| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ablsimpgfind.1 |  | 
						
							| 2 |  | ablsimpgfind.2 |  | 
						
							| 3 |  | ablsimpgfind.3 |  | 
						
							| 4 |  | simpr |  | 
						
							| 5 | 4 | iffalsed |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 | 1 6 3 | simpgnideld |  | 
						
							| 8 |  | neqne |  | 
						
							| 9 | 8 | reximi |  | 
						
							| 10 | 7 9 | syl |  | 
						
							| 11 |  | eqid |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 3 | simpggrpd |  | 
						
							| 14 | 13 | adantr |  | 
						
							| 15 |  | simprl |  | 
						
							| 16 | 2 | ad2antrr |  | 
						
							| 17 | 3 | ad2antrr |  | 
						
							| 18 | 15 | adantr |  | 
						
							| 19 |  | simplrr |  | 
						
							| 20 | 19 | neneqd |  | 
						
							| 21 |  | simpr |  | 
						
							| 22 | 1 6 11 16 17 18 20 21 | ablsimpg1gend |  | 
						
							| 23 | 22 | ex |  | 
						
							| 24 |  | simprr |  | 
						
							| 25 | 13 | ad2antrr |  | 
						
							| 26 |  | simprl |  | 
						
							| 27 | 15 | adantr |  | 
						
							| 28 | 1 11 25 26 27 | mulgcld |  | 
						
							| 29 | 24 28 | eqeltrd |  | 
						
							| 30 | 29 | rexlimdvaa |  | 
						
							| 31 | 23 30 | impbid |  | 
						
							| 32 | 31 | eqabdv |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 | 33 | rnmpt |  | 
						
							| 35 | 32 34 | eqtr4di |  | 
						
							| 36 | 1 11 12 14 15 35 | cycsubggenodd |  | 
						
							| 37 | 1 6 11 12 2 3 | ablsimpgfindlem2 |  | 
						
							| 38 | 1 6 11 12 2 3 | ablsimpgfindlem1 |  | 
						
							| 39 | 37 38 | pm2.61dane |  | 
						
							| 40 | 39 | adantrr |  | 
						
							| 41 | 36 40 | eqnetrrd |  | 
						
							| 42 | 10 41 | rexlimddv |  | 
						
							| 43 | 42 | adantr |  | 
						
							| 44 | 5 43 | pm2.21ddne |  | 
						
							| 45 | 44 | efald |  |