| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4sq.1 |
|
| 2 |
|
4sq.2 |
|
| 3 |
|
4sq.3 |
|
| 4 |
|
4sq.4 |
|
| 5 |
|
4sq.5 |
|
| 6 |
|
4sq.6 |
|
| 7 |
|
4sq.7 |
|
| 8 |
|
4sq.m |
|
| 9 |
|
4sq.a |
|
| 10 |
|
4sq.b |
|
| 11 |
|
4sq.c |
|
| 12 |
|
4sq.d |
|
| 13 |
|
4sq.e |
|
| 14 |
|
4sq.f |
|
| 15 |
|
4sq.g |
|
| 16 |
|
4sq.h |
|
| 17 |
|
4sq.r |
|
| 18 |
|
4sq.p |
|
| 19 |
|
eluz2nn |
|
| 20 |
8 19
|
syl |
|
| 21 |
20
|
nnred |
|
| 22 |
21
|
resqcld |
|
| 23 |
22
|
rehalfcld |
|
| 24 |
23
|
rehalfcld |
|
| 25 |
24
|
recnd |
|
| 26 |
9 20 13
|
4sqlem5 |
|
| 27 |
26
|
simpld |
|
| 28 |
|
zsqcl |
|
| 29 |
27 28
|
syl |
|
| 30 |
29
|
zred |
|
| 31 |
30
|
recnd |
|
| 32 |
10 20 14
|
4sqlem5 |
|
| 33 |
32
|
simpld |
|
| 34 |
|
zsqcl |
|
| 35 |
33 34
|
syl |
|
| 36 |
35
|
zred |
|
| 37 |
36
|
recnd |
|
| 38 |
25 25 31 37
|
addsub4d |
|
| 39 |
23
|
recnd |
|
| 40 |
39
|
2halvesd |
|
| 41 |
40
|
oveq1d |
|
| 42 |
38 41
|
eqtr3d |
|
| 43 |
42
|
adantr |
|
| 44 |
22
|
recnd |
|
| 45 |
44
|
2halvesd |
|
| 46 |
45
|
adantr |
|
| 47 |
21
|
recnd |
|
| 48 |
47
|
sqvald |
|
| 49 |
48
|
adantr |
|
| 50 |
|
simpr |
|
| 51 |
17 50
|
eqtr3id |
|
| 52 |
51
|
oveq1d |
|
| 53 |
30 36
|
readdcld |
|
| 54 |
11 20 15
|
4sqlem5 |
|
| 55 |
54
|
simpld |
|
| 56 |
|
zsqcl |
|
| 57 |
55 56
|
syl |
|
| 58 |
57
|
zred |
|
| 59 |
12 20 16
|
4sqlem5 |
|
| 60 |
59
|
simpld |
|
| 61 |
|
zsqcl |
|
| 62 |
60 61
|
syl |
|
| 63 |
62
|
zred |
|
| 64 |
58 63
|
readdcld |
|
| 65 |
53 64
|
readdcld |
|
| 66 |
65
|
recnd |
|
| 67 |
20
|
nnne0d |
|
| 68 |
66 47 67
|
divcan1d |
|
| 69 |
68
|
adantr |
|
| 70 |
49 52 69
|
3eqtr2rd |
|
| 71 |
46 70
|
oveq12d |
|
| 72 |
53
|
recnd |
|
| 73 |
64
|
recnd |
|
| 74 |
39 39 72 73
|
addsub4d |
|
| 75 |
74
|
adantr |
|
| 76 |
44
|
subidd |
|
| 77 |
76
|
adantr |
|
| 78 |
71 75 77
|
3eqtr3d |
|
| 79 |
23 53
|
resubcld |
|
| 80 |
9 20 13
|
4sqlem7 |
|
| 81 |
10 20 14
|
4sqlem7 |
|
| 82 |
30 36 24 24 80 81
|
le2addd |
|
| 83 |
82 40
|
breqtrd |
|
| 84 |
23 53
|
subge0d |
|
| 85 |
83 84
|
mpbird |
|
| 86 |
23 64
|
resubcld |
|
| 87 |
11 20 15
|
4sqlem7 |
|
| 88 |
12 20 16
|
4sqlem7 |
|
| 89 |
58 63 24 24 87 88
|
le2addd |
|
| 90 |
89 40
|
breqtrd |
|
| 91 |
23 64
|
subge0d |
|
| 92 |
90 91
|
mpbird |
|
| 93 |
|
add20 |
|
| 94 |
79 85 86 92 93
|
syl22anc |
|
| 95 |
94
|
biimpa |
|
| 96 |
78 95
|
syldan |
|
| 97 |
96
|
simpld |
|
| 98 |
43 97
|
eqtrd |
|
| 99 |
24 30
|
resubcld |
|
| 100 |
24 30
|
subge0d |
|
| 101 |
80 100
|
mpbird |
|
| 102 |
24 36
|
resubcld |
|
| 103 |
24 36
|
subge0d |
|
| 104 |
81 103
|
mpbird |
|
| 105 |
|
add20 |
|
| 106 |
99 101 102 104 105
|
syl22anc |
|
| 107 |
106
|
biimpa |
|
| 108 |
98 107
|
syldan |
|
| 109 |
58
|
recnd |
|
| 110 |
63
|
recnd |
|
| 111 |
25 25 109 110
|
addsub4d |
|
| 112 |
40
|
oveq1d |
|
| 113 |
111 112
|
eqtr3d |
|
| 114 |
113
|
adantr |
|
| 115 |
96
|
simprd |
|
| 116 |
114 115
|
eqtrd |
|
| 117 |
24 58
|
resubcld |
|
| 118 |
24 58
|
subge0d |
|
| 119 |
87 118
|
mpbird |
|
| 120 |
24 63
|
resubcld |
|
| 121 |
24 63
|
subge0d |
|
| 122 |
88 121
|
mpbird |
|
| 123 |
|
add20 |
|
| 124 |
117 119 120 122 123
|
syl22anc |
|
| 125 |
124
|
biimpa |
|
| 126 |
116 125
|
syldan |
|
| 127 |
108 126
|
jca |
|