 cvlatexch2 KCvLatVAQATAVTV˙Q˙TQ˙V˙T
30 19 20 21 22 28 29 syl131anc φV˙Q˙TQ˙V˙T
31 1 6 4atexlemwb φWBaseK
32 13 2 4 latmle2 KLatP˙SBaseKWBaseKP˙S˙W˙W
33 10 12 31 32 syl3anc φP˙S˙W˙W
34 8 33 eqbrtrid φV˙W
35 1 2 3 4 5 6 7 8 4atexlemtlw φT˙W
36 13 5 atbase VAVBaseK
37 20 36 syl φVBaseK
38 13 5 atbase TATBaseK
39 22 38 syl φTBaseK
40 13 2 3 latjle12 KLatVBaseKTBaseKWBaseKV˙WT˙WV˙T˙W
41 10 37 39 31 40 syl13anc φV˙WT˙WV˙T˙W
42 34 35 41 mpbi2and φV˙T˙W
43 13 5 atbase QAQBaseK
44 21 43 syl φQBaseK
45 1 4atexlemk φKHL
46 13 3 5 hlatjcl KHLVATAV˙TBaseK
47 45 20 22 46 syl3anc φV˙TBaseK
48 13 2 lattr KLatQBaseKV˙TBaseKWBaseKQ˙V˙TV˙T˙WQ˙W
49 10 44 47 31 48 syl13anc φQ˙V˙TV˙T˙WQ˙W
50 42 49 mpan2d φQ˙V˙TQ˙W
51 30 50 syld φV˙Q˙TQ˙W
52 18 51 mtod φ¬V˙Q˙T
53 nbrne2 C˙Q˙T¬V˙Q˙TCV
54 16 52 53 syl2anc φCV
55 1 4atexlemw φWH
56 45 55 jca φKHLWH
57 1 4atexlempw φPA¬P˙W
58 1 4atexlems φSA
59 1 2 3 4 5 6 7 8 9 4atexlemc φCA
60 1 2 3 5 4atexlempns φPS
61 13 2 4 latmle2 KLatQ˙TBaseKP˙SBaseKQ˙T˙P˙S˙P˙S
62 10 11 12 61 syl3anc φQ˙T˙P˙S˙P˙S
63 9 62 eqbrtrid φC˙P˙S
64 2 3 4 5 6 8 lhpat3 KHLWHPA¬P˙WSACAPSC˙P˙S¬C˙WCV
65 56 57 58 59 60 63 64 syl222anc φ¬C˙WCV
66 54 65 mpbird φ¬C˙W