Metamath Proof Explorer


Theorem ablsimpgfind

Description: An abelian simple group is finite. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses ablsimpgfind.1 B=BaseG
ablsimpgfind.2 φGAbel
ablsimpgfind.3 φGSimpGrp
Assertion ablsimpgfind φBFin

Proof

Step Hyp Ref Expression
1 ablsimpgfind.1 B=BaseG
2 ablsimpgfind.2 φGAbel
3 ablsimpgfind.3 φGSimpGrp
4 simpr φ¬BFin¬BFin
5 4 iffalsed φ¬BFinifBFinB0=0
6 eqid 0G=0G
7 1 6 3 simpgnideld φxB¬x=0G
8 neqne ¬x=0Gx0G
9 8 reximi xB¬x=0GxBx0G
10 7 9 syl φxBx0G
11 eqid G=G
12 eqid odG=odG
13 3 simpggrpd φGGrp
14 13 adantr φxBx0GGGrp
15 simprl φxBx0GxB
16 2 ad2antrr φxBx0GyBGAbel
17 3 ad2antrr φxBx0GyBGSimpGrp
18 15 adantr φxBx0GyBxB
19 simplrr φxBx0GyBx0G
20 19 neneqd φxBx0GyB¬x=0G
21 simpr φxBx0GyByB
22 1 6 11 16 17 18 20 21 ablsimpg1gend φxBx0GyBny=nGx
23 22 ex φxBx0GyBny=nGx
24 simprr φxBx0Gny=nGxy=nGx
25 13 ad2antrr φxBx0Gny=nGxGGrp
26 simprl φxBx0Gny=nGxn
27 15 adantr φxBx0Gny=nGxxB
28 1 11 25 26 27 mulgcld φxBx0Gny=nGxnGxB
29 24 28 eqeltrd φxBx0Gny=nGxyB
30 29 rexlimdvaa φxBx0Gny=nGxyB
31 23 30 impbid φxBx0GyBny=nGx
32 31 eqabdv φxBx0GB=y|ny=nGx
33 eqid nnGx=nnGx
34 33 rnmpt rannnGx=y|ny=nGx
35 32 34 eqtr4di φxBx0GB=rannnGx
36 1 11 12 14 15 35 cycsubggenodd φxBx0GodGx=ifBFinB0
37 1 6 11 12 2 3 ablsimpgfindlem2 φxB2Gx=0GodGx0
38 1 6 11 12 2 3 ablsimpgfindlem1 φxB2Gx0GodGx0
39 37 38 pm2.61dane φxBodGx0
40 39 adantrr φxBx0GodGx0
41 36 40 eqnetrrd φxBx0GifBFinB00
42 10 41 rexlimddv φifBFinB00
43 42 adantr φ¬BFinifBFinB00
44 5 43 pm2.21ddne φ¬BFin
45 44 efald φBFin