Metamath Proof Explorer


Theorem aks4d1p2

Description: Technical lemma for existence of non-divisor. (Contributed by metakunt, 27-Oct-2024)

Ref Expression
Hypotheses aks4d1p2.1 φN3
aks4d1p2.2 A=Nlog2Bk=1log2N2Nk1
aks4d1p2.3 B=log2N5
Assertion aks4d1p2 φ2Blcm_1B

Proof

Step Hyp Ref Expression
1 aks4d1p2.1 φN3
2 aks4d1p2.2 A=Nlog2Bk=1log2N2Nk1
3 aks4d1p2.3 B=log2N5
4 3 a1i φB=log2N5
5 2re 2
6 5 a1i φ2
7 2pos 0<2
8 7 a1i φ0<2
9 eluzelz N3N
10 1 9 syl φN
11 10 zred φN
12 0red φ0
13 3re 3
14 13 a1i φ3
15 3pos 0<3
16 15 a1i φ0<3
17 eluzle N33N
18 1 17 syl φ3N
19 12 14 11 16 18 ltletrd φ0<N
20 1red φ1
21 1lt2 1<2
22 21 a1i φ1<2
23 20 22 ltned φ12
24 23 necomd φ21
25 6 8 11 19 24 relogbcld φlog2N
26 5nn0 50
27 26 a1i φ50
28 25 27 reexpcld φlog2N5
29 ceilcl log2N5log2N5
30 28 29 syl φlog2N5
31 4 30 eqeltrd φB
32 30 zred φlog2N5
33 7re 7
34 33 a1i φ7
35 7pos 0<7
36 35 a1i φ0<7
37 11 18 3lexlogpow5ineq3 φ7<log2N5
38 12 34 28 36 37 lttrd φ0<log2N5
39 ceilge log2N5log2N5log2N5
40 28 39 syl φlog2N5log2N5
41 12 28 32 38 40 ltletrd φ0<log2N5
42 41 4 breqtrrd φ0<B
43 31 42 jca φB0<B
44 elnnz BB0<B
45 43 44 sylibr φB
46 34 28 37 ltled φ7log2N5
47 34 28 32 46 40 letrd φ7log2N5
48 47 4 breqtrrd φ7B
49 45 48 lcmineqlem φ2Blcm_1B