Description: Technical lemma for existence of non-divisor. (Contributed by metakunt, 27-Oct-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | aks4d1p2.1 | |
|
aks4d1p2.2 | |
||
aks4d1p2.3 | |
||
Assertion | aks4d1p2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aks4d1p2.1 | |
|
2 | aks4d1p2.2 | |
|
3 | aks4d1p2.3 | |
|
4 | 3 | a1i | |
5 | 2re | |
|
6 | 5 | a1i | |
7 | 2pos | |
|
8 | 7 | a1i | |
9 | eluzelz | |
|
10 | 1 9 | syl | |
11 | 10 | zred | |
12 | 0red | |
|
13 | 3re | |
|
14 | 13 | a1i | |
15 | 3pos | |
|
16 | 15 | a1i | |
17 | eluzle | |
|
18 | 1 17 | syl | |
19 | 12 14 11 16 18 | ltletrd | |
20 | 1red | |
|
21 | 1lt2 | |
|
22 | 21 | a1i | |
23 | 20 22 | ltned | |
24 | 23 | necomd | |
25 | 6 8 11 19 24 | relogbcld | |
26 | 5nn0 | |
|
27 | 26 | a1i | |
28 | 25 27 | reexpcld | |
29 | ceilcl | |
|
30 | 28 29 | syl | |
31 | 4 30 | eqeltrd | |
32 | 30 | zred | |
33 | 7re | |
|
34 | 33 | a1i | |
35 | 7pos | |
|
36 | 35 | a1i | |
37 | 11 18 | 3lexlogpow5ineq3 | |
38 | 12 34 28 36 37 | lttrd | |
39 | ceilge | |
|
40 | 28 39 | syl | |
41 | 12 28 32 38 40 | ltletrd | |
42 | 41 4 | breqtrrd | |
43 | 31 42 | jca | |
44 | elnnz | |
|
45 | 43 44 | sylibr | |
46 | 34 28 37 | ltled | |
47 | 34 28 32 46 40 | letrd | |
48 | 47 4 | breqtrrd | |
49 | 45 48 | lcmineqlem | |