Step |
Hyp |
Ref |
Expression |
1 |
|
ablsimpgfind.1 |
|
2 |
|
ablsimpgfind.2 |
|
3 |
|
ablsimpgfind.3 |
|
4 |
|
simpr |
|
5 |
4
|
iffalsed |
|
6 |
|
eqid |
|
7 |
1 6 3
|
simpgnideld |
|
8 |
|
neqne |
|
9 |
8
|
reximi |
|
10 |
7 9
|
syl |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
3
|
simpggrpd |
|
14 |
13
|
adantr |
|
15 |
|
simprl |
|
16 |
2
|
ad2antrr |
|
17 |
3
|
ad2antrr |
|
18 |
15
|
adantr |
|
19 |
|
simplrr |
|
20 |
19
|
neneqd |
|
21 |
|
simpr |
|
22 |
1 6 11 16 17 18 20 21
|
ablsimpg1gend |
|
23 |
22
|
ex |
|
24 |
|
simprr |
|
25 |
13
|
ad2antrr |
|
26 |
|
simprl |
|
27 |
15
|
adantr |
|
28 |
1 11 25 26 27
|
mulgcld |
|
29 |
24 28
|
eqeltrd |
|
30 |
29
|
rexlimdvaa |
|
31 |
23 30
|
impbid |
|
32 |
31
|
abbi2dv |
|
33 |
|
eqid |
|
34 |
33
|
rnmpt |
|
35 |
32 34
|
eqtr4di |
|
36 |
1 11 12 14 15 35
|
cycsubggenodd |
|
37 |
1 6 11 12 2 3
|
ablsimpgfindlem2 |
|
38 |
1 6 11 12 2 3
|
ablsimpgfindlem1 |
|
39 |
37 38
|
pm2.61dane |
|
40 |
39
|
adantrr |
|
41 |
36 40
|
eqnetrrd |
|
42 |
10 41
|
rexlimddv |
|
43 |
42
|
adantr |
|
44 |
5 43
|
pm2.21ddne |
|
45 |
44
|
efald |
|