Metamath Proof Explorer


Theorem addltmulALT

Description: A proof readability experiment for addltmul . (Contributed by Stefan Allan, 30-Oct-2010) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion addltmulALT AB2<A2<BA+B<AB

Proof

Step Hyp Ref Expression
1 simpr A2<A2<A
2 2re 2
3 2 a1i A2<A2
4 simpl A2<AA
5 1re 1
6 5 a1i A2<A1
7 ltsub1 2A12<A21<A1
8 3 4 6 7 syl3anc A2<A2<A21<A1
9 2cn 2
10 ax-1cn 1
11 df-2 2=1+1
12 11 eqcomi 1+1=2
13 9 10 10 12 subaddrii 21=1
14 13 breq1i 21<A11<A1
15 14 a1i A2<A21<A11<A1
16 8 15 bitrd A2<A2<A1<A1
17 1 16 mpbid A2<A1<A1
18 simpr B2<B2<B
19 2 a1i B2<B2
20 simpl B2<BB
21 5 a1i B2<B1
22 ltsub1 2B12<B21<B1
23 19 20 21 22 syl3anc B2<B2<B21<B1
24 13 breq1i 21<B11<B1
25 24 a1i B2<B21<B11<B1
26 23 25 bitrd B2<B2<B1<B1
27 18 26 mpbid B2<B1<B1
28 17 27 anim12i A2<AB2<B1<A11<B1
29 28 an4s AB2<A2<B1<A11<B1
30 peano2rem AA1
31 peano2rem BB1
32 30 31 anim12i ABA1B1
33 32 anim1i AB1<A11<B1A1B11<A11<B1
34 mulgt1 A1B11<A11<B11<A1B1
35 33 34 syl AB1<A11<B11<A1B1
36 35 ex AB1<A11<B11<A1B1
37 36 adantr AB2<A2<B1<A11<B11<A1B1
38 recn AA
39 10 a1i A1
40 38 39 jca AA1
41 recn BB
42 10 a1i B1
43 41 42 jca BB1
44 40 43 anim12i ABA1B1
45 mulsub A1B1A1B1=AB+11-A1+B1
46 44 45 syl ABA1B1=AB+11-A1+B1
47 46 breq2d AB1<A1B11<AB+11-A1+B1
48 47 biimpd AB1<A1B11<AB+11-A1+B1
49 48 adantr AB2<A2<B1<A1B11<AB+11-A1+B1
50 10 mullidi 11=1
51 eqcom 11=11=11
52 51 biimpi 11=11=11
53 50 52 mp1i AB1=11
54 53 oveq2d ABAB+1=AB+11
55 mulrid AA1=A
56 eqcom A1=AA=A1
57 56 biimpi A1=AA=A1
58 55 57 syl AA=A1
59 38 58 syl AA=A1
60 59 adantr ABA=A1
61 mulrid BB1=B
62 41 61 syl BB1=B
63 eqcom B1=BB=B1
64 63 biimpi B1=BB=B1
65 62 64 syl BB=B1
66 65 adantl ABB=B1
67 60 66 oveq12d ABA+B=A1+B1
68 54 67 oveq12d ABAB+1-A+B=AB+11-A1+B1
69 68 breq2d AB1<AB+1-A+B1<AB+11-A1+B1
70 readdcl ABA+B
71 5 a1i AB1
72 remulcl ABAB
73 readdcl AB1AB+1
74 72 71 73 syl2anc ABAB+1
75 ltaddsub2 A+B1AB+1A+B+1<AB+11<AB+1-A+B
76 70 71 74 75 syl3anc ABA+B+1<AB+11<AB+1-A+B
77 ltadd1 A+BAB1A+B<ABA+B+1<AB+1
78 70 72 71 77 syl3anc ABA+B<ABA+B+1<AB+1
79 78 bicomd ABA+B+1<AB+1A+B<AB
80 79 biimpd ABA+B+1<AB+1A+B<AB
81 76 80 sylbird AB1<AB+1-A+BA+B<AB
82 69 81 sylbird AB1<AB+11-A1+B1A+B<AB
83 82 adantr AB2<A2<B1<AB+11-A1+B1A+B<AB
84 37 49 83 3syld AB2<A2<B1<A11<B1A+B<AB
85 29 84 mpd AB2<A2<BA+B<AB