Metamath Proof Explorer


Theorem aaliou

Description: Liouville's theorem on diophantine approximation: Any algebraic number, being a root of a polynomial F in integer coefficients, is not approximable beyond order N = deg ( F ) by rational numbers. In this form, it also applies to rational numbers themselves, which are not well approximable by other rational numbers. This is Metamath 100 proof #18. (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypotheses aalioulem2.a N=degF
aalioulem2.b φFPoly
aalioulem2.c φN
aalioulem2.d φA
aalioulem3.e φFA=0
Assertion aaliou φx+pqA=pqxqN<Apq

Proof

Step Hyp Ref Expression
1 aalioulem2.a N=degF
2 aalioulem2.b φFPoly
3 aalioulem2.c φN
4 aalioulem2.d φA
5 aalioulem3.e φFA=0
6 1 2 3 4 5 aalioulem6 φa+pqA=pqaqNApq
7 rphalfcl a+a2+
8 7 adantl φa+a2+
9 7 ad2antlr φa+pqa2+
10 nnrp qq+
11 10 ad2antll φa+pqq+
12 3 nnzd φN
13 12 ad2antrr φa+pqN
14 11 13 rpexpcld φa+pqqN+
15 9 14 rpdivcld φa+pqa2qN+
16 15 rpred φa+pqa2qN
17 simplr φa+pqa+
18 17 14 rpdivcld φa+pqaqN+
19 18 rpred φa+pqaqN
20 4 adantr φa+A
21 znq pqpq
22 qre pqpq
23 21 22 syl pqpq
24 resubcl ApqApq
25 20 23 24 syl2an φa+pqApq
26 25 recnd φa+pqApq
27 26 abscld φa+pqApq
28 16 19 27 3jca φa+pqa2qNaqNApq
29 9 rpred φa+pqa2
30 rpre a+a
31 30 ad2antlr φa+pqa
32 rphalflt a+a2<a
33 32 ad2antlr φa+pqa2<a
34 29 31 14 33 ltdiv1dd φa+pqa2qN<aqN
35 34 anim1i φa+pqaqNApqa2qN<aqNaqNApq
36 35 ex φa+pqaqNApqa2qN<aqNaqNApq
37 ltletr a2qNaqNApqa2qN<aqNaqNApqa2qN<Apq
38 28 36 37 sylsyld φa+pqaqNApqa2qN<Apq
39 38 orim2d φa+pqA=pqaqNApqA=pqa2qN<Apq
40 39 ralimdvva φa+pqA=pqaqNApqpqA=pqa2qN<Apq
41 oveq1 x=a2xqN=a2qN
42 41 breq1d x=a2xqN<Apqa2qN<Apq
43 42 orbi2d x=a2A=pqxqN<ApqA=pqa2qN<Apq
44 43 2ralbidv x=a2pqA=pqxqN<ApqpqA=pqa2qN<Apq
45 44 rspcev a2+pqA=pqa2qN<Apqx+pqA=pqxqN<Apq
46 8 40 45 syl6an φa+pqA=pqaqNApqx+pqA=pqxqN<Apq
47 46 rexlimdva φa+pqA=pqaqNApqx+pqA=pqxqN<Apq
48 6 47 mpd φx+pqA=pqxqN<Apq