| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|
| 2 |
|
2re |
|
| 3 |
2
|
a1i |
|
| 4 |
|
simpl |
|
| 5 |
|
1re |
|
| 6 |
5
|
a1i |
|
| 7 |
|
ltsub1 |
|
| 8 |
3 4 6 7
|
syl3anc |
|
| 9 |
|
2cn |
|
| 10 |
|
ax-1cn |
|
| 11 |
|
df-2 |
|
| 12 |
11
|
eqcomi |
|
| 13 |
9 10 10 12
|
subaddrii |
|
| 14 |
13
|
breq1i |
|
| 15 |
14
|
a1i |
|
| 16 |
8 15
|
bitrd |
|
| 17 |
1 16
|
mpbid |
|
| 18 |
|
simpr |
|
| 19 |
2
|
a1i |
|
| 20 |
|
simpl |
|
| 21 |
5
|
a1i |
|
| 22 |
|
ltsub1 |
|
| 23 |
19 20 21 22
|
syl3anc |
|
| 24 |
13
|
breq1i |
|
| 25 |
24
|
a1i |
|
| 26 |
23 25
|
bitrd |
|
| 27 |
18 26
|
mpbid |
|
| 28 |
17 27
|
anim12i |
|
| 29 |
28
|
an4s |
|
| 30 |
|
peano2rem |
|
| 31 |
|
peano2rem |
|
| 32 |
30 31
|
anim12i |
|
| 33 |
32
|
anim1i |
|
| 34 |
|
mulgt1 |
|
| 35 |
33 34
|
syl |
|
| 36 |
35
|
ex |
|
| 37 |
36
|
adantr |
|
| 38 |
|
recn |
|
| 39 |
10
|
a1i |
|
| 40 |
38 39
|
jca |
|
| 41 |
|
recn |
|
| 42 |
10
|
a1i |
|
| 43 |
41 42
|
jca |
|
| 44 |
40 43
|
anim12i |
|
| 45 |
|
mulsub |
|
| 46 |
44 45
|
syl |
|
| 47 |
46
|
breq2d |
|
| 48 |
47
|
biimpd |
|
| 49 |
48
|
adantr |
|
| 50 |
10
|
mullidi |
|
| 51 |
|
eqcom |
|
| 52 |
51
|
biimpi |
|
| 53 |
50 52
|
mp1i |
|
| 54 |
53
|
oveq2d |
|
| 55 |
|
mulrid |
|
| 56 |
|
eqcom |
|
| 57 |
56
|
biimpi |
|
| 58 |
55 57
|
syl |
|
| 59 |
38 58
|
syl |
|
| 60 |
59
|
adantr |
|
| 61 |
|
mulrid |
|
| 62 |
41 61
|
syl |
|
| 63 |
|
eqcom |
|
| 64 |
63
|
biimpi |
|
| 65 |
62 64
|
syl |
|
| 66 |
65
|
adantl |
|
| 67 |
60 66
|
oveq12d |
|
| 68 |
54 67
|
oveq12d |
|
| 69 |
68
|
breq2d |
|
| 70 |
|
readdcl |
|
| 71 |
5
|
a1i |
|
| 72 |
|
remulcl |
|
| 73 |
|
readdcl |
|
| 74 |
72 71 73
|
syl2anc |
|
| 75 |
|
ltaddsub2 |
|
| 76 |
70 71 74 75
|
syl3anc |
|
| 77 |
|
ltadd1 |
|
| 78 |
70 72 71 77
|
syl3anc |
|
| 79 |
78
|
bicomd |
|
| 80 |
79
|
biimpd |
|
| 81 |
76 80
|
sylbird |
|
| 82 |
69 81
|
sylbird |
|
| 83 |
82
|
adantr |
|
| 84 |
37 49 83
|
3syld |
|
| 85 |
29 84
|
mpd |
|