Description: Lemma for ablfac1b . Satisfy the assumptions of ablfacrp. (Contributed by Mario Carneiro, 26-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ablfac1.b | |
|
ablfac1.o | |
||
ablfac1.s | |
||
ablfac1.g | |
||
ablfac1.f | |
||
ablfac1.1 | |
||
ablfac1.m | |
||
ablfac1.n | |
||
Assertion | ablfac1lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablfac1.b | |
|
2 | ablfac1.o | |
|
3 | ablfac1.s | |
|
4 | ablfac1.g | |
|
5 | ablfac1.f | |
|
6 | ablfac1.1 | |
|
7 | ablfac1.m | |
|
8 | ablfac1.n | |
|
9 | 6 | sselda | |
10 | prmnn | |
|
11 | 9 10 | syl | |
12 | ablgrp | |
|
13 | 1 | grpbn0 | |
14 | 4 12 13 | 3syl | |
15 | hashnncl | |
|
16 | 5 15 | syl | |
17 | 14 16 | mpbird | |
18 | 17 | adantr | |
19 | 9 18 | pccld | |
20 | 11 19 | nnexpcld | |
21 | 7 20 | eqeltrid | |
22 | pcdvds | |
|
23 | 9 18 22 | syl2anc | |
24 | 7 23 | eqbrtrid | |
25 | nndivdvds | |
|
26 | 18 21 25 | syl2anc | |
27 | 24 26 | mpbid | |
28 | 8 27 | eqeltrid | |
29 | 21 28 | jca | |
30 | 7 | oveq1i | |
31 | pcndvds2 | |
|
32 | 9 18 31 | syl2anc | |
33 | 7 | oveq2i | |
34 | 8 33 | eqtri | |
35 | 34 | breq2i | |
36 | 32 35 | sylnibr | |
37 | 28 | nnzd | |
38 | coprm | |
|
39 | 9 37 38 | syl2anc | |
40 | 36 39 | mpbid | |
41 | prmz | |
|
42 | 9 41 | syl | |
43 | rpexp1i | |
|
44 | 42 37 19 43 | syl3anc | |
45 | 40 44 | mpd | |
46 | 30 45 | eqtrid | |
47 | 8 | oveq2i | |
48 | 18 | nncnd | |
49 | 21 | nncnd | |
50 | 21 | nnne0d | |
51 | 48 49 50 | divcan2d | |
52 | 47 51 | eqtr2id | |
53 | 29 46 52 | 3jca | |