Description: An abelian simple group is finite. (Contributed by Rohan Ridenour, 3-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ablsimpgfind.1 | |
|
ablsimpgfind.2 | |
||
ablsimpgfind.3 | |
||
Assertion | ablsimpgfind | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablsimpgfind.1 | |
|
2 | ablsimpgfind.2 | |
|
3 | ablsimpgfind.3 | |
|
4 | simpr | |
|
5 | 4 | iffalsed | |
6 | eqid | |
|
7 | 1 6 3 | simpgnideld | |
8 | neqne | |
|
9 | 8 | reximi | |
10 | 7 9 | syl | |
11 | eqid | |
|
12 | eqid | |
|
13 | 3 | simpggrpd | |
14 | 13 | adantr | |
15 | simprl | |
|
16 | 2 | ad2antrr | |
17 | 3 | ad2antrr | |
18 | 15 | adantr | |
19 | simplrr | |
|
20 | 19 | neneqd | |
21 | simpr | |
|
22 | 1 6 11 16 17 18 20 21 | ablsimpg1gend | |
23 | 22 | ex | |
24 | simprr | |
|
25 | 13 | ad2antrr | |
26 | simprl | |
|
27 | 15 | adantr | |
28 | 1 11 25 26 27 | mulgcld | |
29 | 24 28 | eqeltrd | |
30 | 29 | rexlimdvaa | |
31 | 23 30 | impbid | |
32 | 31 | eqabdv | |
33 | eqid | |
|
34 | 33 | rnmpt | |
35 | 32 34 | eqtr4di | |
36 | 1 11 12 14 15 35 | cycsubggenodd | |
37 | 1 6 11 12 2 3 | ablsimpgfindlem2 | |
38 | 1 6 11 12 2 3 | ablsimpgfindlem1 | |
39 | 37 38 | pm2.61dane | |
40 | 39 | adantrr | |
41 | 36 40 | eqnetrrd | |
42 | 10 41 | rexlimddv | |
43 | 42 | adantr | |
44 | 5 43 | pm2.21ddne | |
45 | 44 | efald | |