Metamath Proof Explorer


Theorem acndom2

Description: A set smaller than one with choice sequences of length A also has choice sequences of length A . (Contributed by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion acndom2 XYYAC_AXAC_A

Proof

Step Hyp Ref Expression
1 brdomi XYff:X1-1Y
2 simplr f:X1-1YYAC_Ag𝒫XAYAC_A
3 imassrn fgxranf
4 simplll f:X1-1YYAC_Ag𝒫XAxAf:X1-1Y
5 f1f f:X1-1Yf:XY
6 frn f:XYranfY
7 4 5 6 3syl f:X1-1YYAC_Ag𝒫XAxAranfY
8 3 7 sstrid f:X1-1YYAC_Ag𝒫XAxAfgxY
9 elmapi g𝒫XAg:A𝒫X
10 9 adantl f:X1-1YYAC_Ag𝒫XAg:A𝒫X
11 10 ffvelcdmda f:X1-1YYAC_Ag𝒫XAxAgx𝒫X
12 11 eldifad f:X1-1YYAC_Ag𝒫XAxAgx𝒫X
13 12 elpwid f:X1-1YYAC_Ag𝒫XAxAgxX
14 f1dm f:X1-1Ydomf=X
15 4 14 syl f:X1-1YYAC_Ag𝒫XAxAdomf=X
16 13 15 sseqtrrd f:X1-1YYAC_Ag𝒫XAxAgxdomf
17 sseqin2 gxdomfdomfgx=gx
18 16 17 sylib f:X1-1YYAC_Ag𝒫XAxAdomfgx=gx
19 eldifsni gx𝒫Xgx
20 11 19 syl f:X1-1YYAC_Ag𝒫XAxAgx
21 18 20 eqnetrd f:X1-1YYAC_Ag𝒫XAxAdomfgx
22 imadisj fgx=domfgx=
23 22 necon3bii fgxdomfgx
24 21 23 sylibr f:X1-1YYAC_Ag𝒫XAxAfgx
25 8 24 jca f:X1-1YYAC_Ag𝒫XAxAfgxYfgx
26 25 ralrimiva f:X1-1YYAC_Ag𝒫XAxAfgxYfgx
27 acni2 YAC_AxAfgxYfgxkk:AYxAkxfgx
28 2 26 27 syl2anc f:X1-1YYAC_Ag𝒫XAkk:AYxAkxfgx
29 acnrcl YAC_AAV
30 29 ad3antlr f:X1-1YYAC_Ag𝒫XAk:AYxAkxfgxAV
31 simp-4l f:X1-1YYAC_Ag𝒫XAk:AYxAkxfgxf:X1-1Y
32 f1f1orn f:X1-1Yf:X1-1 ontoranf
33 31 32 syl f:X1-1YYAC_Ag𝒫XAk:AYxAkxfgxf:X1-1 ontoranf
34 simprr f:X1-1YYAC_Ag𝒫XAk:AYxAkxfgxkxfgx
35 3 34 sselid f:X1-1YYAC_Ag𝒫XAk:AYxAkxfgxkxranf
36 f1ocnvfv2 f:X1-1 ontoranfkxranfff-1kx=kx
37 33 35 36 syl2anc f:X1-1YYAC_Ag𝒫XAk:AYxAkxfgxff-1kx=kx
38 37 34 eqeltrd f:X1-1YYAC_Ag𝒫XAk:AYxAkxfgxff-1kxfgx
39 f1ocnv f:X1-1 ontoranff-1:ranf1-1 ontoX
40 f1of f-1:ranf1-1 ontoXf-1:ranfX
41 33 39 40 3syl f:X1-1YYAC_Ag𝒫XAk:AYxAkxfgxf-1:ranfX
42 41 35 ffvelcdmd f:X1-1YYAC_Ag𝒫XAk:AYxAkxfgxf-1kxX
43 13 ad2ant2r f:X1-1YYAC_Ag𝒫XAk:AYxAkxfgxgxX
44 f1elima f:X1-1Yf-1kxXgxXff-1kxfgxf-1kxgx
45 31 42 43 44 syl3anc f:X1-1YYAC_Ag𝒫XAk:AYxAkxfgxff-1kxfgxf-1kxgx
46 38 45 mpbid f:X1-1YYAC_Ag𝒫XAk:AYxAkxfgxf-1kxgx
47 46 expr f:X1-1YYAC_Ag𝒫XAk:AYxAkxfgxf-1kxgx
48 47 ralimdva f:X1-1YYAC_Ag𝒫XAk:AYxAkxfgxxAf-1kxgx
49 48 impr f:X1-1YYAC_Ag𝒫XAk:AYxAkxfgxxAf-1kxgx
50 acnlem AVxAf-1kxgxhxAhxgx
51 30 49 50 syl2anc f:X1-1YYAC_Ag𝒫XAk:AYxAkxfgxhxAhxgx
52 28 51 exlimddv f:X1-1YYAC_Ag𝒫XAhxAhxgx
53 52 ralrimiva f:X1-1YYAC_Ag𝒫XAhxAhxgx
54 vex fV
55 54 dmex domfV
56 14 55 eqeltrrdi f:X1-1YXV
57 isacn XVAVXAC_Ag𝒫XAhxAhxgx
58 56 29 57 syl2an f:X1-1YYAC_AXAC_Ag𝒫XAhxAhxgx
59 53 58 mpbird f:X1-1YYAC_AXAC_A
60 59 ex f:X1-1YYAC_AXAC_A
61 60 exlimiv ff:X1-1YYAC_AXAC_A
62 1 61 syl XYYAC_AXAC_A