Description: Liouville's theorem on diophantine approximation: Any algebraic number, being a root of a polynomial F in integer coefficients, is not approximable beyond order N = deg ( F ) by rational numbers. In this form, it also applies to rational numbers themselves, which are not well approximable by other rational numbers. This is Metamath 100 proof #18. (Contributed by Stefan O'Rear, 16-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | aalioulem2.a | |
|
aalioulem2.b | |
||
aalioulem2.c | |
||
aalioulem2.d | |
||
aalioulem3.e | |
||
Assertion | aaliou | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aalioulem2.a | |
|
2 | aalioulem2.b | |
|
3 | aalioulem2.c | |
|
4 | aalioulem2.d | |
|
5 | aalioulem3.e | |
|
6 | 1 2 3 4 5 | aalioulem6 | |
7 | rphalfcl | |
|
8 | 7 | adantl | |
9 | 7 | ad2antlr | |
10 | nnrp | |
|
11 | 10 | ad2antll | |
12 | 3 | nnzd | |
13 | 12 | ad2antrr | |
14 | 11 13 | rpexpcld | |
15 | 9 14 | rpdivcld | |
16 | 15 | rpred | |
17 | simplr | |
|
18 | 17 14 | rpdivcld | |
19 | 18 | rpred | |
20 | 4 | adantr | |
21 | znq | |
|
22 | qre | |
|
23 | 21 22 | syl | |
24 | resubcl | |
|
25 | 20 23 24 | syl2an | |
26 | 25 | recnd | |
27 | 26 | abscld | |
28 | 16 19 27 | 3jca | |
29 | 9 | rpred | |
30 | rpre | |
|
31 | 30 | ad2antlr | |
32 | rphalflt | |
|
33 | 32 | ad2antlr | |
34 | 29 31 14 33 | ltdiv1dd | |
35 | 34 | anim1i | |
36 | 35 | ex | |
37 | ltletr | |
|
38 | 28 36 37 | sylsyld | |
39 | 38 | orim2d | |
40 | 39 | ralimdvva | |
41 | oveq1 | |
|
42 | 41 | breq1d | |
43 | 42 | orbi2d | |
44 | 43 | 2ralbidv | |
45 | 44 | rspcev | |
46 | 8 40 45 | syl6an | |
47 | 46 | rexlimdva | |
48 | 6 47 | mpd | |